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 Introduction 

 The host innate immune response represents a critical, 
initial line of defense against invading pathogens, and the 
magnitude of this response can influence disease progres-
sion. The IFN system is a key component and complex reg-
ulator of innate immunity. Type I IFNs function primar-
ily to promote an antiviral state in an infected host by in-
ducing signaling through the IFN receptor to stimulate 
expression of a plethora of gene products that function in 
host defense. One of the early induced IFN-stimulated 
genes (ISGs), first identified more than 20 years ago, is a 
small ubiquitin-like protein termed ISG15  [1–3] . This re-
view will summarize several recent reports that have con-
tributed to our fundamental understanding of ISG15 anti-
viral activity, and which have provided novel insights into 
the mechanism(s) of the antiviral action exhibited by this 
broad-spectrum, IFN-induced, innate immune protein.

  Ubiquitination versus ISGylation 

 Ubiquitin and ubiquitin-like proteins (e.g. ISG15 and 
SUMO) are small molecules expressed in eukaryotes that 
are conjugated to target proteins, often resulting in modu-
lation of the target protein’s stability/function/localization 
 [4] . The mechanisms by which proteins are ubiquitinated 
and ISGylated have many common features, and these 
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 Abstract 
 The host innate immune response, including the production 
of type-I IFN, represents the primary line of defense against 
invading viral pathogens. Of the hundreds of IFN-stimulated 
genes (ISGs) discovered to date, ISG15 was one of the first 
identified and shown to encode a ubiquitin-like protein that 
functions, in part, as a modifier of protein function. Evidence 
implicating ISG15 as an innate immune protein with broad-
spectrum antiviral activity continues to accumulate rapidly. 
This review will summarize recent findings on the innate an-
tiviral activity of ISG15, with a focus on the interplay between 
ubiquitination and ISGylation pathways resulting in modula-
tion of RNA virus assembly/budding. Indeed, ubiquitination 
is known to be proviral for some RNA viruses, whereas the 
parallel ISGylation pathway is known to be antiviral. A better 
understanding of the antiviral activities of ISG15 will en-
hance our fundamental knowledge of host innate responses 
to viral pathogens and may provide insight useful for the 
development of novel therapeutic approaches designed to 
enhance the immune response against such pathogens. 

 Copyright © 2009 S. Karger AG, Basel 

 Received: February 12, 2009 
 Accepted after revision: March 25, 2009 
 Published online: June 24, 2009 

Journal of Innate
Immunity

 Dr. Ronald N. Harty 
 Department of Pathobiology, School of Veterinary Medicine 
 University of Pennsylvania 
 3800 Spruce St., Philadelphia, PA 19104 (USA) 
 Tel. +1 215 573 4485, Fax +1 215 898 7887, E-Mail rharty@vet.upenn.edu 

 © 2009 S. Karger AG, Basel
 

 Accessible online at:
www.karger.com/jin 



 Harty   /Pitha   /Okumura   

 

J Innate Immun 2009;1:397–404398

protein modifiers regulate a diverse array of biological 
processes. These protein modification pathways have been 
reviewed in detail elsewhere  [5, 6]  ( fig. 1 ), and thus will 
only be summarized here. Both ubiquitination and ISGy-
lation result in covalent modification of target proteins fol-
lowing a series of enzymatic reactions that occur in a step-
wise fashion ( fig. 1 ). The process of ubiquitination begins 
with protease cleavage of precursor ubiquitin molecules at 
their C-termini to reveal the di-glycine motif. In the pres-
ence of ATP, the Gly-Gly motif is then adenylated by the 
ubiquitin activating enzyme (E1). The ubiquitin moiety is 
then transferred to a cysteine residue on a ubiquitin con-
jugating enzyme (E2). Finally, the E2 enzyme in conjunc-
tion with a ubiquitin ligase (E3), which recognizes the spe-
cific target protein, transfers the ubiquitin moiety typical-
ly onto the  � -NH 2  group of a lysine residue of the substrate. 
In addition to lysine residues, other amino acids (e.g. ser-
ine/threonine) and the extreme N-termini of target pro-
teins can potentially serve as target sites for ubiquitination 
and/or influence the ubiquitination process  [7–9] . Proteins 
that are modified by poly-ubiquitination are often des-
tined for degradation by the 26S proteasome. For example, 
this process is crucial in immune cells where protein ubiq-
uitination regulates protein signaling pathways, innate 
and adaptive immune responses to pathogens, and expres-
sion of surface receptors  [4, 5, 10, 11] . In contrast, mono-
ubiquitination of proteins does not result in degradation, 
but rather can serve to modulate protein function, local-
ization and/or sorting within the cell  [4, 5, 11] .

     Unlike ubiquitination, ISGylation is an IFN-stimu-
lated and regulated process that appears to mimic mono-
ubiquitination functions, such as modulation of enzy-

matic activity, rather than the poly-ubiquitination func-
tion and protein degradation  [12–16] . Like ubiquitination, 
ISGylation involves a cascade of enzymatic reactions in-
volving E1, E2, and E3 enzymes. Briefly, ISG15 is synthe-
sized as precursor protein (165 aa) that is like ubiquitin, 
subsequently cleaved to reveal di-glycine residues at its 
C-terminus in the form of a LRLRGG motif. This GG 
motif is adenylated in the presence of ATP, and ISG15 is 
then transferred sequentially from E1, E2 and E3 en-
zymes to its final destination on a lysine residue within 
the target substrate  [11] . Because of the many similarities 
of the ubiquitination and ISGylation pathways, it is not 
surprising that there is some degree of overlap and com-
petition between these pathways  [17–21] . While the E1 
enzymes are specific for ISGylation and ubiquitination, 
some of the enzymes that function in the ubiquitination 
pathway (e.g. E2 enzyme UbcH8) have a similar function 
in the ISGylation pathway  [19, 21] . One of the features that 
is common to both pathways is that both ubiquitination 
and ISGylation are reversible. De-ubiquitinating enzymes 
and de-ISGylation enzymes (e.g. UBP43) function to 
cleave ubiquitin and/or ISG15 moieties from conjugated 
proteins  [22–25] . De-ubiquitination and de-ISGylation 
provide an additional level of regulation in these path-
ways to maintain homeostasis  [25] .

  Ubiquitination and Virus Budding 

 Over the last decade, numerous reports have demon-
strated that the host ubiquitination machinery is linked to 
the process of budding or egress for many RNA virus fam-

Ub

ATP

-UbE1

E1

E2

E2 -Ub VP40 VP40 -

Budding
Nedd4 - ISG15?

ISG15

-

VSV M ??

Ub

ATP

-UbE1

E1

E2

Nedd4

E2 -Ub VP40
E2 Nedd4

VP40

Budding

VSV M 

-

- Ub

- Ub- Ub

  Fig. 1.  Schematic diagram of the enzymat-
ic cascade leading to ubiquitination of Eb-
ola VP40 by Nedd4 E3 ligase (top half), 
and impairment of this pathway by ISG15 
at the stage of ubiqutin (Ub) transfer from 
E2 to Nedd4 (bottom half). E1 = Ub acti-
vating enzyme; E2 = Ub conjugating en-
zyme; E3 = Ub ligase (Nedd4). Efficient 
VP40-monoUb leads to optimal budding 
of VP40 VLPs (top), whereas an impair-
ment of VP40-monoUb by expression of 
ISG15 leads to decreased budding of VP40 
VLPs (bottom). Since VSV buds in a man-
ner similar to that of Ebola, and since VSV 
M is also mono-ubiquitinated by host 
Nedd4, it will be of interest to determine 
whether ISG15 can inhibit budding of VSV 
by a similar mechanism.   
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ilies [for review see  26 ]. For example, ubiquitin was first 
implicated in regulating Gag-mediated budding of retro-
viruses, and subsequently linked to VP40-mediated bud-
ding of Ebola virus-like particles (VLPs)  [27–30] . Several 
lines of evidence linked ubiquitin with virus egress, in-
cluding: (1) the presence of free, excess ubiquitin within 
budding virions  [31] , (2) detection of mono-ubiquitinated 
forms of viral matrix proteins  [30, 32–38]  and (3) disrup-
tion of virus budding in the presence of proteasome in-
hibitors that deplete free ubiquitin in the cell  [27–29, 34, 
35, 39, 40] . In addition, the PPxY-type L-domain con-
served within the matrix proteins of several RNA viruses 
is known to mediate interactions with WW-domains 
present within HECT E3 ubiquitin ligases, such as Nedd4, 
to facilitate budding either by mono-ubiquitination of the 
viral matrix protein, or by ubiquitination and/or recruit-
ment of other host proteins (e.g. endosomal sorting com-
plex required for transport (ESCRT) pathway) involved in 
virus budding  [30, 35, 36, 41–58] . In sum, ubiquitination 
has been linked or at least implicated to play a role in the 
budding process of retroviruses, rhabdoviruses, filovirus-
es, arenaviruses, paramyxoviruses and reoviruses  [26] . 
Thus, small molecule inhibitors designed to block the 
ubiquitination process and/or viral L-domain function 
may have broad-spectrum antiviral activity.

  ISG15 Has Broad-Spectrum Antiviral Activity 

 While ubiquitin appears to be a broad-spectrum en-
hancer of virus production, ISG15 on the other hand ap-
pears to be a broad-spectrum inhibitor of virus produc-
tion. Antiviral activity associated with protein ISGylation 
in vitro and/or in vivo has been reported for both DNA and 
RNA viruses, including influenza A and B, Sindbis, hepa-
titis B, herpes simplex type-1, murine  � -herpesvirus, ve-
sicular stomatitis virus, lymphocytic choriomeningitis vi-
rus, respiratory syncytial virus, HIV-1 and Ebola virus 
 [59–64] . Recent studies have provided some new and im-
portant insights into the molecular mechanisms by which 
ISG15 functions as an innate antiviral protein with broad-
spectrum activity in vitro and in vivo. Results from sev-
eral of the most recent studies will be summarized below.

  ISG15 and Sindbis Virus 

 First, an elegant paper by Lenschow et al.  [65]  was of 
significance as it helped to prove that protein ISGylation 
and ISG15 possessed broad-spectrum antiviral activity in 

an animal model of infection, and the findings under-
scored the importance of employing both in vitro and in 
vivo models for analyses of antiviral mechanisms. One of 
the major findings was that ISG15 –/–  mice were more 
susceptible to infection with influenza A/WSN/33, influ-
enza B/Lee/40, Sindbis, herpes simplex type 1, and mu-
rine  � -herpesvirus  [65] . Importantly, the ability of ISG15 
to be conjugated to target proteins appeared to be neces-
sary for the observed antiviral effect, since Sindbis virus 
infection could be recovered by overexpressing wild-type 
ISG15, but not by overexpressing a nonconjugating mu-
tant of ISG15  [65] . Although ISG15 conjugation was im-
portant for the observed antiviral effect, the target sub-
strate(s) for ISGylation was not identified. Since ISG15 is 
now known to have more that 150 targets  [11] , the antivi-
ral effect may be due to ISGylation of either a viral pro-
tein, a host protein, or both. Knowing the identity of the 
target protein(s) will be instrumental in elucidating the 
mechanism of action of ISG15 and for the possible devel-
opment of future antiviral strategies.

  In a more recent report, the same group identified ar-
ginine-151 in mouse ISG15 as playing a key role in protein 
ISGy-lation by mediating an interaction with UbE1L  [66] . 
Indeed, an R151A mutation attenuated the ability of 
ISG15 to inhibit replication of Sindbis virus in IFN- � /
 � R (–/–)  mice, and mice lacking this the UbE1L enzyme 
were highly susceptible to Sindbis virus infection  [66] . In 
sum, their results demonstrated that protein conjugation 
is key for the antiviral effects of ISG15 in this animal 
model of Sindbis virus infection  [66] .

  ISG15 and HIV-1 

 IFN was shown to inhibit retroviral and lentiviral vi-
rion release  [67, 68] , and ISG15 was implicated in IFN-
mediated inhibition of HIV-1  [69, 70] . As ubiquitination 
of Gag protein was shown to play a role in HIV-1 assem-
bly and budding, it seemed logical to hypothesize that 
ISG15 could interfere with ubiquitination of Gag and 
consequently disrupt this late stage of virus replication. 
Indeed, recent findings indicated that this hypothesis 
was correct. Okumura et al.  [71]  were the first to clearly 
demonstrate that expression of ISG15 mimicked the an-
tiviral properties of IFN and blocked egress of HIV-1 
from infected cells. The authors found that expression of 
ISG15 appeared to block the ubiquitination process that 
normally enhances HIV-1 Gag-mediated release of infec-
tious virus  [71] . Interestingly, ISG15 did not affect syn-
thesis of viral proteins in the infected cell and, unlike the 
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findings with other viral systems  [65, 72] , conjugation of 
ISG15 to either viral (HIV-1 Gag), or host (tsg101) pro-
teins involved in budding was not evident  [71] . However, 
ISG15 expression did disrupt the interaction between 
host tsg101 and the p6 domain of HIV-1 Gag. This virus-
host interaction has been shown previously to be crucial 
for efficient budding of HIV-1. To further prove that the 
inhibitory effect on budding was specific for ISG15, the 
authors demonstrated that ISG15-specific siRNAs re-
versed the IFN-mediated inhibitory effect on HIV-1 re-
lease  [71] . While the precise mechanism by which ISG15 
interferes with the budding process of HIV-1 remains to 
be defined, the authors postulated that the decrease in 
ubiquitination of Gag and tsg101 may modify the binding 
affinity of this interaction or destabilize this complex. In 
addition, the authors noted that since components of the 
ubiquitination pathway were known to be targets for
ISGylation  [20, 73, 74] , ISG15 may target one or more of 
the E1, E2, or E3 enzymes involved in HIV-1 egress. In 
sum, these findings were of significance in that: (1) they 
revealed an IFN-induced innate immune response that 
could target a late stage of HIV-1 replication, and (2) they 
suggested that ISG15 may have broad-spectrum antiviral 
activity against other RNA viruses that utilize L-domain/
ubiquitination pathways for efficient egress.

  ISG15 and Ebola VLP Budding 

 Most recently, independent studies from two groups 
revealed that ISG15 could inhibit budding mediated by 
the VP40 matrix protein of Ebola virus, and the mecha-
nism of inhibition involved disruption of Nedd4-medi-
ated ubiquitination of Ebola VP40  [75, 76]  ( fig. 1 ). Like 
HIV-1, the host ubiquitination pathway and E3 ubiquitin 
ligase Nedd4 have been linked to budding of negative-
sense RNA virus such as Ebola virus and vesicular stoma-
titis virus (VSV)  [30, 35, 39, 53, 55, 56, 77] . In a prior pub-
lication, Malakhov et al.  [23]  identified Nedd4 as a bind-
ing partner for Ubp43, an ISG15-deconjugating enzyme. 
Thus, Malakhova and Zhang  [76]  sought to determine 
whether Nedd4 could be targeted by ISG15 and whether 
this potential interaction would negatively regulate 
Nedd4 ligase activity. Indeed, the authors found that ex-
pression of ISG15 and the ISGylation system led to an 
overall decrease in Nedd4-ligase activity and Nedd4-me-
diated ubiquitination  [76] . They demonstrated further 
that free ISG15 was sufficient to impair Nedd4 ligase ac-
tivity both in vitro and in vivo  [76] . Importantly, they 
determined that the molecular mechanism of ISG15-me-

diated inhibition of Nedd4 function was due to an abro-
gation of ubiquitin transfer from the E2 enzyme to the 
active site of Nedd4  [76] , thus preventing Nedd4-medi-
ated ubiquitination of target proteins.

  As further proof of this novel mechanism, Malakhova 
and Zhang  [76]  utilized the Ebola VP40 VLP budding as-
say as a model system to assess Nedd4 function in the 
absence or presence of ISG15 and the ISGylation system. 
Indeed, they found that efficient budding of Ebola VP40 
VLPs, which is dependent in part on Nedd4 function, was 
impaired in the presence of ISG15. The decrease in VP40 
VLP release correlated well with an observed decrease in 
the detection of ubiquitinated forms of VP40. Lastly, bud-
ding of Ebola VP40 VLPs was shown to be enhanced in 
ISG15 –/–  knockout cells compared to that from normal 
murine embryonic fibroblasts  [76] , suggesting that en-
dogenous levels of ISG15 can limit budding in unmanip-
ulated cells.

  In a simultaneous and independent report, our studies 
reached many of the same conclusions described above 
using both similar and distinct experimental approaches 
 [75] . Prior to this study, we were one of the first groups to 
suggest that the ubiquitination process and Nedd4 ligase 
may be important for budding of Ebola VP40 VLPs, and 
that the PPxY-type L-domain within the VP40 protein 
was necessary for mediating interactions with the vari-
ous WW-domains present within Nedd4  [30, 56] . Our 
main objective in this area of investigation was to eluci-
date the mechanism of Ebola VP40 VLP budding and 
host interactions at the molecular level in order to devel-
op novel strategies or antiviral therapies to inhibit the 
budding process. In agreement with results of Malakhova 
and Zhang  [76] , we found that expression of ISG15 in the 
absence or presence of the ISGylation system (UbE1L and 
UbcH8) was able to inhibit budding of Ebola VP40 VLPs 
 [75] . We have demonstrated not only that ISG15 inter-
acted with Nedd4 ligase to inhibit ubiquitination of VP40, 
but also that ISG15-mediated inhibition of VP40 budding 
was dependent on the presence of VP40 L-domains. In-
deed, budding of an L-domain deletion mutant of VP40 
known to be insensitive to Nedd4-mediated ubiquitina-
tion, was also insensitive to ISG15-mediated inhibition of 
budding  [75] . Lastly, inhibition of Ebola VP40 VLP bud-
ding by ISG15 was evident only in the presence of wild-
type Nedd4, and not in the presence of a dominant-nega-
tive, enzymatically inactive mutant of Nedd4  [75] . To-
gether, these findings revealed a previously undescribed 
mechanism of antiviral activity for ISG15.

  Interestingly, like Malakhova and Zhang  [76] , our 
group was able to demonstrate that expression of ISG15 
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also had an inhibitory effect on budding of VSV; a rhab-
dovirus that possesses a similar PPxY-type L-domain 
that interacts with Nedd4 ligase to promote efficient vi-
rion budding  [75, 76] .  Thus, ISG15-mediated inhibition 
of budding may not be limited to Ebola. We found that 
overexpression of ISG15 resulted in titers of wild-type 
VSV that were on average 10-fold lower than those mea-
sured in the absence of ISG15  [75] . Moreover, overexpres-
sion of ISG15 was found to have virtually no inhibitory 
effect on budding of VSV mutant PY 1 A4, a L-domain 
mutant of VSV that is insensitive to Nedd4-mediated 
ubiquitination  [75] . Thus, viruses that utilize the host 
ubiquitination machinery for efficient egress may be sus-
ceptible to the inhibitory effect of ISG15.

  ISG15 and Influenza Virus 

 As the above studies highlight, the antiviral activity
of ISG15 against different viruses can be both dependent 
or independent of ISG15 conjugation. In a recent study
by Lai et al.  [78] , the authors demonstrate that antiviral 
activity of ISG15 against influenza B virus requires con-
jugation of ISG15 to target proteins. Although these 
 authors had shown previously that mice lacking ISG15 
were highly susceptible to influenza B virus infection,
it was unclear whether ISG15 conjugation to target pro-
teins was important for this antiviral activity. Using mice 
lacking the E1 activating enzyme for ISG15 conjugation 
(UbE1L –/–  mice), the authors observed a 2–3 log increase 
in titers of influenza B virus in the lungs of these mice at 
3 and 6 days after infection compared to those observed 
in wild-type mice  [78] . In addition, the kinetics of lethal-
ity and survival observed in the UbE1L –/–  mice infected 
with influenza B virus were essentially identical to those 
observed in ISG15 –/–  mice  [78] . The authors concluded 
that the antiviral activity of ISG15 against influenza B 
virus in this in vivo model of infection is dependent on 
ISG15 conjugation; however, the identity of proteins tar-
geted for ISGylation remains to be determined.

  Viruses Fight Back 

 Viruses have evolved many elegant strategies to coun-
teract host immune responses, particularly IFN-related 
pathways. Interestingly, several reports suggest that some 
viruses possess the ability to specifically counteract the 
antiviral effects of ISG15 and/or ISGylation. For example, 
one of the earliest reports by Yuan and Krug  [72] , dem-

onstrated that the NS1 protein of influenza B virus pre-
vents the activation of ISG15 by the E1 enzyme UbE1L, 
thus preventing ISG15 conjugation to target proteins. 
More recently, a unique strategy to inhibit both ubiqui-
tination and ISGylation pathways was identified in nai-
roviruses and arteriviruses  [79] . These viruses were 
shown to encode ovarian tumor domain-containing pro-
teases capable of hydrolyzing both ubiquitin and ISG15 
from target proteins  [79] . Thus, the nairo- and arterivi-
ruses appear to have developed a strategy to antagonize 
the antiviral effects of ISG15  [79] . Finally, in a compre-
hensive report by Guerra et al.  [80] , the authors not only 
demonstrate that ISG15 possesses antiviral activity 
against vaccinia virus, but also show that viral E3 protein 
can bind to ISG15 and disrupt its antiviral activity. Thus, 
a vaccinia virus strain lacking E3 (VVDeltaE3L) was un-
able to replicate in ISG15 +/+  cells, but was able to repli-
cate in ISG15-deficient cells  [80] . Moreover, infection of 
ISG15 –/–  mice with VVDeltaE3L resulted in significant 
disease and mortality, which was not observed in 
ISG15 +/+  mice infected with VVDeltaE3L  [80] . The abil-
ity of other viruses to specifically target and abrogate IS-
Gylation pathways as a means of immune evasion is of 
interest and awaits further investigation.

  Summary and Future Directions 

 The host innate immune response is a critical first line 
of defense against invading viral pathogens. A better un-
derstanding of the distinct innate immune responses and 
the interplay between the virus and host is important for 
our understanding of immunopathogenesis, vaccine de-
sign, and development of new therapeutic strategies. The 
ISGs represent a vast array of proteins with a complex se-
ries of functions and outcomes. However, rapid progress 
has been made into this dynamic area of innate immu-
nity, and the reports summarized here highlight some 
recent and insightful findings on the antiviral activity of 
ISG15. Despite these advancements, many gaps in our 
knowledge of the molecular mechanisms of ISG15 anti-
viral activity remain to be addressed. Some areas for fur-
ther investigation include: (1) identifying the viral and/or 
host target proteins for ISG15 in viral infections where 
ISG15 conjugation is required for its antiviral activity; (2) 
determining whether expression and/or conjugation of 
ISG15 impairs replication, budding, and pathogenesis of 
infectious Ebola virus in cell culture and in the ISG15 
animal models of infection; (3) determining whether 
ISG15 inhibits assembly/budding of additional L-do-
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