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Abstract: Metabolomics is used to reduce the complexity of plants and to understand the under-
lying pathways of the plant phenotype. The metabolic profile of plants can be obtained by mass
spectrometry or liquid-state NMR. The extraction of metabolites from the sample is necessary for
both techniques to obtain the metabolic profile. This extraction step can be eliminated by making
use of high-resolution magic angle spinning (HR-MAS) NMR. In this review, an HR-MAS NMR-
based workflow is described in more detail, including used pulse sequences in metabolomics. The
pre-processing steps of one-dimensional HR-MAS NMR spectra are presented, including spectral
alignment, baseline correction, bucketing, normalisation and scaling procedures. We also highlight
some of the models which can be used to perform multivariate analysis on the HR-MAS NMR spectra.
Finally, applications of HR-MAS NMR in plant metabolomics are described and show that HR-MAS
NMR is a powerful tool for plant metabolomics studies.
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1. Introduction

To understand the biological pathway underlying the phenotype of plants, a systems
biology approach can be used [1–3]. In systems biology, the information and interac-
tion of the functional physical structure and the genetic information are integrated to
provide a comprehensive model of the organism (Figure 1). Different high-throughput
technologies are used to study the genetic program of the various -omics fields: genomics,
transcriptomics, proteomics, and metabolomics.

Metabolomics was the newest field added to the systems biology toolbox at the begin-
ning of the 21st century. Metabolomics gives a quantitative and qualitative overview of
all the metabolites, small molecules with a molecular weight of 30–3000 Da, present in an
organism with various properties and functions [4]. There are approximately 1,000,000 dif-
ferent metabolites available in the plant kingdom, which makes metabolomics a challenging
field [5]. Moreover, the metabolome changes quite quickly due to circadian rhythm [6–8]
and environmental stresses [9,10] and differs between organs, tissues and even for sin-
gle cells [11,12]. The metabolome is most closely related to the phenotype of a plant
since metabolites are the end products of cellular processes [13]. Metabolomics is used
to study development under normal and abiotic conditions (temperature, light, salt) [14]
and biotic stress conditions (fungal, insects) [15,16], the safety assessment of genetically
modified crops [17], speed up crop improvements [18], the effect of fruit storage [19] and
the detection of food fraud [20,21].

The link between the gene regulatory network and the functional physical structure
(the double arrow in Figure 1) is generally considered highly complex, with many pathways
and pathway nodes interacting in what are often considered multifactorial processes. While
it is undoubtedly flexible and adaptable to environmental constraints, the underlying links
for a specific phenotype may turn out to be monofactorial, particularly in plants that can
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be grown under highly controlled conditions. The ultimate goal is to understand the
complexity of organisms using metabolomics and to understand the underlying pathways
of the phenotype of the organisms in a general framework [22]. This requires techniques
that can study metabolomics directly in native state.
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Figure 1. In systems biology, the information from the genetic program is integrated with information
from functional physical structures to provide a comprehensive model of plants.

2. Analytical Techniques in Metabolomics

To study the metabolic profile of a plant, mass spectrometry (MS) or liquid-state
nuclear magnetic resonance (NMR) spectroscopy are the most common techniques in
metabolomics. Both techniques have their own advantages and limitations, as shown in
Table 1. NMR spectroscopy is a method which is non-destructive, with a high reproducibil-
ity and allows to quantify metabolites. On the other hand, while MS is more sensitive,
allowing to detect more metabolites in a sample, it needs different chromatography tech-
niques such as gas chromatography (GC) or liquid chromatography (LC) for different
classes of metabolites [1,2].

Table 1. The advantages and limitations of NMR spectroscopy and mass spectrometry for metabolic profiling [2–5].

NMR Spectroscopy Mass Spectrometry

Sensitivity Low sensitivity, but can be improved with
higher field strength and cryo- or microprobes

High sensitivity, can reach the detection limit of
attomolar (10–18) concentrations

Sample measurement In one measurement with a detectable
concentration can be detected

Need chromatography techniques for different classes
of metabolites

Sample recovery
Non-destructive technique

Several analyses can be performed on the same
extracted sample

Destructive technique

Reproducibility Very high Moderate

Quantification
Absolute quantitation of metabolites possible

by adding one standard with
known concentration

Quantification is possible with authentic standards,
which are not available for newly

identified compounds.
Ionisation efficiencies, ion suppression and matrix

effects have influences on the concentration.

Targeted or untargeted approach Untargeted and targeted approach Untargeted and targeted approach, mainly used for
targeted analysis
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For both techniques, the extraction of metabolites from the sample is necessary to
obtain the metabolic profile. The drawback of this extraction is that it is not only time-
consuming, but also that metabolites might be lost or degraded during extraction [23]. One
way to eliminate the extraction procedure is to use high-resolution magic angle spinning
(HR-MAS) NMR, which allows using intact tissue samples [24–26].

3. Theoretical Background of HR-MAS NMR

An NMR experiment can be described with a nuclear spin Hamiltonian:

H = HCS +HIS
D +HI I

D (1)

Here:

HCS =

{
σisoγB0 +

1
2

δ
[
3cos2(θ)− 1− ηsin2(θ) cos(2φ)

]}
Iz (2)

represents the chemical shift anisotropy interaction of the nuclei with the electronic environment:
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4π
}∑

i
∑

j
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ij

1
2
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)
2Ii

zSj
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is the heteronuclear dipolar coupling between two different nuclear species I and S, and:

HI I
D = − µ0
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γ2

r3
ij
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)(
3Ii

z I j
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)
(4)

is the homonuclear dipolar coupling [6–8].
Here, σiso is the isotropic value, γ the gyromagnetic ratio and η is the asymmetry

parameter. For the heteronuclear and homonuclear dipolar coupling, rij is the distance
between the nuclei i and j, and θij is the angle between rij and the z axis. The I spin is the
abundant spin and S is the rare spin.

All three interaction terms depend on 1
2
(
3cos2(θ)− 1

)
, where θ is the polar angle that

describes the orientation of the magnetic field B0 in the principal axis frame of the chemical
shift tensor or dipolar interaction tensor. With HR-MAS NMR, the solid sample is rapidly
rotated at the magic angle θm = 54.7◦. The angular dependences of the spin Hamiltonian
are averaged to zero over the sample and the broadening is effectively removed (Figure 2).
Although the anisotropic interactions produce spinning sidebands, these are suppressed
when spinning at high frequencies (>3 kHz), and the spectra will have narrow signals.
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HR-MAS NMR is a combination of solid- and liquid-state NMR techniques, which
can obtain spectra with similar resolution as spectra from liquid-state NMR experiments
but make use of semi-solid samples with restricted molecular mobility [9]. Semi-solid
samples, like biological tissues, can be used without extraction steps using this technique.
In HR-MAS NMR, the effect of hetero- and homonuclear dipolar coupling is minimised at a
frequency of a few kHz, while rigid solid samples need spinning frequencies of 20–50 kHz.

4. HR-MAS NMR-Based Workflow

Here, we will explain in more detail an HR-MAS NMR-based workflow and apply
the workflow to plant material. The HR-MAS NMR-based workflow is shown in Figure 3.
The workflow starts with the harvesting of the leaves from plants for the preparation of a
sample in the rotor, followed by performing the HR-MAS NMR experiments. The pulse
sequences which can be used in metabolomics are described in Section 5. The data are
pre-processed and reduced by bucketing (Section 6). Multivariate analysis is executed
in three steps: the detection of outliers, investigation of the variation between different
samples, and the selection of potential biomarker candidates (Section 7). Finally, the
biomarkers quantification and biological interpretation is explained in a comprehensive
systems biology approach by using available information from the literature. This work-
flow is based on a recently established liquid-state NMR approach [10]. The information
about pulse sequences, the pre-processing of the data and multivariate analysis is also
applicable to liquid-state NMR data. The advantage of using HR-MAS NMR spectroscopy
on leaves is that experiments can be genuinely performed in vivo, which will be illustrated
with selected plant metabolomics applications (Section 8). As suggested recently, sample
preparations and instrumental setup protocols need to be carefully standardized in order
to obtain highly reproducible and reliable data [11].
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5. Harvesting Plant Material and Sample Preparation

For the sample preparation, it is important that the plant materials are harvested under
the same controlled conditions. It is known that the light regime, time of the day, growth
stage and temperature differences can affect the metabolic profile [12–15]. After harvesting,
the sample should be immediately frozen in liquid nitrogen and stored at −80 ◦C until
use [6,16,17]. For small leafy material, it is advised to directly proceed for sample packing
into the zirconium rotor (as described below) before storing at −80 ◦C.

For the preparation of samples for HR-MAS NMR measurements, the plant material
is carefully inserted into a zirconium rotor, either in intact form (for fresh samples), or
by grinding the sample to powder form (for frozen samples). The space in the rotor can
be minimised by using an insert. NMR reference compounds such as 3-(trimethylsilyl)-
2,2’,3,3’-tetradeuteropropionic acid (TSP) or 4-4-dimethyl-4-silapentane-1-sulfonic acid
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(DDS) are added at this moment [11]. The rotor is then closed by putting Kel-F caps. It
is important to ensure that the cap completely fits into the rotor to prevent leakages of
the sample. A damaged rotor or cap should be avoided as these will interfere with stable
spinning [18]. During the entire sample preparation procedure, it is important to keep
the sample on ice to prevent any metabolic alternations in the sample. For different types
of plant materials, it is important to standardise the sample preparation steps to prevent
metabolic variation due to sample handling [6].

6. Pulse Sequences Used in Metabolomics

A set of pulse sequences was used in NMR-based metabolomics using both HR-MAS
and liquid-state NMR spectroscopy to identify and quantify metabolites. One-dimensional
spectra are mostly used to quantify metabolites. The mostly used pulse sequences are
the one-dimensional 1H-NOESY (nuclear overhauser effect spectroscopy) with water pre-
saturation and the 1H-CPMG (Carr–Purcell–Meiboom–Gill) sequence. NOESY spectra
provide a complete and quantitative profile of the observed metabolites with the suppres-
sion of the water peak without an effect on the intensity of the other peaks [19–21]. CPMG
is a pulse sequence which removes the broad signals from macromolecules, like proteins
and lipids [19,22].

In one-dimensional NMR spectra, signals from the different metabolites strongly
overlap. A way to solve this is to use two-dimensional NMR experiments. 1H homonu-
clear correlation experiments are commonly used for identification. COSY (correlation
spectroscopy) identifies the spin–spin coupling of protons [19,22] and TOCSY (total cor-
relation spectroscopy) provides information about the correlation between all protons in
metabolites [20,22]. Another experiment is the 1H J-resolved where the effect of a chemical
shift and J-coupling is separated into two independent directions [24].

With the identification of new metabolites, it is sometimes helpful to make use of 1H-
13C heteronuclear correlation experiments. These experiments provide information about
the coupling between a proton and a carbon [20,22]. HSQC (heteronuclear single-quantum
correlation) provides input about the correlation between a proton and a carbon which
are separated by one bond. In addition, HMBC (heteronuclear multiple-bond correlation)
gives information about the correlation over multiple bonds [27].

7. Pre-Processing of One-Dimensional HR-MAS NMR Spectra

Prior to multivariate analysis and quantification, raw spectra need to be pre-processed.
The pre-processing described below can be applied to spectra obtained by both HR-MAS or
liquid-state NMR spectroscopy. Incorrect pre-processing can lead to spurious results [28,29].
For one-dimensional 1H-NMR spectrum, pre-processing involves alignment, baseline
correction, bucketing, normalisation and scaling.

7.1. Spectral Alignment

NMR resonances can be shifted due to several factors such as changes in pH, tem-
perature, salt concentration and inhomogeneous magnetic fields. This can give rise to
variations between spectra collected from the same sample species. To solve this problem,
standard chemical shifts can be used for the metabolites, and the spectra can be aligned
to the standard to construct a data set for multivariate analysis [22,26]. A more elegant,
unbiased protocol to align the spectra is by using an internal shift reference since this
leaves the relative shifts unaffected. This is achieved by adding a reference compound
with a known chemical shift with the sample. Most often, 3-(trimethylsilyl)-2,2′,3,3′-
tetradeuteropropionic acid (TSP) or 4-4-dimethyl-4-silapentane-1-sulfonic acid (DDS) is
used as a reference compound. Both compounds have a methyl resonance with 0 ppm
chemical shift relative to tetramethylsilane (TMS), the standard reference across the entire
field of 1H-NMR spectroscopy [28,29]. In addition, computational approaches to align the
spectra have been developed in recent years [23,25]. Most of these approaches use pairwise
alignment using a reference spectrum.
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7.2. Baseline Correction

The NMR responses of metabolites are superimposed on a broad background that
does not contribute any signal of interest but affects the multivariate analysis and impedes
the quantification of metabolites. Polynomial-fitting of the regions in between the NMR
signals is used to perform automated baseline correction [26]. After baseline correction, the
spectra are truncated to have only signals from the metabolites. The region between 0.1
and 8 ppm is used for further analysis. Although water suppression is employed during
acquisition, a weak remaining water signal can interfere with the multivariate data analysis
and the region of the water peak around 4.8 ppm is also removed [28,29].

7.3. Bucketing

The truncated NMR spectra typically have around 22.000 data points. It is common
to reduce the resolution of the data by bucketing, also known as binning [26,28,29]. The
most common bucketing technique is to take the area under the curve in each spaced
bucket of 0.04 ppm width (Figure 4). This procedure averages minor variations in chemical
shift and reduces the amount of data for the multivariate analysis [27–29]. However, the
disadvantages of equally sized buckets or even smaller sized buckets is that a peak can
split into two adjacent bins. More advanced bucketing methods, for example, adaptive-
intelligent binning or adaptive binning using wavelet transforms, can be used to overcome
this problem [25].
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Figure 4. Truncated NMR spectrum before and after bucketing into equally spaced buckets of 0.04 ppm width. Bucketing
allows for moderate shift averaging at the expense of resolution and provides a matrix for further processing.

After bucketing, an i × j data matrix X is obtained with on the rows the different
samples, while the columns represent the chemical shifts. The elements of the matrix
contain the intensity of the bins, i.e., the signal at the different shifts for each sample.

The disadvantage of equally spaced buckets is that peaks split between two or
more buckets and influence the data analysis. There are several methods, e.g., adaptive-
intelligent bucketing, Gaussian bucketing, adaptive bucketing using wavelet transforma-
tion and dynamic adaptive bucking, which take into account the position of the peaks to
obtain buckets with complete NMR peaks [26].
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7.4. Normalisation

Biological differences between preparations, for instance, different weight or dilution,
result in different concentrations of specific metabolites. Normalisation methods aim to
remove such systematic errors [28,29]. A standard method is to normalise the individual
samples (i.e., rows) of the bucket matrix X according to:

xij =
xij

∑
j
1 xi

(5)

This is illustrated in Figure 5 for a hypothetical case of three samples.
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Other normalisation methods include probabilistic quotient normalisation, range
normalisation and normalisation to a reference metabolite [28,29].

7.5. Scaling

Since, metabolites present in higher concentrations contribute to the strongest varia-
tion, the scaling of the columns for selection of low abundant metabolites is necessary in
the multivariate analysis [26]. The first step of scaling is the mean-centring of the samples,
where the high-concentration and low-concentration metabolites are converted to values
which vary around zero by subtracting the mean values from the columns (Figure 6A) [30]:

xC
ij = xN

ij − xj (6)

Scaling methods divide every bucket by a scaling factor. Scaling methods include
autoscaling, range scaling, vast scaling and Pareto scaling [30,31]. Table 2 shows the
different scaling factors for each scaling method and Figure 6 illustrates the different
methods for the hypostatical example. More details about the scaling methods can be
found in van den Berg et al. [30].

Table 2. Overview of the scaling methods used in metabolomics [30,31]. xij is an element located in
the ith row and the jth column. xj and sj are, respectively, the mean and the standard deviation of
the values of the jth column.

Scaling Method Formula

Autoscaling xAS
ij =

(xN
ij −xj)

sj

Range scaling xRS
ij =

(xN
ij −xj)

(xjmax−xjmin )

Vast scaling xVS
ij =

(
xN

ij −xj

)
sj
· xj

sj

Pareto scaling xPS
ij =

xN
ij −xj√sj
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8. Multivariate Analysis

Multivariate analysis considers multiple variables simultaneously to identify pat-
terns in the HR-MAS or liquid-state NMR data corresponding to signal patterns from
metabolites [26,31,32]. These generally contain more than one proton, and their signals
are therefore spread over several buckets. First, unsupervised methods, methods with
no assumption of any prior knowledge, are used to explore the data, find outliers and
group the data [26,31,32]. One of the most used unsupervised methods is unsupervised
principal component analysis (PCA), where an orthogonal transformation is used to con-
vert the set of correlated intensities (Bucket 1, Bucket 2, . . . , Bucket n) with coordinates
xS

ij for the samples into a set of linearly uncorrelated intensities called principal compo-
nents (PC1, PC2, . . . , PCn). PCA operates with two mathematical constraints, the largest
possible variance and orthogonality. The first principal component PC1 has the largest
possible variance under the linear transformation. The subsequent vectors PCi are or-
thogonal to the preceding components and each has the highest possible variance in their
coordinates under the constraints of the prior vectors (PC1, . . . , PCi−1) [26,31,33]. PCA
converts the correlated XS into an uncorrelated orthogonal basis set of vector compo-
nents (PC1, PC2, . . . , PCn), containing the scores and the new coordinates of the samples.
Scores are represented in a two-dimensional score plot where each point represents a single
sample on two principal component coordinates (Figure 7A). The transformation matrix
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that provides the information of the data after pre-processing is named the loadings; it
describes how the old bucket intensities are linearly combined to the principal components
and indicates which buckets have the most influences on the principal component that are
represented in a loading plot (Figure 7B) [31,34–36]. The next step is to use databases, like
the biological magnetic resonance bank (BMRB), and the human metabolome database
(HMDB), to identify the metabolites corresponding to these buckets and to perform further
downstream systems biology analyses [37].
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Supervised methods are used to cluster the data and to determine biomarkers by
following how clusters of buckets representing a specific metabolite change between e.g.,
the wild type and a specific mutant. The model is applied with a priori knowledge of the
sample classes. Supervised methods can, therefore, be used to mark the separation between
two or more sample classes at the level of individual metabolites [26,32,33]. Partial least
squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant
analysis (OPLS-DA) are the most used supervised models in plant metabolomics. PLS-DA
and OPLS-DA are multiple regression methods which use the pre-processed data matrix
XS and a newly defined vector y with the value 0 for the wild-type samples and 1 for
the mutants [38]. In PLS-DA, the data matrix XS is split into a part correlated to y and a
residual part E [26,37,39,40]:

Xs = XS
p + E = TpPT

p + E (7)

In OPLS-DA, the data matrix XS is separated into a part correlated to y, also named
the predictive component (XS

p), and another part that is uncorrelated to y, also called the
orthogonal component (XS

o ) and a residual part E [26,33,34,37,40]:

Xs = XS
p + XS

o + E = TpPT
p + ToPT

o + E (8)

In both formulae above, T represents the score matrix and P the loading matrix, which
can be represented, respectively, in a score plot and a loading plot (Figure 8). The loading
plot of the predictive component represents the between-class variation, i.e., wild-type
vs. mutants, and indicates which buckets have the strongest impact on the variation. The
metabolites corresponding to these buckets are identified using metabolome databases [37].
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9. Applications of HR-MAS NMR in Plant Metabolomics

HR-MAS NMR combined with multivariate analysis can be a powerful tool to study
plant metabolomics. However, HR-MAS NMR is not used very often in plant biology. In
recent decades, approximately 40 publications have reported on HR-MAS NMR-based
metabolomics studies in plants. These publications are summarised in Table 3.

The HR-MAS NMR-based metabolomics studies in plants have been used for a wide
range of applications. The influences of biotic and abiotic stress on the metabolic profile
in plants has been widely studied by HR-MAS NMR [41–52]. Metabolomics can help in
understanding developmental processes, like fruit ripening. The metabolic profile through-
out the ripening process is studied in mango [53] and tomato [54]. The impact of storage
time on the metabolic profile is studied on Golden Delicious apples [55] and the aging of
ginseng [56]. HR-MAS NMR-based metabolomics can also be used to study the metabolic
profile of specific cell types to understand the plant better. Mucci et al. studied different
tissues of lemons and citrons to understand the similarities and the differences between
these two fruits [57]. In addition, it is possible to use metabolic profiling to characterise
newly discovered plants [58,59] or mutants of plants [39,60,61]. The geographical origin
of sweet peppers [62], garlic [63] and cocoa beans [64] has been investigated with HR-
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MAS NMR. The original geographical origin of some food products has been certified, for
example, with Protected Geographical Indications. HR-MAS NMR-based metabolomics
is a useful tool for these certified products to avoid fraud [65]. Examples are the cherry
tomatoes of Pachino [66,67], Interdonato lemon of Messina [67,68] and tomatoes from
Almería [69]. HR-MAS NMR can also be used to determine different classes or cultivars
of plants. This is helpful when only one class has a medical application as in the case
of Trichilia catigua [70] or Withania somnifera [71]. It can also help to distinguish between
different cultivars of apples [72], melons [73], rice [74], persimmons [75], ginseng [76],
almonds [77] and curtis [78].

Table 3. Summary of the publications studying metabolomics using high-resolution magic angle spinning NMR. COSY,
Correlation Spectroscopy; CPMG, Carr-Purcell-Meiboom-Gill; CPPR, composite pulses presaturation; HCA, hierarchical
cluster analysis; HMBC, heteronuclear multiple bond correlation; HMQC, heteronuclear multiple-quantum correlation;
HSQC, heteronuclear single quantum coherence; J-res, J-resolved, KNN, k-nearest neighbors; NOESY, nuclear Overhauser
effect spectroscopy, OPLS-DA, orthogonal partial least squares discriminant analysis; PCA, principal component analysis;
PLS-DA, partial least-squares discriminant analysis; STOCSY, statistical total correlation spectroscopy; TOCSY, total
correlated spectroscopy.

Plant Research Objective Magnetic Field Strength (MHz) Pulse Sequences Multivariate Models

Influences of Biotic or Abiotic Stress

Winter wheat
(Triticum aestivum) [49]

Evaluate the influences
of different

drought treatments
400 1D PCA

Jatropha curcas [50]
Determine the impacts of
pruning procedures and

water management
400 Zg -

Ribes nigrum [51]
Determine the effect

of seasonal
asymmetric warming

600 CPMG, HSQC PCA

Soybean [52] Determine the influences
of water deficiency 600 CPMG, NOESY PLS-DA

Jatropha curcas [41]
Studying the effect of

Jatropha mosaic virus on
the metabolic profile

400 NOESY, CPMG, COSY -

Pear (Pyrus communis) and
quince (Cydonia oblonga)

[42]

Study the effect of humic
acid on the morphogenesis

of pear and quince
400

13C, CPMG, 1D LED,
COSY, TOCSY, HSQC

PCA

Lettuce
(Lactuca sativa) [43]

Influences of the fungicide
mancozeb on the leaves at

different growth stages
800 NOESY, TOCSY, HSQC PCA, PLS-DA

Tomato
(Solanum lycopersicum) [44]

Study the influences of
6-pentyl-2H-pyran-2-one

and harzianic acid on
the leaves

400 CPMG, COSY, TOCSY,
J-res, HSQC, HMBC PCA

Maize
(Zea mays) [45]

Determine the toxic effects
on maize root tips of

organo-chlorine pesticides
600 CPMG OPLS-DA

Maize
(Zea mays) [46]

Determine the effect of
mineral or

compost fertilisation
and inoculation
with arbuscular

mycorrhizal fungi

400 CPMG, COSY, TOCSY,
J-res, HSQC, HMBC PCA

Soybean [47]
Determine the metabolic
alternation caused by S.

sclerotiorum infection
500 CPPR, TOCSY, HSQC PCA

Onion (Allium cepa L.)
[48]

Evaluate the effect of
onion yellow dwarf virus

on the metabolites
of onions

400 Zgpr PLS-DA
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Table 3. Cont.

Plant Research Objective Magnetic Field Strength (MHz) Pulse Sequences Multivariate Models

Study the Ripening and Storage of Fruits

Mango fruit
(Mangifera indica) [53]

Studying the metabolic
profile of mango pulp

during ripening
400

1H 1D, 1H-13C
correlation, TOCSY, J-res

-

Tomato
(Solanum lycopersicum) [54]

Studying different tissues
of the tomato during

fruit ripening
500 NOESY, TOCSY, HMQC PCA

Golden delicious
apples [55]

Determine the impact of
storage time and

production systems
500 NOESY, COSY, TOCSY PCA, PLS-DA

Ginseng [56]
Distinguish the age of

ginseng based on
metabolomics

600 CPMG PCA, PLS-DA,
OPLS-DA

Studying Different Cell Types of Plants

Lemon (Citrus limon) and
citron (Citrus medica) [57]

The metabolic profile of
different parts of the

lemon and citron
are studied

400
1H, CPMG, COSY,

TOCSY, HSQC
-

Characterising of Plant

Crocus sativus [58]
Establish the main

metabolites present in C.
sativus petals

400
1H, COSY, TOCSY,

HSQC, HMBC
-

Berberis laurina
(Berberidaceae) [59]

Establish the main
metabolites present in
Berberis laurina leaves,

stems and roots

400 Zg, HSQC, HMBC PCA

Understanding Transgenic Plants

Poplar tree
(Populus tremula) [39]

Studying the time- and
growth-related metabolic
profile of PttMYB76 and

wild-type poplar tree

500 CPMG PCA, PLS-DA

Common bean
(Phaseolus vulgaris) [60]

Distinction between
conventional and

transgenic common beans
500 CPMG PCA

“Swingle” citrumelo [61]
Evaluate the metabolic

profile of non-transgenic
and transgenic citrumelo

500 1H, HSQC, TOCSY PCA, PLS-DA

Geographical Origin of Plants

Sweet peppers
(Capsicum annum) [62]

Discriminate sweet
peppers according to their

geographical origin
400 NOESY, 1D 13C, TOCSY PLS-DA

Garlic
(Allium sativum) [63]

Characterisation of two
varieties garlic cropped in

different Italian regions
400 NOESY, 13C,

TOCSY, HMQC
PLS-DA

Cocoa beans [64]
Assess the geographical
origins of fermented and

dried cocoa beans
400 1H

PCA, PLS-DA,
OPLS-DA

Cherry tomatoes of
Pachino [66]

Determine the major
metabolites present in

cherry tomatoes
of Pachino

700 1H PCA

PGI cherry tomato of
Pachino, PGI inter-donato

lemon of Messina, red
garlic of Nubia [67]

Identify and quantify
metabolites from three

typical food products of
the Mediterranean diet

700 1H PCA

PGI inter-donato lemon of
Messina [68]

Determine metabolites
unique for PGI

interdonato lemon
of messina

700
1H, COSY,

TOCSY, HSQC
-
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Table 3. Cont.

Plant Research Objective Magnetic Field Strength (MHz) Pulse Sequences Multivariate Models

Geographical Origin of Plants

Tomato
(Lycopersicon esculentum)

[69]

Establish the
metabolic differences

between commercially
available varieties

500 NOESY, HSQC PCA

Distinguish between Different Cultivars

Trichilia catigua [70]
Classification of

commercial samples
of Catuaba

400 CPMG PCA, HCA

Withania somnifera [71]
Evaluate metabolic profile
of 4 different chemotypes

of W. somnifera
800 NOESY, CPMG,

COSY, HSQC PCA

Apples [72]
Discriminate three

different apple cultivars
by their metabolic profile

500 NOESY, COSY, TOCSY PCA, PLS-DA

Melon
(Cucumis melo) [73]

Quantification of sugars
and compare two varieties 400 1H -

Rice
(Oryza sativa) [74]

Determine the metabolic
variation of diverse

rice cultivars
700 CPMG, TOCSY,

HSQC, STOCSY PCA, OPLS-DA

Persimmon
(Diospyros kaki) [75]

Follow the metabolic
changes during
development of

different cultivars

400 NOESY PCA

Seven cultivars of Panax
ginseng [76]

Study the primary
metabolites of the seven

cultivars of
ginseng berries

600 CPMG PCA, PLS-DA,
OPLS-DA

Almonds (seeds of Prunus
dulcis) [77]

Establish the difference
between seven different

types of almonds
500 Zg, COSY PCA

Curtis (Passiflora alata) [78]
Seven herbal medicines

containing leaf extract of
some Passiflora species

500 Zg, COSY PCA, KNN

10. Conclusions and Future Perspective

High-resolution magic angle spinning NMR is a powerful tool to obtain the metabolic
profile directly from plant material. The major advantage of HR-MAS NMR over liquid-
state NMR is that there is no extraction step necessary which can lead to the loss of signals
from non-soluble metabolites. It is a non-destructive method, which makes it possible to
use the samples for other experiments such as transcriptomics analysis [79,80]. The pre-
processing steps of the one-dimensional HR-MAS NMR spectra need to be done carefully.
Combined with multivariate analysis, HR-MAS NMR-based metabolomics is a powerful
tool to investigate plants. It is possible to link the gene regulatory network and functional
physical structure, which is considered as highly complex.

It is also interesting to study the specific structures of the leaves, such as the veins,
lamina or the petiole or other parts of the plants. Recently, Sarou-Kanian et al. developed a
new method using 1H HR-MAS slice localised spectroscopy (SLS) and HR-MAS chemical
shift imaging (CSI) to determine the distribution of metabolites along the anteroposterior
axis of Drosophila melanogaster [81]. Here, a MAS probe coupled with a three axes gradient
system was used, together with pulse sequences for SLS and CSI. HR-MAS CSI is also
applied to different food products and also to an intact wasp insect to examine the metabolic
profile in specific regions along the sample spinning axis [82]. A slow spinning speed of
500 Hz was used to prevent damage to the insect during HR-MAS CSI measurements [83].
Due to the small sizes of specific structures of plants, high-resolution micro-MAS probe
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(HR-µMAS) can be considered. A lot smaller sample size (<0.5 mg) can be used in HR-
µMAS in comparison to standard HR-MAS sample size (~100–150 mg) [84]. This can be
used to study specific parts of plant, as shown for garlic [85].

Metabolomics provides a snapshot of the metabolic status of a sample at a specific
time. For most enzymes involved in metabolism, knowledge about the in vivo kinetics
is necessary to predict metabolic fluxes. Metabolic fluxes are the result of the interplay
of gene expression, protein concentration, protein kinetics and regulation, and depend
on metabolite concentrations. Metabolic flux analysis, also called fluxomics, can be used
to determine metabolic reaction rates. Fluxomics can thus help to understand complex
metabolic pathways and their regulation for the characterisation of the phenotype of the
plant [86,87]. Fluxomics can be done by introducing a 13C-labelled precursor into the
metabolic network or by supplying 13CO2 and follow the redistribution of the label into
other metabolites by either NMR or mass spectrometry [88,89]. The redistribution can
be followed throughout time during dynamic labelling or after reaching steady-state in a
steady-state labelling approach [89]. In the current fluxomics protocols, an extraction step
has to be performed, which has the disadvantage of losing components during preparation.
It can thus be interesting to develop an HR-MAS NMR-based fluxomics approach which is
not available at the moment.

In a multi-omics approach, the results from the various -omics technologies, such
as genomics, transcriptomics, proteomics, metabolomics and fluxomics, are integrated
to unravel the complexity of a biological system [90–92]. A major practical challenge of
multi-omics is to handle different data formats and the high data dimensionality property
of each data set. To integrate the different information layers, bioinformatics tools are
necessary to track the different components for every layer, such as genes, proteins and
metabolites at the same time [90].
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