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SUMMARY

Spatially modulated grid cells have been recently found in the rat secondary visual cortex (V2) 

during active navigation. However, the computational mechanism and functional significance of 

V2 grid cells remain unknown. To address the knowledge gap, we train a biologically inspired 

excitatory-inhibitory recurrent neural network to perform a two-dimensional spatial navigation 

task with multisensory input. We find grid-like responses in both excitatory and inhibitory RNN 

units, which are robust with respect to spatial cues, dimensionality of visual input, and activation 

function. Population responses reveal a low-dimensional, torus-like manifold and attractor. We 

find a link between functional grid clusters with similar receptive fields and structured excitatory-

to-excitatory connections. Additionally, multistable torus-like attractors emerged with increasing 

sparsity in inter- and intra-subnetwork connectivity. Finally, irregular grid patterns are found in 

recurrent neural network (RNN) units during a visual sequence recognition task. Together, our 

results suggest common computational mechanisms of V2 grid cells for spatial and non-spatial 

tasks.

In brief

Zhang et al. train biologically realistic neural network models to perform a spatial navigation 

task with multisensory input and discover emergent grid-like responses and a low-dimensional, 

multistable torus-like attractor with imposed network connectivity and sparsity constraints.
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Graphical Abstract

INTRODUCTION

The discoveries of periodic grid cells or grid-like responses have been reported in the rat, 

mouse, bat, and human brains during various spatial and non-spatial tasks.1–14 One of 

important roles of grid cells is to integrate self-motion information that provides a path 

integrative input to identify spatial location even when external sensory inputs are lacking 

or noisy.15,16 Grid patterns were first found in single neurons of the rat medial entorhinal 

cortex (mEC),1,2 and recently reported in the rat primary somatosensory cortex (S1)17 and 

the rat secondary visual cortex (V2).18 These S1 and V2 grid cells share some common 

features as the mEC grid cells, such as conjunctive grid-head direction tunings and theta-

modulated firing; furthermore, these grid-like responses are not disrupted by the absence of 

vibrissae or visual input.17,18

Attractor dynamics have been suggested in the hippocampal and entorhinal representations 

of the local environment.19–21 To date, many computational models of mEC grid cells have 

been proposed (for reviews, see Giocomo et al.,22 Zilli,23 and Rowland et al.24), such as 

the continuous attractor models,25,26 oscillator interference models,27,28 feedforward neural 

network with excitatory and inhibitory synaptic plasticity,29 and other hybrid models.30–32 

Recent work has shown that grid cells emerge from trained recurrent neural networks 

(RNNs) that predict spatial location based on a pure velocity input,33–35 which supports the 
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hypothesis of recurrent attractor dynamics and path integrator in the cognitive map,36 such 

that the attractor state may encode a stable representation of a variable (such as position) in 

the absence of external input.

Vision plays an important role in spatial navigation, and various visual cues can be 

integrated with spatial cues to guide movement. Spatial tunings have been reported in the 

dorsal lateral geniculate nucleus (dLGN), V1, and other visual cortical areas from head-fixed 

or freely foraging animals during spatial navigation tasks.37–45 Vision and movement jointly 

contribute to hippocampal place codes.46 Rodent V1 and hippocampal cornu ammonis 

(CA1) have also shown coherent coding of spatial signals.41,47,48 However, it remains 

unclear whether similar grid patterns can emerge from visually cued navigation or motion.

To understand this question and further delineate the impact of multisensory input on neural 

representations, we developed a biologically constrained RNN to model experimentally 

observed grid cells in the rat V2. We adapted our computational models to incorporate both 

visual and spatial cues into the RNN for a spatial navigation task. We investigated the impact 

of various spatial (velocity or acceleration) and visual cues (illuminance or optical flow) on 

the grid responses of excitatory and inhibitory units. At the population level, we employed 

dimensionality reduction to reveal low-dimensional ring attractor dynamics and investigated 

the stability of grid responses with respect to visual and spatial inputs, synaptic connectivity, 

and excitatory-inhibitory (E/I) balance. In parallel to the spatial navigation task, we trained 

a combined convolutional neural network (CNN)-RNN model to perform a visual sequence 

recognition task and investigated the emergent grid patterns. Together, these simulation 

results reveal unexplored computational mechanisms of grid cells in the visual cortex and 

produce experimentally testable hypotheses for future investigation.

RESULTS

One of the potential roles of grid codes in sensory systems is to provide relative 

spatial mapping and localization within a reference system associated with the behavior. 

Accordingly, it is reasonable to hypothesize that the stability of grid patterns may predict the 

stability of behavioral output. Our investigation was centered on three essential questions: 

first, when and how do grid-like patterns emerge from visually cued navigation or motion? 

Second, how robust are visual grid patterns with respect to the input? Third, what is the 

functional role of these grid codes in relation to behavior?

Trained RNNs produced robust grid patterns with various spatial and visual cues

We trained biologically constrained E/I RNNs49–51 to perform a spatial navigation task in 

a two-dimensional (2D) environmental enclosure. We envisioned that the RNN received 

various forms of visual and spatial cues in the input (Table S1) and predicted the position 

in the output. The network consisted of both excitatory and inhibitory units according to a 

4:1 ratio and employed a non-negative rectified linear unit (ReLu) in the activation function 

(Figure 1A). We adopted a similar computation simulation setup to train the standard 

RNN33–35 but with additionally imposed biological constraints.
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RNN input configuration—First, to replicate previous computational simulation 

results,33–35 we employed the E/I-RNN with a pure velocity (i.e., speed and direction) 

input (setup #1). We assumed that the run speed followed a normal distribution, and the 

run direction was uniformly distributed between 0 and 360° (Figure 1B). Next, we added 

additional visual illuminance input with varying dimensionality (setup #2). Upon reaching 

convergence, we projected the hidden unit activations of trained network onto the 2D space 

to obtain the position-modulated, speed-modulated, direction-modulated, and illumination-

based tunings (Figures 1C and S1). We have witnessed a wide range of heterogeneity in 

spatially tuning the RNN units under different input configurations (Figure S1). Depending 

on specific configurations, subsets (20%–50%) of excitatory and inhibitory units showed 

clear grid-like responses. The range of the grid score (GS) varied depending on the input 

configurations or cell types. These grid-like units displayed various spatial frequencies 

as shown in their autocorrelograms and also displayed conjunctive coding for the head 

direction and speed (Figure 1C). In addition to grid-like excitatory and inhibitory units, we 

also found some periodic band-like excitatory units (Figures 1C and S1), which appeared 

as a combination of multiple grid units.53,54 In setup #2, we systematically varied the 

dimensionality of principal components of visual illumination features and found consistent 

grid patterns in the RNN units (Figure 1D). To examine the stability of the learned RNN, we 

calculated the eigenvalues of the recurrent weight matrix and found that a large majority of 

complex (or real) eigenvalues were within the unit circle (Figure 1E), whereas a very small 

percentage of eigenvalues were slightly greater than 1. This result may suggest the chaotic 

spontaneous activity present in the trained RNN.55 Furthermore, similar grid responses 

were observed when we replaced velocity (Vx, Vy) with acceleration Ax, Ay ≡ V̇ x, V̇ y  in 

the spatial input (setup #3; Figure 1F). Motivated by the recent experimental data of theta-

modulated firing in V2 grid cells,18 as well as the finding that the frequency or amplitude 

of theta oscillations increased proportionally to animal’s run speed,52,56 we relaxed the 

assumption of direct speed access and used the frequency of theta oscillations as the input 

(setup #4; Figure 1G). Consequently, we still observed robust grid responses (Figure 1F). 

The results of setups #3 and #4 were not really surprising as these substituted variables 

involved only approximately linear operations from velocity or speed. Notably, the direction 

input to the RNN was crucial to the formation of grid patterns, and grid units did not emerge 

if we removed the direction input in setup #4.

Finally, we computed the optical flow cue from the consecutive visual scenes and used that 

vector fields as the input (see STAR Methods; setup #5) to train the RNN. With pure visual 

cues, the trained RNN still preserved spatially modulated grid patterns (Figure 1F). This 

result was also easy to interpret since the optical flow offered an indirect source of motion 

cue (i.e., direction and speed information). Overall, varying the input configuration in our 

computer simulations yielded robust grid patterns with comparable GS statistics (Figures 1H 

and 1I). In the rest of this article, we will focus the analyses on two configurations (setups 

#2 and #5).

Impact of the sequence length—The E/I-RNN was trained by batches of simulated 

trajectories with a fixed length. We found that a wide range of sequence lengths, ℓ, produced 

grid patterns from the trained RNN units (Figure 2A). Specifically, we varied ℓ from 5 to 
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50 (corresponding to 100–1,000 ms for a 20-ms temporal bin size) and found that the GS 

statistics were robust with respect to the sequence length (Figure 2B). Our simulation results 

from multiple independently trained RNNs showed that the minimum ℓ that the achieved 

good GS statistic was 100 ms, roughly matching the timescale of one theta (5–10 Hz) cycle.

Activation function—We further tested whether the relaxation of default ReLu (non-

negativity) activation function to an unconstrained linear unit might yield similar results 

(setups #2 and #5). Interestingly, the trained linear E/I-RNN could still produce grid-like 

responses (Figure 2A), but the overall GSs were lower, and the grid patterns were sensitive 

to the sequence length (Figure 2B). In this special case, the linear attractor network (without 

the non-negativity constraint) is a linear path integrator, integrating velocity or acceleration 

information in time to predict the future position (see STAR Methods).

Symmetry breaking is a critical condition for complex pattern formation.36 It has been 

shown that the non-negativity of the activation function suffices to generate the grid 

patterns;35 our results showed that even in the absence of non-negativity, Dale’s principle 

alone may be sufficient for symmetry breaking. As a sanity check, we also trained an RNN 

without the Dale’s principle constraint. In fact, fewer grid patterns emerged, but there was 

no clustered structure in the 2D embedding space (Figure S2C).

Mixed selectivity, paired unit correlation, and emerged functional clusters—
For each recurrent unit, we empirically set the unit with GS <0.3 as grid units. We then 

computed the percentage of grid cells from both excitatory and inhibitory populations. 

Among the identified grid units, we plotted their tuning curves with respect to direction, 

speed, acceleration, or theta frequency (Figures 1B and S1). In setup #2, many of identified 

grid cells showed strong speed (71%) or directional (79%) tuning or both (65%). Because 

of the high dimensionality of visual features, we only plotted the tunings with respect to the 

dominant principal components (PCs) (e.g., Figure 1C). Speed tuning or directional tuning 

could also be observed for non-grid or band-like units (Figure S1). Interestingly, we found 

that a subset of band-like patterns had cosine-shaped direction tunings, and together, the 

preferred direction covered uniformly between 0° and 360° (Figure S3).

In setup #2, we examined the impact of changes in speed and visual input on the grid 

field (Figure 3A). To examine the co-dependency of spatial and visual tunings for the j 
-th unit, we correlated the time-averaged unit firing rates contributed by spatial or visual 

input alone: rj
spatial (by setting the visual input to zero) and rj

visual (by setting the velocity 

input to zero). We found statistically significant correlation between them (Figure 3B, left 

panel; Pearson’s correlation, p < 10−5), suggesting that the main driving factor of mean 

firing rate was the internal recurrent dynamics instead of external visual or speed input in 

the standard setting. However, increasing the speed out of the normal range (e.g., 10-fold) 

would substantially increase the mean firing rate (Figure 3B, right panel). Additionally, by 

setting the velocity to zero, we plotted the temporal firing rates of grid cells and measured 

the pairwise firing rate correlation when receiving a series of visual input (analogous to 

watching image sequences in a head-fixed setting). In some examples, we found that units 

with spatially similar grid fields showed temporally correlated visual responses (e.g., E1 
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versus E2 units in Figure 3C), whereas in other examples, units with correlated grid fields 

showed uncorrelated visual responses (e.g., E3 versus E4 units in Figure 3C), suggesting 

the independence between spatial and visual tunings. In a general setting, the excitatory 

grid units that had mutually strong excitatory synaptic connections tended to have similar 

grid fields; however, the converse was not necessarily true for the inhibitory grid units 

(for illustrated examples, see Figure 3D). Therefore, these functionally clustered grid units 

emerged as a result of strong synaptic connections, whereas weakly coupled grid units 

tended to be functionally decoupled.

To identify the functionally similar clusters in the grid cell subnetwork, we embedded the 

grid fields onto a 2D space for visualization (STAR Methods) and found that grid-like 

patterns formed many distinct clusters, especially among the excitatory grid-like units; this 

observation was robust regardless of the chosen activation function or input setup (Figures 

3E and S4).

Emergent low-dimensional ring manifolds and attractors

Next, we examined the population representation of E/I-RNN units. According to the 

percentage of the explained variance (Figure 4A), we visualized two of the first three 

dominant PCs onto the latent space and found an emergent 2D ring-shaped manifold 

(Figure 4B). In setup #2, when the simulated sequence length was short, the PC1 - PC2 

plane formed a ring attractor that could primarily be explained by the dominant spatial 

components; in contrast, when the sequence length was very long, the ring attractor was 

occupied on the PC2 - PC3 plane. This was possibly because the visual input of longer 

visuospatial sequences contributed more variance to the RNN’s hidden unit activations. In 

both cases, the population activity was confined to lie close to a 2D manifold. Alternatively, 

we constructed the 3D embedding of N -dimensional population activity using a two-step 

hybrid dimensionality reduction procedure:57 linear PC analysis (PCA; with the first 6 

PCs) followed by a non-linear dimensionality reduction method known as uniform manifold 

approximation and projection (UMAP). This visualization step revealed a 3D torus-like 

structure (Figure 4C for setup #2; see Figure S5 for more results). Notably, the ring structure 

did not emerge in the linear E/I-RNN (Figure S5F).

In light of Fourier analysis (STAR Methods), we projected the 3D manifold onto three 

pre-determined pairs of axes (Figure 4D), each revealing the ring structure along different 

unit vector spaces (e.g., 0°, 60°, 120°). Similar ring structures were also found in other 

axis spaces (e.g., 30°, 90°, 150°; results not shown). Furthermore, we identified fixed points 

of the attractor using numerical simulations (STAR Methods). Figure 4E shows a torus 

attractor, indicating that the dynamic system had a stable activity pattern and was able 

to maintain memory. Furthermore, the fixed points also showed grid activity (Figure 4F). 

Interestingly, these fixed-point grid patterns resembled the activity of some hidden units in 

the PCA subspace. Together, these results suggested that these fixed-point patterns generated 

attractor fields, and the population activity of recurrent dynamic systems converged to them 

and formed stable grid patterns.
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Robustness of grid patterns to visual and spatial inputs

The network state and recurrent dynamics could be biased by new external inputs. We 

further tested how the grid responses of the trained E/I-RNN would change with respect to 

an unseen visuospatial input. First, to emulate the darkness (light off) condition (setup #2), 

we set the visual input to zeros and found only small changes in the visual grid patterns 

(Figure 5A). The overall ring attractor remained similar other than being rotated (Figure 

5B). Second, to emulate a new navigation environment, we switched to a new visual scene 

such that an identical run trajectory would have the same velocity input but different visual 

input. Again, we observed a stable grid pattern for a wide range of visual input (Figures 5C 

and 5D for setup #2 and S6 for setup #5). These results suggest that the trained E/I-RNNs 

and underlying recurrent attractors were robust to input perturbation.

The stability of grid patterns also predicted the stability of behavioral output. In testing, we 

simulated run trajectories (sequence length of 50) longer than the ones (sequence length of 

10) used in the training phase. In the output space, with the same initial conditions, the noisy 

long trajectories either remained stable or first perturbed then converged to the simulated 

trajectories. In contrast, when the ring attractor was absent (as in the linear E/I-RNN; see 

Figure S5F), the trajectory output was unstable. Some snapshot examples under various 

testing conditions are shown in Figure 5E. Additionally, we tested how the change in 

behavioral output would affect grid cell representations. As a demonstration, in setup #2, we 

varied the run speed and found that the grid patterns were relatively stable for various speed 

inputs (Figure 5F). However, grid patterns and the ring manifold disappeared when speed 

was out of the normal range.

Robustness of grid patterns to recurrent network connectivity

In the literature, it has been suggested that the grid pattern formation can be generated 

through attractor dynamics in a recurrent network with a specific local E/I connectivity.36,58 

The recurrent attractor dynamics of the E/I-RNN was determined by a generally fully 

connected matrix Wrec. However, sensory cortices are known to have columnar organization: 

excitatory neurons within a columnar structure are densely connected and form functionally 

similar cortical maps,59 whereas between-columnar neurons are sparsely connected. To 

make the E/I-RNN more biologically realistic, we further modified the structural synaptic 

connectivity and sparsity (i.e., the percentage of zeros in connection weights {W ij
rec}).

Clustered E-E connectivity—The recurrent network connectivity was motivated by the 

anatomical evidence for non-uniform or clustered connections between cortical pyramidal 

neurons.60 In the rodent mEC, grid cells tend to cluster anatomically.45 Previous studies 

have shown clustered or columnar structures in the primary and secondary areas of visual 

cortex.61,62 Therefore, we first split the E-population into two subnetworks, E1 and E2, 

and kept such clustered connectivity during the course of RNN training (type 1; Figure 

6A, top panel). Upon the completion of training, we again observed robust grid responses 

in both E- and I-neuronal populations. Interestingly, both grid-like and band-like patterns 

emerged from the clustered subnetworks. This emergent continuous spectrum of spatially 

periodic units reflect different combinations of a small set of elemental periodic bands.53,54 

Additionally, the periodic grid or band-like units within the same excitatory subnetwork 
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tended to group together (i.e., with similar spatial frequency or orientation), whereas 

inhibitory grid units tended not to group together (Figure 6B). This was conceptually 

consistent with the observation seen in the non-structured networks (Figures 3C and 3D). 

Such clustered grouping based on similar spatial receptive fields (i.e., spatial frequency and 

orientation) was reminiscent of the minicolumns in the visual cortex. These periodic non-

localized, band-like units were different from the spatially localized on/off visual receptive 

fields.

Furthermore, in training, we systematically changed the sparsity of inter-subnetwork 

connectivity and investigated the impact of sparsity on grid patterns. The sparsity level 

varied between 0 and 1, with 0 meaning fully connected (i.e., original setup) and 1 meaning 

completely disconnected between two subnetworks. Our results showed that the population 

GS statistics (Figures 6A, bottom panel) and 3D ring-like manifold (Figure 6C) remained 

stable with increasing sparsity in inter-subnetwork connectivity. Notably, an increasingly 

higher degree of sparsity in inter-subnetwork connectivity would produce more isolated 

clusters within E1 and E2 groups, many of which showed band-like patterns (Figures 6B, 6E, 

and S7).

Clustered I-I connectivity—Inhibitory projections were usually not clustered in our 

RNN model, consistent with a prior study showing that inhibitory neurons connect densely 

and non-specifically to pyramidal neurons.60 However, inhibitory-to-inhibitory connections 

underlying a disinhibitory microcircuit may play an important role in reshaping the recurrent 

dynamics.63 To test the influence of inhibitory connectivity, we further split the inhibitory 

population into two subnetworks, I1 and I2, with each projecting to specific excitatory 

subpopulations. We assumed that two inhibitory subnetworks were fully, yet weakly, 

coupled, and the excitatory-to-inhibitory and inhibitory-to-excitatory connections were 

strongly coupled (type 2). Again, we varied the sparsity in inter-subnetwork connectivity 

and further compared their GS statistics, grid field embedding, and ring manifold structure 

(Figures 6D–6F). Interestingly, we observed a mixture of band-like and grid-like patterns, 

and similar band-like patterns tended to group together within the same excitatory 

subnetwork. Similar observations were also found for other types of structured network 

connectivity (see Figure S7).

E/I balance—The E/I balance of trained E/I-RNNs was controlled by the relative degree 

of excitation and inhibition. To investigate the role of inhibition in reshaping spatial tunings 

of hidden units, we randomly selected some excitatory grid-like units and modified their 

relative inhibition by gradually decreasing or increasing the inhibitory-to-excitatory input 

or connection strengths (STAR Methods). Consequently, the grid pattern and GS changed 

(Figure 6G). Specifically, the grid-like patterns of excitatory units had a tendency to evolve 

into band-like patterns with decreasing inhibition strength, yet the grid patterns became 

weak or diminished with increasing inhibition strength. These results may explain the 

clustered band-like firing patterns under various structured network connectivity and sparsity 

levels.

Grid remapping—Firing patterns of mEC grid cells may change following environmental 

changes, such as translation and/or rotation of fields.1,2 To emulate this remapping 
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condition, we conducted manipulations in multiple testing conditions. First, we rotated 

the environment by 90° and changed all place fields accordingly by 90° rotation. Second, 

we proportionally increased or decreased the size of place fields in the output (to emulate 

a larger or smaller environment size). Third, we permuted the trained RNN output order 

(or, equivalently, permuting the columns of Wout) while keeping the place cell coverage 

unchanged. In the first condition, the grid patterns also rotated 90°, but the GS statistics 

remained unchanged (Figure S8A). In the second condition, the grid units displayed either 

zoom-in or zoom-out grid patterns within the original environment, but the overall grid 

patterns were preserved (Figure S8B). In the third condition, most grid patterns changed or 

remapped (Figure S8C). At the population representation level, the ring manifold structures 

remained close to the original one.

Multistable attractors emerged from sparsely connected RNNs

The structural connectivity density of inter- and intra-subnetwork jointly determines the 

overall sparsity in network connectivity. Next, from a pre-trained E/I RNN, in testing, 

we randomly set a small percentage of inter- or intra-subnetwork excitatory-to-excitatory 

connection weights to zeros. This would give us an opportunity to test the “corrupt” versions 

of the trained RNN with disrupted pre-wired synaptic connectivity. Interestingly, we found 

that with an increasing level of sparsity in the inter- and intra-subnetwork connectivity 

of the pre-trained E/I-RNN, two or three isolated 3D torus structures emerged (Figures 7 

and S9), although individual grid patterns remained relatively stable. The co-existence of 

stable multiple-loop torus patterns implied a bifurcation phenomenon and the possibility 

of multistable attractor states.64,65 Together, the results from Figures 6 and 7 suggest 

that functionally distinct grid patterns and multistable attractors may emerge from weakly 

coupled excitatory subnetworks.

To get insight into this phenomenon, we extracted statistics of Wrec with increasing sparsity 

using one trained E/I-RNN (setup #2). Specifically, we applied Schur decomposition to the 

non-normal matrix Wrec and quantified the strength of functionally feedforward connections 

(FFCs; denoted as κ) as well as the eigenvalue statistics (STAR Methods). The maximum 

eigenvalue of Wrec + Wrec⊤
2  that characterizes the short-term behavior monotonically 

decreased with increasing sparsity in both inter- and intra-subnetwork connectivity (Figure 

S10A). In contrast, the maximum (real-part) eigenvalue of Wrec that characterizes the 

long-term behavior decreased with increasing sparsity in inter-subnetwork but decreased 

in intra-subnetwork connectivity. Additionally, κ reached a maximum with an intermediate 

sparsity level of intra-subnetwork but monotonically decreased with increasing sparsity in 

inter-subnetwork connectivity (Figure S10B). Since the largest (real-part) eigenvalue was 

greater than 1, it suggested that the chaotic state or bifurcation might be present in the RNN, 

explaining the phase transition of multiple loops in the torus manifold.

Grid-like patterns emerged from a trained RNN performing a non-spatial task

Can grid patterns emerge from the E/I-RNN that performs a non-spatial task? To answer 

this question, we considered a modified MNIST handwritten digit sequence recognition 

task. We first embedded the high-dimensional visual stimuli into a 2D space. In the output 
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space, the images were grouped together in the embedded space according to their similarity. 

Navigating between points in the embedded space can be viewed as a sequence recognition 

task. We employed a pre-trained CNN that emulated early-stage V1 pre-processing (Figure 

S11A) and subsequently took the flattened features from the CNN to feed to the E/I-

RNN input (STAR Methods). Only the RNN parameters were trained in the CNN-RNN 

architecture, with the goal of mapping the image sequence to the 2D coordinate in the 

embedded space. We envisioned that when a set of digital image sequences (each with 

sequence length 10) was presented to the CNN-RNN, the output produced a trajectory in 

the embedded space. However, unlike our previous settings, the embedding coordinate space 

was not uniformly sampled by the trajectories; additionally, the step size of trajectory was 

non-even, with random speed and direction at every single step. After RNN training, we 

repeated the same analysis as in the spatial task and found a wide range of spatially tuned 

units: some displayed non-periodic irregular grid-like patterns, and others showed random 

patterns (Figure S11B). In this case, the overall GS statistics were lower (Figure S11C), and 

the low-dimensional population response formed a 10-cluster manifold structure in the PCA 

subspace (Figure S11D).

DISCUSSION

Accumulating evidence has pointed to rich spatial modulation phenomena in the visual 

thalamus and cortex.18,38–41,43,44,47,48 A preliminary finding has suggested that a compact 

spatial map consisting of place cells, grid cells, head-direction cells, and border cells 

exists in the rat V2 visual cortex.18 However, the sources and functional role of these 

spatially modulated signals in the visual cortex remain a puzzle. Theta oscillations and theta-

modulated firing have also been found in the rat V2,18 providing a possible source of speed 

signaling. Anatomical connections between the V2 and V1, and additional projections from 

the secondary motor (M2) and retrosplenial (RSC) cortices to visual cortices may provide 

additional self-motion, place-modulating, and directional inputs. Spatial modulation of place 

cells and grid cells in the rat V2 persisted in the darkness,18 suggesting the robustness of 

these spatially modulated neurons and the existence of generalized cognitive map.66 These 

results were consistent with previous experimental findings in rodent mEC grid cells.1,52,67

The receptive fields of V2 neurons have been identified with pure visual stimuli. For 

instance, V2 neurons in monkeys could be broadly classified as V1-like (typical Gabor-

shaped subunits), with ultralong (subunits with high aspect ratios) or complex-shaped 

(subunits with multiple oriented components) subunits.68 Rodent extrastriate areas may 

also process information related to other sensory modalities.69,70 This may indicate 

fewer hierarchical stages in the rodent, delivering visual information more readily to 

multimodal interactions in naturalistic behaviors.71 Among the emergent visual receptive 

fields, we found mutual independence between spatial and visual tunings of the grid 

units, suggesting task-dependent mixed selectivity in generalized grid codes.72 Structural 

network connectivity is linked to functional clustering. It has been known that V1 neurons 

with similar non-classical extra-receptive fields (ERFs) tend to group into clusters;73 these 

clusters are randomly distributed in all cortical layers, with no detectable relationship with 

orientation and ocular dominance columns. Our results of clustered grid-/band-like patterns 

emerged from sparse structural RNN connectivity seem to support this intuition. However, 
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experimental verification of this model prediction would require large-scale recordings from 

the rat V2. To date, a complete understanding of the relationship between V2 grid cells and 

mEC grid cells remains unknown; future simultaneous recordings of mEC grid cells and V2 

grid cells can provide new insight. We speculate that multiple interconnected brain regions 

may be coordinated to perform local computation for tasks such as path integration or spatial 

localization. It is not completely impossible that grid responses are universal in the brain for 

a wide range of cognitive tasks that involve locomotion or mental navigation.74,

We envisioned that the output layer of the RNN model that encodes the place is the V1, 

which serves as a teaching signal to the V2. This is not impossible because rodent V1 

neurons have place tunings.41,47,48 Additionally, the back-propagating error from output V1 

units to recurrent V2 units represents an information flow in the visual pathway. The V2 

also provides a modulation input to the V1 in the feedback pathway.75 Our V2 grid cell 

model is different from other mEC grid cell models in several ways. First, we generalized 

the standard RNN models34,35 by incorporating Dale’s principle and structured intra-cortical 

connectivity, making the model more biologically realistic in relation to the V2 visual 

cortex. Furthermore, many other models of mEC grid cells cannot be simply transferred to 

the V2 finding. Second, we showed that the visual optical flow could be an alternative input 

as the velocity to the V2, producing similar robust grid patterns and torus-like attractors. 

The optical flow can be implemented in the early stage of the visual system,76,77 and the 

heading direction can be estimated from optical flow in the visual cortex78 or sensorimotor 

circuit.79 Third, our model reveals torus-like manifolds and attractors, consistent with 

the other experimental and computational findings.35,57 Specifically, multistable torus-like 

manifolds emerge from the E/I-RNN with increasing inter- or intra-subnetwork connectivity, 

suggesting that sparsely connected biological networks may use multiple ring attractors to 

store independent information. Overall, our work provides a biologically plausible model to 

produce robust visual grid patterns; it also supports the hypothesis that the stability of grid 

patterns predicts the stability of behavioral output. The emerged multistable attractors may 

imply multiple attractor states, but detailed theoretical analyses of attractor multistability 

will be the subject of our future study.

Predictive maps serve as the common computational principles for generating “place codes” 

and “grid codes”.80,81 Specifically, the successor representation (SR)82 is the product of the 

inherent state-action transition dynamics that characterizes the predictive dynamics. In the 

context of spatial navigation, the SR for a given state (i.e., a spatial location) is radially 

symmetric over space, and the columns or eigenvectors of the SR matrix correspond to 

the place fields and grid fields, respectively.80,83 The state-action transition matrix bears 

a functional resemblance with the recurrent weight matrix in the RNN that characterizes 

the network state transition. Our work is also conceptually in line with a recent work 

that trained RNNs to predict a future action based on the current state and action, and 

the trained recurrent weight matrix that characterizes a predictive representation showed 

emergent place-like response patterns.81 Unlike other continuous attractor models, the 

network connectivity matrix of our E/I-RNN is asymmetric and non-normal, and such a 

recurrent network structure produces stable grid patterns and torus-like attractors under 

various configurations of input and network connectivity. Notably, RNNs are capable of 

constructing a ring manifold that constrains a set of discrete fixed points.84
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Path integration relies on an egocentric coding process and allows animals to integrate 

information (e.g., speed of movement, travel time, and directional change) generated by 

self-movements to update the position. Grid-like firing patterns provide a mechanism for 

dynamic computation of self-position based on continuously updated information about 

position and direction. Visual landmarks and motion cues are also critical for visuospatial 

integration. In virtual reality experiments, internal vestibular and proprioceptive cues are 

disrupted; however, some idiothetic cues that are not internally generated can still be 

used for path integration. Such cues may include visual optic flow, airstream detection 

(e.g., by a rat’s whiskers), or other sensory reafference inputs produced by locomotion.85 

Can path-integration-like computations be used in non-spatial domains, for example, for 

constructing non-spatial representations such as time intervals or trajectories defined in 

a sensory stimulus space? Some evidence seems to suggest a confirmative answer. For 

instance, self-organized-domain general learning algorithms may explain the emergence of 

grid cells in both spatial and conceptual domains86 so that grid representations provide 

efficient similarity search strategies in the generalized and continuous cognitive space. 

Additionally, a computational model of visual grid cells has been proposed for visual 

recognition memory where a sequence of memory-guided saccades can encode salient 

stimuli.87 Our demonstration of visual grid patterns produced from a CNN-RNN model 

suggests that the computational principle of grid computation may be beyond the velocity-

driven path-integration task. To date, RNNs have provided a dynamical systems viewpoint 

for motor movement,88,89 path integration,34,35 information integration,90 and predictive 

representations.81 We envision that the recurrent dynamics of RNNs can be implemented by 

a neural substrate in a wide range of cortical networks outside the traditional hippocampus-

entorhinal system.

Limitations of the study

Several limitations are noticed in our RNN models. First, our simulated visual input (either 

illumination or optical flow) to the RNN was oversimplified and could not capture the 

complexity of natural vision. However, we speculate that the change in visual stimuli by 

adding an additional level of complexity will not affect the finding since the emergent grid 

responses appear robust to different visual input configurations. Second, the E/I-RNN did 

not explicitly consider the cortico-cortical input relevant to the task. For instance, there is 

strong cortico-cortical connectivity between the visual cortex and the parietal cortex as well 

as the RSC; these brain areas may carry additional spatial information essential for spatial 

and mental navigation. Third, our CNN-RNN model architecture to simulate early visual 

processing pathway (such as V1-V2) was oversimplified as the biological visual processing 

is more complex; therefore, incorporation of an architecture that aligns stages of visual 

processing along the ventral stream may reveal additional insight.91–93

Despite these limitations, our computational modeling work may produce experimentally 

testable predictions. First, our results suggest that the intra-cortical connectivity and E/I 

balance have an impact on the grid responses. This can be tested using intra-cortical 

microstimulation94,95 or optogenetic stimulation.96 Second, it remains unknown how visual 

grid patterns will change upon modifying the upstream input of the V2 (such as the V1 

and visual thalamus). This can be investigated by selective inactivation of these FFCs. 
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Third, the mixed selectivity of V2 neurons can be tested via a series of experiments using 

well-controlled spatial and visual stimuli. Finally, it would be alluring to search for grid 

patterns in rodent visual and other sensory cortices during non-spatial tasks.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for data should be directed to and will be 

fulfilled by the lead contact, Zhe S. Chen (zhe.chen@nyulangone.org).

Materials availability—All materials are contained in the paper or available from the lead 

contact.

Data and code availability—This paper does not report original or raw data. Computer 

simulated data and custom Python scripts and codes have been deposited at Zenodo (https://

doi.org/10.5281/zenodo.7275282) and are publicly available as of the data of publication. 

Any additional information required to reanalyzed the data reported in this paper is available 

from the lead contact author upon request.

EXPERIMENTAL MATERIALS AND DATA

MNIST dataset—The MNIST (Modified National Institute of Standards and Technology) 

dataset consists of 70000 28 × 28 pixel grayscale images of handwritten single digits 

between 0 and 9. The digits have been size-normalized and centered in a fixed-size image. 

The dataset is publicly available.

Rat V2 experimental recordings—The experimental recordings of V2 grid cells from 

freely behaving rats were described in details elsewhere.18 We adapted our computer 

simulation setup to match animal’s behavioral statistics (such as the run speed and 

direction). The local field potential (LFP) theta (8–10 Hz) rhythms from the rat V2 visual 

cortex were also used to guide the computer simulation (Setup #4). Specifically, we used the 

animal’s real speed and interpolated the LFP theta frequency based on a 3-rd polynomial 

mapping. The resultant theta frequency was ranged between 8 Hz and 9 Hz (Figure 1G).

METHOD DETAILS

Input stimuli and output encoding for a spatial navigation task—In computer 

simulations, we generated 5000 random trajectories within a two-dimensional (2D) 

environment (2.2 m × 2.2 m) to simulate the animal’s trajectories based on random speed 

and head direction. Each trajectory had a fixed sequence length (ℓ = 5–30, equivalent to 100–

600 ms). The initial speed and head direction were randomized. To encode a 2D position, 

we assumed that the encoding of individual place unit had a 2D isotropic Gaussian shape as 

defined below33:
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pi(z) =
exp − z − ci 2

2σ2

∑j = 1
M exp − z − cj 2

2σ2

(Equation 1)

where ci ∈ ℝ2 denotes the center of place receptive field, and σ > 0 denotes the place cell 

scale. We used M = 1024 units to uniformly cover the 2D environment (Figure 1B). From 

the population activity of these place-modulating units, we could recover the 2D position 

z≡(x, y). Head-direction activations were sampled from a Gaussian distribution with zero 

mean and variance of 11.5 radians.

For Setup #1, the RNN only received the 2D velocity input at each time bin. For Setup 

#2, we added the additional visual input illuminance. Based on the heading direction, 

we defined a viewing region of interest (ROI) defined by an image of 8×8 pixels (i.e., 

dimensionality 64), which corresponded to the raw visual input (such as the luminance 

of pixels). To reduce the dimensionality, we further applied principal component analysis 

(PCA) and projected the vectorized image onto the dominant PC subspace. In our 

experiment, we tried varying numbers of PCs (2–20) that explained up to 93.4% variance 

in the visual stimuli. For Setup #3, the RNN received the 2D acceleration and visual input 

illuminance at each time bin. For Setup #4, we used the actual animal’s run speed in the 2D 

environment to generate the trajectories, and further simulated the theta frequency based on 

a previously reported relationship between the run speed and theta frequency.56

RNN structure and training for a spatial navigation task—We trained an 

excitatory-inhibitory (E/I) RNN to perform a simulated spatial navigation task in the 2D 

open field enclosure (Figure 2A). We assumed the N -dimensional neural state dynamics, 

x(t), was driven by the following recurrent dynamics plus an Nin -dimensional input u(t):

τẋ = − x + Wrecr + Winu + σξ (Equation 2)

where τ denotes the time constant, ξ denotes additive N -dimensional Gaussian noise, 

each independently drawn from a standard normal distribution, σ2 defines the scale of the 

noise variance; Wrec is an N×N matrix of recurrent connection weights, and win ∈ ℝN × Nin

denotes the matrix of connection weights from the inputs to network units. The network 

produced an Nout -dimensional output z(t) = Woutr, where the neuronal firing rate vector r is 

defined by an activation function φ(x), which by default is a nonnegative rectified linear unit 

(ReLu)

r = [x]+ = max x, 0 (Equation 3)

The ReLu is scale-invariant and favors sparse activation. In a special case when the 

activation function is a linear unit, the firing rate dynamics will be characterized by a linear 

dynamical system50
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τṙ = − r + Wrecr + Win u + σξ (Equation 4)

The E/I RNN was designed to satisfy the Dale’s rule such that the ratio of excitatory to 

inhibitory units was 4:149. We used N = 512 and dt = 20 ms in all numerical simulations. 

Depending on specific assumed input configurations (Table S1), the dimensionality varied in 

the RNN input, and the RNN output consisted of Nout = 1024 place-modulated units, whose 

linear readout produced the 2D spatial position.

The recurrent weight matrix consisted of four functional submatrices according to the cell 

types: excitatory-to-excitatory (EE), inhibitory-to-excitatory (IE), excitatory-to-inhibitory 

(EI), and inhibitory-to-inhibitory (II) connections. Generally, Wrec is non-normal (unless all 

submatrices {WEE, WEI, WIE, WII} are symmetric and EI and IE connections are identical); 

as a result, its eigenvectors are not mutually orthogonal.100,101 For individual postsynaptic 

excitatory or inhibitory units, the net excitatory and inhibitory currents were summed by the 

presynaptic input as follows

Iiexc = ∑
j ∈ exc

wij, EE
rec rj, Iiinh = ∑

j ∈ inh
wij, IE

rec rj

where rj = [xj]+ = max(xj, 0) denotes the neuronal firing rate of the j -th presynaptic neuron, 

wij, EE
rec  and wij, IE

rec  represent the EE and IE weights within Wrec, respectively.

We used the mean squared error as the cost function. The RNN was trained by back-

propagation through time (BPTT) using the Adam algorithm with the default configuration 

of hyperparameters. In batch training, we used a learning rate of 0.0005 and a batch size 

of 256 randomly generated run trajectories. In each input configuration, we trained at least 

10 RNNs with independent initializations in parallel via GPU. In the paper, we reported the 

representative results from one or ten trained networks.

CNN-RNN architecture for a non-spatial task—In the non-spatial task, we applied 

stochastic neighbor embedding (SNE) to the MINIST handwritten digit images and 

projected the images of 28×28 pixels onto a low-dimensional (2D or 3D) space. We used the 

t-distributed SNE algorithm and color coded different classes of digits in visualization.98

We used a pre-trained convolutional neural network (CNN) to emulate the early visual 

processing in the V1 visual cortex. The simple CNN architecture consisted of two 

convolution layers, each followed by max pooling operations. Each unit used a ReLu 

activation function. In our setting, we discarded fully connected layer in the pre-trained 

CNN (for classification); instead, we used the flattened input (dimensionality: 128) and fed 

that into the E/I-RNN to perform a visual navigation task in the embedded space (Figure 

S11A). In the new task, the pre-trained CNN parameters were fixed, and the E/I-RNN 

parameters were modified using a similar optimization procedure as in the spatial navigation 

task. The visual sequence consisted of 10 randomly permuted handwritten digit images (0–

9) in the feature space; a batch size of 1024 sequences was used in training. It is noteworthy 
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that embedding the model’s input into the 2D space was simply for better visualization 

of 2D grid-like representations. Generally, this concept can be extended to 3D or higher 

dimensional space.

Analysis of ring manifold and attractor—In order to identify the low-dimensional 

structure of population activity in the trained E/I-RNN, let ri(x, y) denote the i -th unit 

firing rate map with respect to the 2D location (x, y); we computed its 2D (spatial) Fourier 

transform

ℛi(u, v) = ∬ ri(x, y)exp( − j2π(ux + vy))dxdy

= ∬ ri(x, y)exp (−j2π[x, y]⊤[u, v])dxdy

where (u, v) denote the spatial frequencies. The function ℛi(u, v) is constant when [x, 

y]⊤[u, v] = (ux + vy) is constant; the magnitude of the vector (u, v) produces a frequency, 

and its phase gives an orientation. The function is a sinusoid with this frequency along 

the direction, and constant perpendicular to the orientation. The maxima and minima of 

real-valued sinusoidal basis cos 2 π(ux + vy) occur when the inner product 2π[x, y]⊤[u, v] = 

nπ corresponds to a set of equally spaced parallel lines, which have wave-length 1/ u2 + v2

and are perpendicular to vector [u, v].

We further computed three spatial phases for each unit’s rate map as follows35

φis = arg ∬ ri(x, y)exp(−[x, y]⊤ks)dxdy , s = 0, 60, 120

where k0, k60, k120 represent the 0°, 60° and 120° rotation unit vectors, respectively. The 

inner product between [x, y] and the rotation vector yields a new set of coordinate (xnew, 

ynew):

xnew = x cos ψ − y sin ψ

ynew = x sin ψ + y cos ψ

where ψ denotes the rotation angle. Finally, we projected the population activity onto the 

three orthogonal pairs of axes: {u0 ≡ cos(φ0), v0 ≡ sin(φ0)}, {u60 ≡ cos(φ60), v60 ≡ sin(φ60)} 

and {u120 ≡ cos(φ120), v0 ≡ sin(φ120)}. Note that the choice of (0°, 60°, 120°) was based 

on the assumption of a perfect hexagonal grid; for the quadrilateral grid, the choice would 

be (0°, 90°, 180°). In practice, we found that a wide range of rotation angles produced 

qualitatively similar results.

To identify the attractor of the low-dimensional dynamics, let F (x) = ẋ in Equation 2; the 

Jacobian of the RNN was computed as
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∂F
∂x = 1

τ − I + WrecΦ

where Φ represents an N -by- N diagonal matrix containing the derivative of φ(x) with 

respect to x. Applying eigenvalue decomposition to the Jacobian matrix, we obtained 

N eigenmodes (eigenvectors) in the state space, and the associated N complex-valued 

eigenvalues that quantified the rate and direction along individual dimension.84 At the fixed 

points, we set F(x*) = 0, or equivalently

x ∗ = Wrec φ x ∗ + Win u

The analytic solution was not available because of the ReLu nonlinearity φ(x). In the special 

case of linear RNN, the fixed point was given by x* = (I − W)−1Winu. When (I − W) has a 

full rank, then the fixed point is unique; otherwise, the linear RNN has more than one fixed 

point.102 In our analysis, we identified fixed-points or slow points by numerically solving 

the optimization problem97:

minx q(x), where q(x) = − x + Wrecφ(x) + Wrecu 2

We collected a set of fixed-points by randomly initializing the network on a grid of 100×100 

spatial locations in the 2D environment. Specifically, the dimensionality of fixed points was 

the same as dim(x); once the numerical optimization was completed, we applied PCA to 

visualize the fixed points in the three- or two-dimensional PC subspace.

Linear RNN as a path integrator—Let’s consider a continuous-time vector differential 

equation that describes the dynamics of the linear RNN with N recurrent connected neurons:

τxẋ(t) = − x(t) + Wx(t) + Winu(t)
= (W − I)x(t) + Winu(t)

For simplicity, let the time constant τx = 1 and set A = W − I (where I is an N×N identity 

matrix), then

ẋ(t) = Ax(t) + Win u(t)

Given the linear dynamical system, we define a matrix function Φ(t, τ) that has the 

following two properties

Φ̇(t, τ) = AΦ(t, τ)

Φ(τ, τ) = I
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where the matrix function is referred to as the state transition matrix. If A is non-singular, 

then the state transition matrix is unique. Solving the linear vector differential equation 

yields

x(t) = Φ t, t0 x t0 + ∫t0
t
Φ(t, τ)Win u(τ)dτ

When the input u(t) is completely absent, the dynamical system is purely driven by the 

recurrent dynamics governed by the eigen-functions of A:

x(t) = x t0 + c1eλ1tv1 + c2eλ2tv2 + … + cNeλNtvN

where {λ1, …, λN} a are the eigenvalues, and {v1, …, vN} are the eigenvectors of the 

matrix A.

The linear readout of the RNN output is given as

y(t) = Woutx(t)

= Wout Φ t, t0 x t0 () + ∫t0
t
Φ(t, τ)Win u(τ)dτ

Non-normal connectivity and dynamics—We call a matrix A normal if it it satisfies 

AA⊤ = A⊤A, and a stable linear normal system is contractive.101 On the other hand, a 

matrix A is non-normal if it satisfies AA⊤ ≠ A⊤A. The recurrent weight matrix Wrec of the 

E/I-RNN is asymmetric and non-normal, unless all submatrices {WEE, WEI, WIE, WII} are 

symmetric and the EI and IE connections are identical. As a result, the eigenvectors of Wrec 

do not form the orthonormal bases.101

Specifically, an arbitrary recurrent weight matrix Wrec can be rewritten in the following 

form

Wrec = U⊤(Λ + T)U

where U = {uij} is unitary, and Λ is a diagonal matrix that contains the eigenvalues 

{λk} of Wrec, and T is a lower-diagonal matrix. The vectors of U are called the 

Schur vectors (or Schur modes) and are mutually orthogonal. In the linear E/I-RNN, let 

H Wrec = Wrec + Wrec ⊤
2  be the Hermittian part of the recurrent weight matrix, then the 

maximum of the eigenvalue of H(Wrec) characterizes the short-term behavior of the network 

undergoing a transient growth before asymptotically converging to zeros.103 Additionally, 

the maximum of the real (or real-part) eigenvalues of Wrec characterizes the long-term 

behavior for the speed of network’s steady state decaying to zero. Highly non-symmetric 

interactions of simulated neurons may create non-normal dynamics, such as large transients 

(G. Kerg et al., 2019, NuerIPS, conference).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Computation of grid score, grid field and autocorrelogram—The grid score 

(GS) was previously established to quantify the grid-like responses of neurons.1,33 To be 

consistent with all setup conditions, we set an empirical GS threshold of ≥ 0.3 for the grid 

unit. The empirical threshold was guided by a random shuffle distribution using a Monte 

Carlo P< 0:01. If a unit was categorized as a grid cell, the grid field was defined as the 

spatial rate map (50×50 bins) normalized by the behavioral occupancy. Using a similar 

method,33 we calculated the spatial autocorrelation with smoothed rate maps. Let r(x, y) 

denote the unit’s mean firing rate at a two-dimensional Cartesian coordinate (x,y), the 

autocorrelation of the spatial firing field was calculated as17:

ρ τx, τy =
n∑r(x, y)r x − τx, y − τy − ∑r(x, y)∑r x − τx, y − τy

n∑r(x, y)2 − ∑r(x, y) 2 n∑r x − τx, y − τy
2 − [∑r x − τx, y − τy

2

where the summation was over n pixels for both r(x, y) and r(x − τx, y − τy) (where τx and 

τy denote the spatial lags).

Computation of optical flow—Optical flow is commonly referred to as the pattern of 

apparent motion of objects in a visual scene. In computer vision, the optical flow methods 

try to calculate the motion between two image frames which are taken at times t and t + Δt. 
Based on local Taylor series approximations of the frame images, these methods use partial 

derivatives with respect to the spatial and temporal coordinates. For a 2D + t dimensional 

case, if a voxel at location (x, y, t) with visual illuminance I(x, y, t) is moved by (Δx, Δy, Δt) 
between two image frames, then the following “brightness constancy constraint” needs to be 

satisfied

I(x, y, t) = I(x + Δx, y + Δy, t + Δt)

Based on a first-order Taylor series expansion, the following equation can be derived

∂I
∂x Δ x + ∂I

∂y Δ y + ∂I
∂t Δ t = 0

or

∂I
∂xV x + ∂I

∂y V y + ∂I
∂t = 0

where V x = Δx
Δt , V y = Δy

Δt . We then used the Horn-Schunck estimation method to estimate 

the optical flow based on neighboring frames.104,105 The optical flow was represented and 

visualized by a 2D vector field, with arrows indicating the direction, and the size of arrow 

proportional to the scale. In our experiment, we used a 16×16 visual frame to compute the 

optical flow, resulting in a 512-dimensional vectorized feature.
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Dimensionality reduction—To visualize the low-dimensional recurrent dynamic 

attractor, we applied linear principal component analysis (PCA) and projected the N 
-dimensional latent vector onto a 2D subspace ( PC1 - PC2 or PC2 - PC3 ) according to the 

percentage of explained variance. In addition, we used a nonlinear dimensionality reduction 

technique known as UMAP (Uniform Manifold Approximation and Projection).99,106 The 

algorithm is designed to find an embedding by searching for a low dimensional projection of 

the data that has the closest possible equivalent fuzzy topological structure.

To quantify the similarity of grid fields, we embedded the 50×50 grid maps into a 2D space 

using the t-SNE algorithm,98 with a default perplexity parameter of 30.

Schur decomposition—We applied Schur decomposition to the trained recurrent weight 

matrix: Wrec = QTQ−1, where Q is a unitary matrix whose columns contain the orthogonal 

Schur mode, and T is a lower triangular matrix that contains the eigenvalues along 

the diagonal.50,100,101 The triangular structure of T can be interpreted as transforming 

an RNN into a feedforward neural network, and the recurrent weight matrix Wrec 

corresponds to a rotated version of the effective feedforward matrix T, which defines self-

connections and functionally feedforward connections (FFCs) of the neural network. Unlike 

eigenvalue decomposition, the Schur decomposition produces the simplest (yet non-unique) 

orthonormal basis for a non-normal matrix. The Schur decomposition of the non-normal 

matrix Wrec naturally provides a separation of “diagonal” (recurrent) and “non-diagonal” 

(feedforward) parts. To quantify the strength of FFCs (denoted by κ), we computed the sum 

of absolute squares of the off-diagonal elements of T, and further normalized it by the sum 

of absolute squares of all the elements of T 101:

κ =
Trace TT⊤ − ∑j = 1

N λj
2

Trace TT⊤

where λj j = 1
N  denote the eigenvalues of the lower diagonal matrix T. The value κ is 

interpreted as the proportion of dynamics driven by FFCs, whereas 1 − κ is interpreted as the 

proportion of dynamics driven by functionally recurrent connections.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Grid patterns emerge in trained RNNs with multisensory inputs

• Grid patterns are robust to the RNN input and network connectivity

• Population responses show emergent ring-like manifolds and attractors

• Grid-like patterns persist in RNNs while performing a non-spatial task
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Figure 1. Multisensory input and recurrent dynamics of E/I-RNN produce robust grid patterns
(A) Schematic of the excitatory-inhibitory (E/I)-RNN to perform a 2D spatial navigation 

task with multisensory cues. The visual cue may appear in the form of principal components 

(PCs) for the 8 × 8 image patch along the heading angle or the form of visual optical flow. 

The spatial cue may appear in the form of velocity-(speed and direction), acceleration-, or 

speed-modulated theta rhythms.
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(B) Top left: simulated trajectories (gray curve). Orange dots denote the place cell centers 

uniformly distributed within the 2D enclosure. Top right and bottom: distributions of 

simulated run speed and direction statistics.

(C) Examples of emerged grid-like and band-like patterns from excitatory and inhibitory 

units of the trained RNN (setup #2). First column: firing rate (FR) heatmap; second column: 

spatial autocorrelogram (the numbers indicate the grid score); third column: speed tuning 

curve; fourth column: direction tuning curve; fifth and sixth columns: tuning curve with 

respect to visual illumination PC (PC1). All tuning curves are in the same scale (a.u.).

(D) Statistics of grid units were relatively stable with respect to the dimensionality of visual 

features in PCA subspace (1–20).

(E) Complex eigenspectrum of Wrec from a trained E/I-RNN.

(F) Emergent grid-like RNN units with highest grid scores under different input 

configurations (rows 1–5 corresponded to results from setups #1-#5).

(G) The relationship between theta frequency and run speed, redrawn from Dannenberg et 

al., 2020.52

(H) Distributions of grid scores from the excitatory and inhibitory units under different input 

configurations. Statistics were generated from 10 trained RNNs in each setup. The shaded 

area along the curve represents ± SD.

(I) Percentages of grid units in the trained RNNs under different input configurations. 

Boxplot statistics were generated from 10 trained RNNs in each setup.

See also Figure S1.
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Figure 2. Impact of sequence length on grid patterns in trained RNNs
(A) Grid-like patterns were robust with respect to a wide range of sequence lengths (200, 

400, 600, and 1,000 ms) and activation functions in the E/I-RNNs.

(B) Grid score statistics with different sequence lengths. In each condition, the top 50% of 

grid scores were used for better visualization.

See also Figure S2.
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Figure 3. Mixed selectivity of RNN units and emerged functional clusters
(A) Examples of paired grid-like units and their co-activated firing with respect to visual 

input.

(B) Scatterplots of rj
spatial and rj

visual among the E/I-RNN units (setup #2). Red and blue 

denote excitatory and inhibitory units, respectively.

(C) From a trained E/I RNN (setup #2), selected 12 (9 excitatory plus 3 inhibitory) grid units 

and their weight connectivity (white/black square denotes positive/negative synaptic weight; 

the size of square is proportion to the strength). Temporal traces represent the firing of these 
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12 units with zero velocity input. The lower triangular matrix denotes pairwise correlation 

between 12 FR traces.

(D) From a trained linear E/I-RNN (setup #2), selected 21 (17 excitatory plus 4 inhibitory) 

grid units and their weight connectivity.

(E) 2D embedding of RNN grid fields that were associated with top 60% grid score (GS; 

setup #2, top: ReLu activation function; bottom: linear activation function). Red and blue 

denote excitatory and inhibitory grid units, respectively.

See also Figures S3 and S4.
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Figure 4. Emerged low-dimensional ring manifold and attractor
(A) PCA revealed the explained variance ratio of trained RNN units. Error bar denotes the 

SEM from n = 10 trained networks.

(B) Left: 200-ms color-coded simulated trajectory in the 2D enclosure. Right: 2D ring 

manifold; projection of the high-dimensional RNN population activity onto the first two 

dominant PCs ( PC1 - PC2 plane). Each blue dot represents a temporal sample in the 

simulated trajectory. Neural trajectory was color coded according to the simulated trajectory 

in the left.
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(C) The 3D torus manifold shown from two different angles. The 3D manifold was produced 

by PCA followed by UMAP (see STAR Methods).

(D) Projections of the 3D manifold onto three pairs of axes.

(E) Visualization of the identified torus-shaped attractor (red crosses represent the fixed 

points) in 3D (left) and 2D (right) PCA subspaces.

(F) Comparison between five fixed-point grid patterns and selected single-unit grid patterns 

from the trained E/I-RNN. Notice the close resemblance. Pearson’s correlation statistics 

between top and bottom five panels were (from left to right) 0.828, 0.781, 0.861, 0.841, and 

0.827.

See also Figure S5 and Video S1.
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Figure 5. Stability of grid patterns and ring attractor
(A) Comparison of grid unit patterns and GS statistics when the visual input was set to 

zero (light off) during testing (setup #2). The GS statistics showed no statistical difference 

(two-sided paired signed-rank test, non-significant [n.s.]).

(B) Comparison of ring attractor and neural trajectories between the original and light-off 

conditions.
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(C) Comparison of grid unit patterns and GS statistics when a new visual input was used 

in testing while keeping the velocity unchanged (setup #2). The GS statistics showed no 

statistical difference (two-sided paired signed-rank test, n.s.).

(D) Ring attractor and neural trajectory while using a new visual input.

(E) In testing, the noisy long (sequence length: 50) trajectories either remained stable (blue) 

or first perturbed then converged (orange) to the simulated paths (black) in the E/I-RNN 

(ReLu), suggesting the stability of ring attractor. In contrast, the noisy long trajectory tended 

to deviate from the simulated trajectory in the linear E/I-RNN. Four snapshot examples 

under different testing conditions are shown. The black curve denotes the simulated path, the 

overlaid blue curve denotes the predicted position, and the red/blue circle and red/blue star 

represent the simulated/predicted start and end position, respectively.

(F) Changes in behavioral speed led to changes in ring attractor and grid cell representations. 

The attractor and grid cells appeared relatively stable until speed was out of the normal 

range.

See also Figure S6.
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Figure 6. Robust grid patterns with respect to subnetwork connectivity
(A) Distribution of grid scores in type 1 subnetwork connectivity. The dashed line denotes 

weak connections with various sparsity levels (0, 0.1, 0.5, 0.9). Sparsity level 0 implies full 

connections (original setting). Excitatory neurons were divided into two subnetworks: E1 

and E2.

(B) 2D embedding of RNN population responses (units with top 50% grid scores) (sparsity 

level: 0.5). Representative grid fields are shown from individual functional groups.
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(C) PCA explained variance ratio (top) and 3D ring manifold of RNN population responses 

for two sparsity levels 0.1 and 0.9 in type 1 subnetwork.

(D) Distribution of grid scores in type 2 subnetwork connectivity. Inhibitory neurons were 

further divided into two subnetworks: I1 and I2. The E-to-I, I-to-I, and I-to-E connections 

were weakly coupled.

(E) Similar to (B) except for type 2 subnetwork (sparsity level: 0.9).

(F) Similar to (C) except for type 2 subnetwork.

(G) Changes of grid-like responses with increasing or decreasing E/I balance. Number on 

the top of each grid field denotes the grid score.

See also Figures S7 and S8 and Video S2.
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Figure 7. Emerged multistable ring attractors with increasing sparsity in network connectivity
(A) Changes in 100 unit firing patterns of E1 subnetwork (top) and evolution of 3D manifold 

structure (bottom) with increasing inter-subnetwork connectivity (type 1, setup #2, sparsity 

baseline: 0.5).

(B) Changes in 100 unit firing patterns of E1 subnetwork (top) and evolution of 3D manifold 

structure (bottom) with increasing E1 intra-subnetwork connectivity, whereas the E2 intra-

subnetwork connectivity remained unchanged (type 1, setup #2, sparsity baseline: 0).
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(C) Changes in 100 unit firing patterns of E1 subnetwork (top) and evolution of 3D manifold 

structure (bottom) with increasing E2 intra-subnetwork connectivity, whereas the E1 intra-

subnetwork connectivity remained unchanged (type 1, setup #2, sparsity baseline: 0).

See also Figures S9 and S10 and Video S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithm

Grid score computation (Banino et al.)33 https://github.com/deepmind/grid-cells

E/I RNN (Song et al.)49 https://github.com/frsong/pycog

fixed-point finder (Sussillo and Barak)97 https://github.com/mattgolub/fixed-point-finder

t-SNE (van der Matten and Hinton)98 https://lvdmaaten.github.io/tsne/

UMAP (McInnes and Healy)99 https://github.com/lmcinnes/umap

CNN Open source https://github.com/iamkrut/MNIST_handwriting_classification

Deposited code This study https://doi.org/10.5281/zenodo.7275282

Other

MNIST dataset Open source http://yann.lecun.com/exdb/mnist/
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