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Bayesian analysis of depth resolved 
OCT attenuation coefficients
Lionel D. Fiske1,2,3, Maurice C. G. Aalders3,5*, Mitra Almasian3, Ton G. van Leeuwen3, 
Aggelos K. Katsaggelos4, Oliver Cossairt2,4 & Dirk J. Faber3,5

Optical coherence tomography (OCT) is an optical technique which allows for volumetric visualization 
of the internal structures of translucent materials. Additional information can be gained by measuring 
the rate of signal attenuation in depth. Techniques have been developed to estimate the rate of 
attenuation on a voxel by voxel basis. This depth resolved attenuation analysis gives insight into tissue 
structure and organization in a spatially resolved way. However, the presence of speckle in the OCT 
measurement causes the attenuation coefficient image to contain unrealistic fluctuations and makes 
the reliability of these images at the voxel level poor. While the distribution of speckle in OCT images 
has appeared in literature, the resulting voxelwise corruption of the attenuation analysis has not. In 
this work, the estimated depth resolved attenuation coefficient from OCT data with speckle is shown 
to be approximately exponentially distributed. After this, a prior distribution for the depth resolved 
attenuation coefficient is derived for a simple system using statistical mechanics. Finally, given a set 
of depth resolved estimates which were made from OCT data in the presence of speckle, a posterior 
probability distribution for the true voxelwise attenuation coefficient is derived and a Bayesian 
voxelwise estimator for the coefficient is given. These results are demonstrated in simulation and 
validated experimentally.

Optical coherence tomography (OCT) is an imaging modality which allows for the visualization of internal 
structures of tissues and other translucent materials volumetrically. OCT images give a practitioner insight into 
qualitative structural information such as layer structure and morphology. However, the extraction of reliable 
quantitative information from these tissue volumes is an area of current research. One quantitative measure of 
interest is the rate of signal decay in depth known as the attenuation coefficient1. The attenuation coefficient 
compounds effects of absorption and scattering losses in depth which can be related to physiological properties 
such as blood content and tissue organization1–3. Currently, methods to extract the attenuation coefficient fall into 
one of two categories: layerwise extraction through curve fitting4 and depth resolved or voxelwise extraction5.

In the layerwise approach, the layers of media are segmented, and then an exponentially decaying model is fit 
to each A-scan of the OCT signal in the least squares sense3–5. From this perspective, the attenuation coefficient is 
a bulk measure which assigns a single, deterministic number to each segment of an A-scan. However, a measured 
A-scan will contain fluctuations due to speckle6,7. OCT speckle is the voxel-to-voxel variation of OCT amplitude, 
due to random variations in the spatial position of scattering particles within the imaging voxel. Randomly 
placed scatterers within the voxels will thus return scattered fields with random amplitude and phase—leading 
to intensity fluctuations at the detector. While the origin of speckle is deterministic at the microscopic level, in 
practice the measured signal is well modeled as a realization of a random process equivalent to randomly varying 
the exact microscopic position of the scattering particles in the bulk of the media8. One common technique to 
overcome the speckle variations is lateral averaging2,3,9, where neighboring A-scans are averaged together prior 
to fitting. Lateral averaging can be an effective technique at reducing speckle variations but at a severe cost to 
lateral resolution. If the sample is not perfectly static, as is the case in liquid samples with particles undergoing 
Brownian motion or sufficiently dynamic living samples, consecutive A-scans taken at the same location can 
be averaged together to reduce speckle variations at the cost of effective acquisition time10. In either case, the 
layerwise fitting assumes complete uniformity in the composition and statistics of the layer segment in depth 
and lateral averaging makes the same assumption over a volumetric region.
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A depth resolved (DR) approach, initially developed for ultrasound image quantification11, was adapted by 
Vermeer for use in OCT and has become popular in recent years12–14. This approach removes the assumption of 
material uniformity in depth and allows variations in the attenuation coefficient in three dimensions. The DR 
approach assumes the material is weakly absorbing, making this technique related to voxelwise OCT scattering 
parameter inference methods15–17 which have a long history in OCT signal processing. This method has been 
further refined by Liu18 to better handle boundary effects caused by finite imaging depth. In either formulation, 
reconstructions of the attenuation coefficient will be highly variable due to the influence of speckle14. Thus, as 
before, lateral averaging is often still employed to get a more consistent result12. Conceptually, the DR approach 
allows one to recover some amount of the natural variability of optical properties within the tissues. While the 
advantages of the DR approach are manifest, the result of this approach in the presence of intensity variations 
due to speckle leads to reconstructions in which the recovered attenuation coefficient itself has large variations.

The propagation of speckle variation into the recovery of an otherwise deterministic coefficient has clear 
implications for the accuracy of the attenuation parameter inferred at a single voxel. Since the exact measured 
intensity is effectively random, one can in general expect the inferred coefficient to be effectively random as well. 
One way to handle the inference of parameters in these circumstances would be to adopt a Bayesian perspec-
tive. In this paradigm, instead of simply seeking an estimate for the value, one seeks the posterior distribution, 
which quantifies how probable each attenuation value is19. In these methods, accurate physical models about 
measurement uncertainty are combined with prior information about the objects which are being measured. 
Utilizing the posterior distribution allows for the identification of estimation biases and the quantification of 
uncertainty by giving access to statistics about the inferred attenuation coefficient. A better understanding of 
uncertainty can have direct clinical implications by helping to inform practitioners of how much they can trust 
a given inference. Furthermore, this approach opens the door to probabilistic tissue classification tasks such as 
tumor grading where the likelihood of various outcomes must be compared.

In this manuscript we model the effect of speckle on the inference of OCT attenuation coefficients using 
a Bayesian approach. The interaction between the DR reconstruction technique and the speckle variation is 
considered, and a probability distribution for the measurements made under physically realistic speckle vari-
ations is derived. Following this, we derive a prior distribution for a simple system using statistical mechanic 
principles. Finally, we combine these to derive a probability distribution for the attenuation coefficient itself and 
define a Bayesian voxelwise estimator for the mean attenuation coefficient. These results are then demonstrated 
in simulation and experimentally.

Paper structure.  The goal of this work is to construct the posterior distribution for the voxelwise attenua-
tion coefficient and to validate it using numerical experiments and tissue phantom measurements. The posterior 
distribution assigns a meaningful probability to every possible value of the true attenuation coefficient. Here, 
the true attenuation coefficient is defined as the attenuation coefficient of the mean OCT signal without speckle 
fluctuations. Using the existing DR method12, the attenuation coefficient at each voxel can be estimated from the 
measured OCT signal. These depth resolved estimates are denoted as µ̂ . These estimates depend on the intensity 
at each voxel which fluctuates due to speckle. Because of these voxelwise fluctuations, the estimated value of the 
attenuation coefficient at that point will likely differ from the true coefficient. The posterior probability distribu-
tion gives the probability that the true value of the attenuation coefficient is equal to µoct given that our depth 
resolved estimate was equal to µ̂.

Mathematically, the posterior distribution can be written as the conditional probability distribution P
(

µoct

∣

∣µ̂
)

 . 
Conditional probabilities can be rewritten as product of two easier to derive probability distributions using Bayes’ 
theorem. This theorem states that the posterior distribution is given by,

In this expression, P
(

µ̂
∣

∣µoct

)

 is called the likelihood function which represents the probability of estimating µ̂ 
given that the true attenuation coefficient is equal to µoct . The distribution denoted by P(µoct) is called the prior 
distribution for the unknown µoct . The prior probability allows the incorporation of additional information into 
the statistical model and is often used as a way to establish bounds or to bias solutions towards realistic values. 
The marginal probability P

(

µ̂
)

 is a normalizing factor and can be computed via integration. Using this relation, 
we can find the posterior distribution by solving two easier problems: finding the likelihood function and find-
ing the prior distribution.

Before these two distributions can be derived we must first have a mathematical model for the measured 
OCT signal so we can make depth resolved attenuation coefficient estimates. In “Modeling intensity decay”, a 
model which describes the mean signal decay is given. This model assumes that the measurements are made on a 
weakly absorbing medium and that the majority of measured light is single scattered. Next, in “A statistical model 
of the OCT amplitude and intensity”, the effect of speckle on this OCT signal is considered and the probability 
distribution for the measurement is given. The likelihood function, P

(

µ̂
∣

∣µoct

)

 , is derived in “Analyzing the DR 
reconstruction distribution” by analyzing the speckle variations and is verified experimentally in “Experimental 
verification and results” by measuring the distribution of depth resolved attenuation coefficient estimates for 
a very homogeneous phantom. In “Constructing a prior distribution”, the prior probability, P(µoct) , is derived 
using basic physical principles. This prior gives the background probability for finding a particular value of µoct 
at any point in the sample without any additional measurement information. Following this we define a Bayesian 
estimator for the attenuation coefficient in “Bayesian parameter estimator”. In “Simulation results” we simulate 
OCT signals with realistic variations to test our assumptions and statistical model.
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Methods
Modeling intensity decay.  In many practical OCT systems, the decay of the OCT intensity with depth can 
be adequately described using a single exponential decay model5,20,21 , understanding the form of the OCT sig-
nal is necessary prior to understanding the attenuation itself. The attenuation coefficient is a material property, 
which depends on the absorption and scattering properties of tissue and is not a function of the measurement 
system. However, several system dependent factors can also contribute to measured signal attenuation such as 
the confocal point spread function and the sensitivity roll off function for OCT systems based on detection in 
the Fourier domain4,22. A model which takes all of these effects into account was described in detail in earlier 
work20,22. Typically for an OCT system, the signal decay due to the confocal PSF and the sensitivity roll off func-
tion can be independently measured, and subsequently, the resulting OCT data can be corrected for these effects. 
For the sake of analysis, we will assume that the measured signal has already been calibrated for these system 
dependent effects. A more thorough discussion of this can be found in Supplemental Information S3.

We denote the corrected OCT signal at depth z as I(z;µb,NA(z),µoct(z)) where µb,NA(z) is the depth depend-
ent back-scattering coefficient (the probability per unit length that light is back-scattered into the detection 
numerical aperture). The depth dependent attenuation coefficient, µoct(z) , and the back-scattering coefficients 
depend on both the scattering coefficient µs and the absorption coefficient µa . These coefficients describe the 
probabilities of scattering and absorption per unit length, respectively. For weakly scattering samples, with 
negligible contributions from multiple scattered light, µoct = µs + µa.

Following Vermeer12, we further assume that the tissue is very weakly absorbing ( µa ≈ 0 ), and, a constant 
fraction of the attenuated light is back-scattered at every point in the tissue. We denote this fraction as βNA and 
define µb,NA = βNAµoct . Physically, this implies that the system is highly scattering dominant, i.e., there is very lit-
tle absorbed light in the system when compared to the total attenuated light. Lastly, we assume the measurements 
are made with a fixed axial resolution denoted by �z . Combining these assumptions the discretized quantity

is defined which describes the mean value of the OCT signal with depth in a certain region at depth z = N�z 
where N is the pixel index and given an incident intensity Iinc . We use the shorthand µoct(N) = µoct(N�z) . 
Provided that the inverse of the attenuation coefficient is relatively small compared with the pixel size, its value 
is given by12

As recently noted by Liu18, the tail of the series in the denominator in Eq. (3), meaning all of the terms in the 
sum after some large term K, can be computed when an estimate for an attenuation coefficient at that point in 
the sample is available. This is given by

A statistical model of the OCT amplitude and intensity.  The measured OCT signal is the amplitude 
of the backscattered field, which contains contributions from scatterers within the measurement volume, each 
contributing to the resulting field with their respective random amplitude and phase. This scattering results in 
OCT signal amplitude fluctuations called speckle. When there are sufficiently many scattering events within a 
single voxel, the speckle is called fully developed23 and the measured signal becomes effectively random. In this 
case, the statistics for the signal amplitude, A, are well described by the Rayleigh distribution8 given by

where 〈I〉 denotes the mean intensity value. This formula gives the probability of measuring amplitude A when 
the mean signal is given by 

√
�I� . When OCT measurements are made, typically intensity is measured and not 

amplitude. Given a Rayleigh distributed amplitude of the form given in Eq. (5) it can be shown that the intensity24, 
which is the square of the amplitude, follows

which is an exponential distribution with parameter 〈I〉.

Analyzing the DR reconstruction distribution.  This section considers the estimation of µoct(N) from 
intensity measurements in the presence of speckle modeled by Eq. (6). In this case, instead of measuring the 
mean intensity 〈IN 〉 directly we can only measure IN which is exponentially distributed with parameter 〈IN 〉 . 
Because the constituent parts of Eq. (3) are now random, the estimate will be itself a random variable. The esti-
mated random variable is denoted as

(2)IN = I(N�z;µoct(N)) = IincβNAµoct(N) exp

(

−2

N
∑
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µoct(i�z)�z

)

(3)µoct(N) = IN
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i=N+1 2�zIi
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Following Vermeer12 we consider the attenuation coefficient at the Nth point and truncate the series in the 
denominator at M which in practice corresponds to the maximum imaging depth Zmax with M > N giving

Consider the denominator, and let,

The variable DN is the sum of M − (N + 1) independent exponentially distributed random variables Ii , 
taken from distributions parameterized only with average 〈Ii〉 . Thus, DN will be distributed as a hypoexponential 
distribution and has mean

because the Ii ’s are independent. If M is sufficiently larger than N, Eq. (4) implies that

It is known that reconstruction artifacts12,18 make the inferred coefficient unreliable near the deepest point 
of an A-scan. In practice, the reconstructed attenuation coefficient made from this approach must be discarded 
near the bottom of a scan and estimated using a different method18.

One useful measure of how much a random variable deviates from the mean called the coefficient of varia-
tion, and is denoted Cv . This quantity is defined as the standard deviation divided by the mean. It can be shown 
that for a hypoexponential variable the coefficient of variation is always less than 1 as shown in the Supplemental 
Information S1. In practice, we find that Cv ≪ 1 as demonstrated in Fig. 4 and described in detail in “Results”.

Next, letting

allows formula (8) to be rewritten as

Because η has zero mean with a very small Cv one can expect ηN
〈DN 〉 to be small. Using this as justification, 

consider the Taylor approximation

At leading order, the reconstruction of the attenuation coefficient is given by

Intuitively, this means the denominator of Eq. (8) is approximately constant at the scale set by the mean. 
Therefore, the probability distribution of µ̂ will be given by rescaling the distribution of IN . Rescaling Eq. (6) 
yields

Next, using the approximation for the tail of D given in Eq. (11) with K = N  and substituting 〈IN 〉〈DN 〉 with 
µoct(N) yields the probability distribution

Therefore, the reconstructed coefficient at leading order will be exponentially distributed around the mean 
attenuation parameter. The accuracy of this estimate is demonstrated in Fig. 4.

This approach can be extended to the time-averaged case, where k independent co-registered meas-
urements have been made. To do this, first the k estimates for the attenuation coefficient, denoted by 

(7)µ̂(N) = IN
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i=N+1 2�zIi
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.
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µ̂i(N), i = 1, 2m, . . . , k , should be constructed using Eq. (8). Then, assuming the measurements are independ-
ent, the likelihood is given by

Constructing a prior distribution.  In this section, a prior distribution for the variation in attenuation 
coefficient in a layer is derived based on physical principles. As an initial theoretical step we consider a simplified 
media of dispersed scattering particles with negligible absorption. Following Chandrasekhar25 it is assumed that 
the system is a single layer, with Np dispersed particles throughout. Let

be the ratio of the volume of a single voxel to the volume of the entire scanned layer. Provided that 
[voxel]vol ≪ [scan]vol the probability of finding n particles inside the volume defined by a single voxel is given 
by the Poisson distribution

where the mean particle number �n� = Npγ . For very large particle counts, Np → ∞ , the Poisson distribution 
is well approximated as

Since absorption can be ignored, the attenuation coefficient can then be computed as µ ∼ σscat
n

[voxel]vol  and 
the mean coefficient as �µ� = σscat

�n�
[voxel]vol  , where σscat is the scattering cross section of a particle. Therefore, P(µ) 

is a rescaled version of the probability distribution in Eq. (21) given by

where ζ = σscat
[voxel]vol .

Deriving the posterior for the reconstructed attenuation coefficients.  The posterior distribution 
for the attenuation coefficient at depth N can be now derived by plugging in the Eqs. 18 and 22 into Eq. (1). Thus, 
our posterior distribution is proportional to

where k is the number of co-registered scans and 〈µoct〉 is the layer mean of the DR estimates. The specific pro-
portionality constant is given by integrating the numerator of Eq. (1) over all possible values of µoct . Consider-
ing the case where only a single independent scan can be made the posterior distribution for the attenuation 
coefficient at depth N is given by

This distribution describes the probability of the mean coefficient at voxel N. Assuming that each voxel is 
independent, a joint posterior distribution for the attenuation coefficient map for the entire A, B or C scan can 
be written as

where R is the total number of voxels in the scan, µµµoct is an R × 1 vector of true coefficients and µ̂̂µ̂µ is the R × 1 
vector of voxelwise estimates for the attenuation coefficient. Figure 1 shows two posterior distributions plotted 
using Eq. (24) which use two different values for the DR estimate. These examples demonstrate the impact that 
the initial DR estimate has on the shape and position of the posterior distribution for the attenuation coefficient.

Bayesian parameter estimator.  In Bayesian formulations of parameter estimation problems, when a 
single number prediction for the coefficient must be made, a Maximum a Posteriori (MaP) approach is often 
employed14,26. This approach gives the attenuation coefficient which maximizes the posterior distribution. How-
ever, as can be seen in Fig. 1 for sufficiently small DR estimates, the posterior distribution becomes bimodal and 
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the MaP estimate will nearly coincide with the low DR estimate for the attenuation coefficient. As demonstrated 
in Fig. 1b this peak is relatively narrow and contains little probability mass. Because of this, the maximum a 
posteriori is a bad representation of the entire probability distribution. The mean of the posterior distribution is 
agnostic to the bimodality of the distribution and provides a more stable and realistic estimate for the attenua-
tion parameter. Therefore, when a single value estimate is desired, the quantity

can be computed.

Results
Experimental verification and results.  To verify the likelihood model from Eq. (17), the DR attenu-
ation formula is applied to phantom data and a histogram is computed to compare against theory. The data 
was collected with a Santec IVS 2000 swept source OCT system with a central wavelength of 1309 nm, axial 
resolution of 12 micron in air and lateral resolution of 25.5 micron . The phantom was made by suspending silica 
beads manufactured by BaseClear with mean diameter of 0.47 micron and a refractive index of 1.425 in water 
at a volume fraction of 0.08. Water is assumed to have a phase refractive index of 1.32 and a group refractive 
index of 1.3428. Using Mie theory, the scattering cross section is given by 1.9× 10−9 mm2 and the total attenu-
ation coefficient is 3.2 mm−120. This value is realistic for tissue21,29. An OCT B-scan of the phantom is shown in 
Fig. 2a. Using these values and Eq. (22) we can see that the expected variance for the attenuation coefficient is 
�µoct� · ζ = 0.0020 mm−2 which is very small when compared with the variance of the exponential distribution 
which is �µoct�2 = 11.5 mm−2 . Since the speckle variance dominates the distribution of attenuation coefficients 
the reconstruction should look like Eq. (17). This is demonstrated in Fig. 2c.

Figure 3 demonstrates the effect of the posterior mean estimator defined in Eq. (26) when compared with 
lateral averaging. Fig. 3a,b show the OCT attenuation coefficient B and A-scans respectively generated from the 
same OCT B-scan used in Fig. 2. This phantom is very homogeneous so we expect that the variation is almost 
entirely generated from speckle, thus it is reasonable to assume if sufficiently many A-scans are averaged together 
then the resulting attenuation coefficient should look constant. Figure 3d shows the resulting OCT attenuation 
coefficient after laterally averaging 1000 A-scans together. Figure 3c shows the result of the mean estimator 
defined in Eq. (26) applied to the A-scan from panel (b). There is little remaining variation in the signal when 
compared with standard lateral averaging. 

Simulation results.  To validate and better understand the statistical model from “Methods”, a series of sim-
ulations were preformed. In Fig. 4a, a B-Scan was simulated using Eq. (2) with βNA = 0.3 , Iinc = 1× 107 w/m2 , 
lateral resolution of �x = 0.022 mm and �z = 0.0068 mm in a 3.4 mm deep domain with a fixed attenuation 

(26)µ̂mean(N) :=
∫

R+
µoctP

(

µoct(N)
∣

∣µ̂(N)
)

dµoct .

Figure 1.   This figure shows realizations of the posterior distribution for the attenuation coefficient given in 
Eq. (24) for different values of µ̂ . Both the simulations and figure creation were done in Matlab 2019a27, https​
://www.mathw​orks.com/. (a) This panel shows two unimodal reconstructed posterior distributions. With these 
distributions, the true parameter is much more likely than the DR estimate. This posterior was constructed 
with a layer mean of �µoct� = 0.4 mm−1 , ζ = 6.87× 10−2 mm−1 and a DR estimates of µ̂ = 0.08 mm−1 and 
µ̂ = 1.3 mm−1 . (b) This panel shows a constructed posterior distribution which is Bi-modal and has two local 
maxima. For a given layer mean, the constructed distribution develops a second peak if the DR estimate used 
to construct the posterior is sufficiently small. This second peak can make the Maximum a Posteriori difficult 
due to non-convexity. In many cases, the maximum value of the Posterior distribution may sit very near the 
origin on this second peak. As demonstrated in this panel, often the total amount of probability mass under 
the addition peak is relatively small, meaning that while the initial peak is overwhelmingly the maximum 
likelihood. Thus, the Maximum of the posterior distribution is a poor representation for the distribution itself. 
In these cases an estimate for the mean is a better choice. This posterior was constructed with a layer mean of 
�µoct� = 0.4 mm−1 , ζ = 6.87× 10−2 mm−1 , and a DR estimate of µ̂ = 0.015 mm−1.

https://www.mathworks.com/
https://www.mathworks.com/
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coefficient of µoct = 2.00 mm−1 . Once the deterministic signal is modeled we generate the OCT signal per voxel 
as a realization of an exponential random variable with parameter given by the true coefficient as in Eq. (6). 
This random realization can be seen in Fig. 4a. The attenuation coefficient was estimated using the DR method 
given in Eq. (8) and is shown in Fig. 4b. The reconstruction equation becomes inaccurate near the bottom of 
the measurement volume, preventing accurate estimation. To avoid these inaccuracies the deepest 30% of the 
reconstructed attenuation coefficients were truncated. The 30% value was arrived at by inspection. In Fig. 4c we 
fit an exponential model to the histogram of the reconstruction and see that the best fit parameter agrees with 

Figure 2.   This figure demonstrates the validity of the likelihood function given in Eq. (17) by considering 
the distribution of attenuation coefficients for a very homogeneous phantom. Both the analysis and figure 
creation were done in Matlab 2019a27, https​://www.mathw​orks.com/. (a) An OCT B-scan of a phantom made by 
suspending silica beads with mean diameter of 0.47 micron and a refractive index of 1.425 in water which has a 
phase refractive index of 1.3228. The red lines indicate a homogeneous region where the DR estimate is made. (b) 
The DR estimate for the attenuation coefficient of the B-Scan shown in (a). The overestimation artifact is clear 
towards the bottom part of the scan. (c) Histogram of estimated values for the top 100 rows of pixels of the DR 
estimate on the B-scan. Because the phantom is very homogeneous we expect the histogram to follow Eq. (17) 
for this region. The exponential fit is in good agreement with the theoretical predicted value of 3.2 mm−1.

Figure 3.   This figure demonstrates variability of the DR attenuation estimates in the presence of speckle and the 
Bayesian estimator for the attenuation coefficient given in Eq. (26). Both the analysis and figure creation were 
done in Matlab 2019a27, https​://www.mathw​orks.com/. (a) The DR estimate for the attenuation coefficient of the 
B-Scan is shown in Fig. 2. The red line is the portion of the scan considered in (b). (b) Plot of the DR estimate 
for the A-scan extracted from (a). This estimate shows how highly variable the DR attenuation coefficient 
appears to be in the presence of speckle. (c) Mean of the Posterior estimate for the extracted A-scan. This was 
computed using the �µoct� = 3.38 mm−1 which is the layer mean for the first 100 rows of pixels of the B-scan. 
The value of ζ was computed to be ζ = 6.0053× 10−2 mm −1 from a voxel volume of 3.2× 10−6 micron and 
a scattering cross section of σscat = 1.9× 10−9 mm2 . (d) Comparative DR estimate for the average of all 1000 
A-lines in the B-scan. The resulting fluctuations are still very large even after averaging 1000 A-scans.
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our model to the 2nd decimal point. In Supplemental Information S2 we show that the truncation error from Eq. 
(14) leads to an error in the variance of µ̂ on the same order as our fit error. 

To avoid artifacts the bottom 30% of the predicted attenuation coefficient is discarded. Figure 5c shows a 
posterior mean estimate for the attenuation coefficient which was computed with Eq. (26) voxelwise. In general, 
the mean attenuation coefficient for the layer, 〈µoct〉 , would not be known ahead of time to compute the prior 
distribution. To account for this, we used the mean of the truncated DR attenuation estimate for the whole scan 
in Eq. (26). The estimate given by the mean of the posterior distribution for the attenuation coefficient can give 
much more accurate estimates for the true coefficient than using the standard DR technique, as demonstrated 
in Fig. 5.

Discussion
In this paper the impact of speckle fluctuations on the depth resolved recovery of the OCT attenuation coefficient 
has been addressed. When making an OCT measurement, effectively random voxelwise intensity fluctuations 
are present in the signal due to speckle, and as a result, the voxelwise mean attenuation coefficient can not be 
exactly determined. Utilizing a statistical understanding of speckle fluctuations and prior physical knowledge, the 
posterior distribution for the attenuation coefficient was derived from first principles. This probability distribu-
tion better characterizes the voxelwise attenuation coefficient because it allows for the weighing of relative likeli-
hoods and the quantification of uncertainty by measuring the variance of the attenuation posterior distribution.

While the statistical framework derived in this paper is general, the applicability is limited by the assumptions 
made for the underlying depth resolved reconstruction technique. The DR reconstruction technique, given in Eq. 
(8), requires that the absorption of light be negligible when compared the total amount of attenuated light. This 
assumption is restrictive in the materials and wavelengths of light the DR technique can be applied to. However, 
for the materials and wavelengths used in most common biomedical applications of OCT this assumption is 
valid. Furthermore, when the probability distribution for the reconstructed coefficient in Eq. (17) was derived, 
it was assumed that the coefficient of variation of the denominator in Eq. (8) is sufficiently small such that the 
denominator can be treated as constant. This does seem to be valid in numerical simulations and experiments, 
however, it is not clear if this is generally true.

Figure 4.   This figure demonstrates the accuracy of the likelihood model and estimates the coefficient of 
variation of the signal to verify the assumptions made in (14) for simulated signals. Both the simulations and 
figure creation were done in Matlab 2019a27, https​://www.mathw​orks.com/. (a) This panel is a simulated B-Scan, 
which was simulated using parameters βNA = 0.3 , Iinc = 1× 107 , µoct = 2.00 mm−1 , lateral resolution of 
�x = 0.022 mm and �z = 0.0068 mm in a domain which is 3.4 mm deep. (b) This is the DR reconstructed 
coefficient map. The reconstruction is highly variable around the true attenuation value of 2.00 mm−1 . This 
panel also demonstrates the growth artifact in the bottom 30% of voxels where estimated values which are 
much higher than the true value. The estimates below the red line are truncated to avoid the exponential grown 
artifact. (c) This figure is a histogram of the top 70% of pixels from (b). As shown in Eq. (17) we expect this to 
be exponentially distributed with parameter 2.00. A best fit exponential demonstrates this is accurate to three 
significant figures. (d) Coefficient of Variation for the simulated OCT A-scans in panel a) at different depths. In 
these simulations, Cv stays near 0.12 at all admissible depths.
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Additional physical assumptions are made during the derivation of the prior distribution for the attenuation 
coefficient given in “Constructing a prior distribution”. The prior distribution allows for the use of physical knowl-
edge about the attenuation coefficient to introduce bounds and bias the probabilities towards realistic values. 
The derivation given in “Constructing a prior distribution” was made assuming the measured object contained 
uniform idealized scattering particles with no absorption. While this assumption may not hold for most tissue 
systems, a normally distributed prior is still a safe choice due to the fact that superpositions of random fluctua-
tions tend to look normally distributed. In real tissue, the parameter ζ in Eq. (24) is difficult to define, as the 
meaning of the effective scattering cross section is ambiguous. However, it is still reasonable to assume that the 
true attenuation coefficient is normally distributed around the mean. The variance of the prior must be provided 
or inferred by other methods. There are techniques to estimate this parameter from the data such as empirical 
Bayesian methods30, however, the implementation of these techniques can be nontrivial and a robust verification 
must be performed before the method could be used clinically. While this is outside of the scope of this paper, 
the Bayesian model presented here serves an an initial step towards the goal of estimating these parameters more 
robustly in tissue, and elucidates the impact of speckle on the recovered coefficients.

The use of physically accurate statistical models for the attenuation coefficient has several potential advan-
tages. The variance of the posterior distribution provides a way to quantify uncertainty in reconstructions. 
Furthermore, estimation bias from higher order moments of the posterior can be quantified as well. The likeli-
hood ratio statistic26 can be computed using the physically accurate likelihood function given in Eq. (17). This 
statistical test gives a practitioner a sense of how likely a parameter is to fall within a specified range. In situations 
where a practitioner may want to have a single number to understand the attenuation in a system, the mean of 
the posterior can be computed as demonstrated in Fig. 5. In Fig. 6 we measure the error in the estimates for both 
the DR and mean of posterior estimators as the scattering cross section and attenuation coefficient is varied.

Another potential application domain is in OCT image segmentation where attenuation analysis is used to 
correct for signal decay and as a contrast enhancement tool13,31. As we have discussed in this manuscript, the 
resulting attenuation image can be very highly variable due to the speckle fluctuations in the original signal. If 
the attenuation image is to be segmented, these fluctuations may lead to segmentation inaccuracies. Denoising 
algorithms could combine our exponential likelihood with a spatial priors, such as total variation14 which would 
increase the likelihood of the piecewise constant attenuation coefficients. This could be used to improve segmen-
tation accuracy by removing speckle fluctuations from the attenuation image. This approach may be applicable 
even in the case of absorbing media because image segmentation does not require extraction of accurate attenu-
ation values, only sufficient contrast between layers.

This work is an initial theoretical step towards fully quantifying and characterizing uncertainties in voxel-
wise OCT attenuation coefficient recovery in order to better understand the resulting estimates. The likelihood 
function from Eq. (17) accurately models the voxelwise measurement uncertainty of the attenuation coefficient 
due to speckle. This likelihood function gives insight into the voxelwise statistics of the DR attenuation images. 
The posterior distribution for the mean value of the attenuation coefficient, given in Eq. (24), allows parameter 
estimation to be performed in a consistent and reliable manner by using the posterior mean estimator given 
in Eq. (26). Furthermore, the posterior distribution derived in this paper can be used to quantify the variance 

Figure 5.   This figure shows estimates of the attenuation coefficient for simulated OCT data using the standard 
DR and the Bayesian estimator given in (26). The OCT data was simulated with parameters Iinc = 1× 107 , 
µoct = 2.00 βNA = 0.3 , σscat = 1× 10−6 mm2 , a lateral resolution of �x = 0.02 mm and �z = 0.0068 mm in a 
domain which is 13.6 mm deep. After the attenuation coefficient was inferred using the DR method the bottom 
30% of pixels are discarded to avoid reconstruction artifacts. Both the simulations and figure creation were done 
in Matlab 2019a27, https​://www.mathw​orks.com/. (a) This panel shows the ground truth attenuation coefficient 
for the simulation. This ground truth is a realization of the prior distribution given in Eq. (22). (b) This image 
shows the reconstructed attenuation coefficient using the DR method given in Eq. (8). (c) This panel shows an 
estimate attenuation coefficient given by the mean of the posterior distribution. This estimate was computed 
using Eq. (26).
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in estimates, which gives insight into uncertainty. While this is a promising approach, further research is still 
needed to find the best way to apply these techniques to clinical practice.
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