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Background and Objectives: Bladder cancer (BC) is a complex tumor associated with high recurrence and mortality. To discover
key molecular changes in BC, we analyzed next-generation sequencing data of BC and surrounding tissue samples from clinical
specimens. Methods. Gene expression profiling datasets of bladder cancer were analyzed online. The Database for Annotation,
Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.gov/) was used to perform Gene Ontology (GO) functional
and KEGG pathway enrichment analyses. Molecular Complex Detection (MCODE) in Cytoscape software (Cytoscape_v3.6.1)
was applied to identify hub genes. Protein expression and survival data were downloaded from OncoLnc (http://www.oncolnc.
org/). Gene expression data were obtained from the ONCOMINE website (https://www.oncomine.org/). Results. We identified
4211 differentially expressed genes (DEGs) by analysis of surrounding tissue vs. cancer tissue (SC analysis) and 410 DEGs by
analysis of cancer tissue vs. recurrent tissue cluster (CR analysis). GO function analysis revealed enrichment of DEGs in genes
related to the cytoplasm and nucleoplasm for both clusters, and KEGG pathway analysis showed enrichment of DEGs in the PI3K-
Akt signaling pathway. We defined the 20 genes with the highest degree of connectivity as the hub genes. Cox regression revealed
CCNBI, ESPL1, CENPM, BLM, and ASPM were related to overall survival. The expression levels of CCNB1, ESPL1, CENPM,
BLM, and ASPM were 4.795-, 5.028-, 8.691-, 2.083-, and 3.725-fold higher in BC than the levels in normal tissues, respectively.
Conclusions. The results suggested that the functions of CCNB1, ESPL1, CENPM, BLM, and ASPM may contribute to BC
development and the functions of CCNB1, ESPL1, CENPM, and BLM may also contribute to BC recurrence.

1. Introduction

Bladder cancer (BC) is a common urogenital cancer, with an
estimate of 80,470 new cases and 17,670 deaths in the United
States in 2019 [1]. Bladder cancer patients are often di-
agnosed by cystoscopy for diagnostic testing prompted by
haematuria. Approximately 80% of urinary bladder tumors
are superficial papillary lesions but also can be multifocal
and exhibit a tendency for recurrence: remaining tumors
may invade the bladder wall and lead to distant metastases
[2]. Treatment for BC includes transurethral resection of
bladder tumor (TURBT), chemotherapy, or vaccine-based
therapy directed to the bladder, cystectomy, radiotherapy,
and chemotherapy [3]. However, BC is a complex disease
associated with a high recurrence rate and high mortality,
and its biology remains poorly understood [4].

There are several important risk factors for BC, such as
cigarette smoking, occupational chemical exposure (es-
pecially to aromatic amines), water arsenic level, Schisto-
soma haematobium infection, and radiation therapy for
pelvic malignancies [5]. Previous studies identified aspects
of the molecular mechanism of BC development and re-
currence. BC has been genetically associated with muta-
tions of two genes, fibroblast growth factor receptor 3
(FGFR3, for low-grade, noninvasive papillary tumors), and
tumor protein P53 (TP53, for high-grade, muscle-invasive
tumors) [6]. Treatment with drugs targeting mutations in
genes such as FGFR3, VEGF, signal transducer and acti-
vator of transcription 3, and CD24 has all shown preclinical
activity [4]. Next-generation sequencing (NGS) has dras-
tically increased the understanding of cancer processes
including BC, and analyses of these data can provide
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insight into effective diagnostic and therapeutic BC
treatments [7, 8].

There are significant BC molecular profiling data [9-12].
Researchers have explored screening of urine to detect DNA
mutations as an alternative for urine cytology as a tool for
the noninvasive detection and surveillance of BC [13].
Additionally, the analysis of frequently mutated genes in BC
may suggest potential targets for personalized treatment and
predict treatment response [8]. However, to date, it has been
difficult to identify key genes related to BC from NGS data.
To discover key molecules active in BC, we analyzed BC data
from microarray experiments and NGS sequencing data of
clinical specimens. Our results suggested CCNB1, ESPLI,
CENPM, BLM, and ASPM may contribute to BC devel-
opment and recurrence.

2. Materials and Methods

2.1. Online Data. The gene expression profiling datasets of
bladder cancer were analyzed online (GEO; https://www.
ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE13507). 58 normal
tissues surrounding cancer, 165 primary bladder cancer, and
23 recurrent samples were measured in this array.

2.2. Identifying Differentially Expressed Genes. To analyze the
microarray data, we compared the gene expression between
58 normal tissues surrounding cancer and 165 primary
bladder cancer samples to identify genes involved with
tumorigenesis, and gene expression comparison between
165 primary bladder cancer and 23 recurrent samples was
also performed to screen genes that promote tumor re-
currence. Differentially expressed genes were screened by
adjusted p value or p value and fold change (FC). For
comparison between surrounding tissue and cancer tissue,
differentially expressed genes were restricted by adjusted p
value <0.05 and |FC| > 4, and we defined these genes cluster
SC (surrounding tissue vs. cancer tissue). For comparison
between cancer tissue and recurrent tissue, differentially
expressed genes were restricted by p value <0.05 and |FC|
>2, and we defined these genes cluster CR (cancer tissue vs.
recurrent tissue).

2.3. Merging Data. We proposed two methods to process the
clusters SC and CR: (1) tumorigenesis and recurrence were
promoted by the same genes or proteins, the overlap be-
tween SC and CR were the key genes, and overlap genes were
analyzed to perform Gene Ontology and KEGG pathway
analysis and retrieve interacting genes; (2) tumorigenesis
and recurrence were contributed by different genes, we
would find key genes from clusters SC and CR individually,
and SC and CR genes were individually analyzed to perform
Gene Ontology and KEGG pathway analysis and retrieve
interacting genes. For method 1, Venny 2.1.0 (http://
bioinfogp.cnb.csic.es/tools/venny/index.html) was used to
identify overlapping differentially expressed genes between
SC and CR. The upregulated and downregulated genes were
measured, respectively.
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2.4. Gene Ontology and KEGG Pathway Analysis. The Da-
tabase for Annotation, Visualization, and Integrated Dis-
covery (DAVID, https://david.ncifcrf.gov/) was used to
perform Gene Ontology (GO) functional and KEGG
pathway enrichment analyses. p <0.05 was considered as
statistically significant.

2.5. Retrieving Interacting Genes. Search Tool for the Re-
trieval of Interacting Genes (STRING) is an online tool
(https://string-db.org) designed to integrate information by
consolidating known and predicted protein-protein asso-
ciation data. Molecular Complex Detection (MCODE) in
Cytoscape software (Cytoscape_v3.6.1) was applied to screen
hub genes. All identified differentially expressed genes de-
scribed above were analyzed. The top 20 hub genes with
connection degree >10 were selected.

2.6. Survival Analysis. The protein expression and raw
survival data were downloaded from OncoLnc (http://www.
oncolnc.org/). Overall survival and disease-free survival
were analyzed by Gene Expression Profiling Interactive
Analysis (GEPIA, online website: http://gepia.cancer-pku.
cn/detail.php?gene).

2.7. Gene Expression Data. Gene expression data were ob-
tained from ONCOMINE website (https://www.oncomine.
org/). Cancer type was restricted by bladder cancer, and the
expressions of CCNB1, ESPL1, CENPM, BLM, ASPM, JUN,
and CDK6 were obtained.

2.8. Statistical Analysis. Clinical information was analyzed
by SPSS 18.0 (IBM Corporation, Armonk, NY). A Cox
regression model was conducted to perform univariate and
multivariate analyses. The gene expressions were analyzed by
GraphPad Prism 7.0. p<0.05 is considered to reveal a
statistically significant difference.

3. Results

Analysis was performed using data for 58 normal tissues
surrounding cancer, 165 primary bladder cancer samples,
and 23 recurrent cancer samples. We identified 4211 dif-
ferentially expressed genes (DEGs) by analysis of sur-
rounding tissue vs. cancer tissue (SC analysis) and 410 DEGs
by analysis of cancer tissue vs. recurrent tissue cluster (CR
analysis). There were 1657 and 258 upregulated DEGs in
cluster SC and cluster CR, respectively, and 2514 and 152
individually downregulated DEGs in cluster SC and cluster
CR. A comparison of these sets of genes revealed 148 overlap
genes, including 91 upregulated and 57 downregulated
DEGs (Figure 1). We next analyzed these genes by per-
forming two kinds of functional analysis.

3.1. Gene Ontology and KEGG Pathway Analysis. In the first
analysis, the 91 upregulated and 57 downregulated genes
that were differentially expressed in both the comparison of
cancer and surrounding tissues and the comparison of
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FIGure 1: 4211 differentially expressed genes (DEGs) were found
by comparing 58 normal tissues surrounding cancer and 165
primary bladder cancer samples, and 410 DEGs were found by
comparing 165 primary bladder cancer and 23 recurrent samples.
There were 1657 and 258 upregulated DEGs and 2514 and 152
individually downregulated DEGs for each group. 91 and 57
overlap genes were found in up- and downregulation genes.

cancer and recurrent cancer tissues were analyzed using the
Database for Annotation, Visualization, and Integrated
Discovery (DAVID; https://david.ncifcrf.gov/). Gene On-
tology (GO) functional and KEGG pathway enrichment
analyses were performed. GO function analysis revealed
enrichment of these DEGs in functions related to the cy-
toplasm and nucleoplasm. There is an enrichment of genes
involved with protein binding and protein kinase binding,
regulating cell division, DNA replication, and cyclin-de-
pendent protein serine/threonine kinase activity. KEGG
pathway analysis indicated that the identified DEGs are
mainly enriched in the PI3K-Akt signaling pathway,
microRNAs related to cancer, and the cell cycle. The 15 most
enriched classes based on GO function analysis and the eight
most enriched KEGG pathways are listed in Table 1.

In the second analysis, we focused on the DEGs iden-
tified by the comparison of cancer and surrounding tissues
or those identified by the comparison of cancer and re-
current cancer samples. Analysis of DEGs from the sur-
rounding tissue vs. cancer tissue comparison should reflect
key genes participating in tumorigenesis or bladder cancer
development. GO function analysis of these genes found
high enrichment of functions related to extracellular exo-
somes, extracellular space, and extracellular matrix. Protein
binding, heparin binding, and integrin binding are the main
functions of these genes, which participate in cell adhesion,
extracellular matrix organization, and aging. KEGG pathway

analysis indicated enrichment of these genes in HTLV-I
infection, Staphylococcus aureus infection, and focal adhe-
sion (Table 2). We next analyzed the DEGs identified by the
comparison of cancer and recurrent cancer samples, which
should include genes related to bladder cancer recurrence.
GO function analysis revealed enrichment of these genes in
functions related to the cytoplasm, cytosol, and nucleo-
plasm, and analysis of molecular function showed enrich-
ment in protein binding. The most relevant enriched
biological processes are angiogenesis and the G1/S transition
of the mitotic cell cycle, and KEGG pathway analysis in-
dicated enrichment of these genes in cancer pathways, the
PI3K-Akt signaling pathway, and cell cycle (Table 2).

3.2. Hub Gene Analysis. We used STRING for investigating
and integrating interaction between proteins. Data were
exported for further analysis by Cytoscape. We defined the
top 20 genes with the highest degree of connectivity as the
hub genes. For method 1, 20 hub genes are shown in
Figure 2(a). Also, hub genes in clusters SC and CR are shown
in Figures 2(b) and 2(c).

3.3. Clinical Analysis. Kaplan-Meier analysis was performed
for the identified hub genes using the DAVID website. We
defined the 20 genes with the highest degree of connectivity
as hub genes and determined hub genes for the SC com-
parison and for the CR comparison. For the 20 hub genes
identified in the SC analysis, JUN and CDK6 were associated
with the overall survival of bladder cancer patients
(Figures 3(j) and 3(0)). High JUN expression increased the
risk of death by 40% relative to low JUN expression
(p = 0.041), and high CDK6 expression increased the risk of
death by 50% compared to low CDK6 expression
(p = 0.013). Overall survival analysis of other hub genes did
not exhibit statistical significance for high and low ex-
pressions (Figures 3(a)-3(i), 3(k)-3(n), and 3(p)-3(t)).

We also determined 20 hub genes for the CR analysis.
None of these hub genes were associated with overall sur-
vival (Supplement Figure 1). We next analyzed the hub genes
and their association with disease-free survival (DFS) instead
of overall survival. In this analysis, we found an association
of CDK6 with DFS of bladder cancer patients (Supplement
Figure 2).

We then downloaded the raw data from OncoLnc for
further analysis. Cox regression revealed that CCNBI,
ESPL1, CENPM, BLM, and ASPM are related to overall
survival (Supplement Table 1). Of these, CCNB1, ESPLI,
CENPM, and BLM were identified as hub genes from cluster
CR, and ASPM was identified as a hub gene from cluster SC
(Supplement Table 1).

3.4. Gene Expression in BC. The expressions of CCNBI,
ESPL1, CENPM, BLM, ASPM, and two other genes (JUN
and CDKG6) associated with bladder cancer patient overall
survival are shown in Figure 4 and Supplement Figure 3. The
expression levels of CCNBI1, ESPL1, CENPM, BLM, and
ASPM were 4.795-, 5.028-, 8.691-, 2.083-, and 3.725-fold
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TaBLE 1: Gene ontology and KEGG pathway analysis of differentially expressed genes according to method 1.

Category Term Count % p value
GOTERM_CC_DIRECT GO:0005654~nucleoplasm 42 28.1879194630872 1.22E-05
GOTERM_MF_DIRECT GO:0005515~protein binding 92 61.744966442953 8.65E-05
GOTERM_BP_DIRECT GO:0051301~cell division 12 8.05369127516778 1.08E - 04
GOTERM_BP_DIRECT GO:0006260~DNA replication 8 5.36912751677852 2.35E-04
GOTERM_CC_DIRECT GO:0005737~cytoplasm 60  40.2684563758389 2.68E—-04
GOTERM_MF_DIRECT GO:0019901~protein kinase binding 11 7.38255033557047 7.94E - 04
GOTERM_BP_DIRECT CO:0000082~G1/S tcr;‘crllslt“’n of mitotic cell ¢ 0)684563758389 0.001302766851924

GO analysis  GOTERM_CC_DIRECT G0:0000922~spindle pole 6 4.02684563758389 0.001440410268581
GOTERM_MF_DIRECT ~ 00:0004693~cyclin-dependent protein 4 2.68456375838926 0.002393195271174

serine/threonine kinase activity

GOTERM_BP_DIRECT GO:0001706~endoderm formation 3 2.01342281879194 0.003901253353245
GOTERM_CC_DIRECT GO:0005813~centrosome 10 6.71140939597315 0.005184882974603
GOTERM_CC_DIRECT GO0:0005739~mitochondrion 20 13.4228187919463 0.005522684005422
GOTERM_BP_DIRECT GO:0051591~response to cAMP 4 2.68456375838926 0.005751402857203
GOTERM_BP_DIRECT GO:0098609~cell-cell adhesion 8 5.36912751677852 0.005854477268833
GOTERM_CC_DIRECT GO:0005829~cytosol 38 25.5033557046979 0.007692882731082
KEGG_PATHWAY hsa04110: cell cycle 7 4.6979865771812  0.00123536590764
KEGG_PATHWAY hsa05222: small cell lung cancer 5 3.35570469798657 0.009218413749072
KEGG_PATHWAY hsa04151: PI3K-Akt signaling pathway 9 6.04026845637583 0.018153887794995

KEGG KEGG_PATHWAY hsa05206: microRNAs in cancer 8 5.36912751677852 0.020570720541055
pathway KEGG_PATHWAY hsa04115: p53 signaling pathway 4 2.68456375838926 0.02717134771579
KEGG_PATHWAY hsa04920: adipocytokine signaling pathway 4 2.68456375838926 0.030418432882382
KEGG_PATHWAY hsa04152: AMPK signaling pathway 5 3.35570469798657 0.031444562545736
KEGG_PATHWAY hsa04068: FoxO signaling pathway 5  3.35570469798657 0.04111192229316

BP: biological process; CC: cellular component; GO: gene ontology; MF: molecular function.

higher in BC than in normal tissues (p=3.86E-13,
5.92E-20, 5.91E-26, 5.19E-14, and 2.56E-13). The ex-
pressions of JUN and CDK6 were not significantly different
between BC and normal tissues (p =0.639 and 0.466).

4. Discussion

In this analysis, we defined differentially expressed genes for
the SC comparison of surrounding tissue vs. cancer tissue
and for the CR comparison of cancer tissue vs. recurrent
tissue and considered the identified DEGs contributing to
BC development and contributing to BC recurrence, re-
spectively. Genes found in both SC and CR analyses affect
both BC development and recurrence, and key genes
identified in either SC analysis or CR analysis but not in both
analyses are genes that affect either BC development or
recurrence, respectively. GO function analysis discovered
DEGs are mainly enriched in cytoplasm and nucleoplasm for
both clusters, and KEGG pathway analysis indicated high
enrichment of DEGs in the PI3K-Akt signaling pathway. We
found that CCNB1, ESPL1, CENPM, BLM, and ASPM may
be associated with BC development, and CCNB1, ESPLI,
CENPM, and BLM may be associated with BC recurrence. It
was interesting that our analysis revealed four genes,
CCNBI, ESPL1, CENPM, and BLM, which are associated
with both BC development and recurrence. Although JUN
and CDK6 were not associated with BC development or
recurrence, they may be prognostic factors for overall sur-
vival (Figure 3(j), 3(0)). The p value was unadjusted for
tumor recurrence, and without a correction for multiple

tests, the results are meaningful but not conclusive for re-
current tumors.

Among the identified genes, we found CCNBI was 4.8-
fold more highly expressed in BC compared to the level in
normal tissues (p =3.86E—13). CCNBI is an important cell
cycle protein and is a key regulator of the G2/M checkpoint.
High levels of CCNB1 usually lead to cell immortalization,
resulting in aneuploidy, which contributes to chromosomal
instability and is related to the aggressive nature of certain
cancers [14]. The involvement of CCNB1 with BC was
demonstrated previously [15-19]. Three bioinformatics
analyses indicated that CCNB1 was a key gene in BC,
consistent with our findings [17-19]; however, other hub
genes reported previously such as KIF4A, TPX2, BUBIB,
CDK1, ISG15, KIF15, RAD54L, and TRIP13 were not
identified in our analysis. CCNBI has been positively cor-
related with cell proliferation, invasion, and migration [20].
Gene expression profiling in 102 patients with non-muscle-
invasive BC identified an association of CCNB1 with disease
recurrence [16], and other analyses showed a positive cor-
relation of CCNBI1 with pathological stage and metastasis
[20]. Cytological experiments may be required to confirm
the function of CCNBI in BC cells.

Our analysis discovered ESPL1 was expressed at a level
5.0-fold higher in BC than the level in normal tissues
(p=5.92E-20). ESPL1, also known as extra spindle poles-
like 1 protein or separin, plays a central role in chromosome
segregation by cleaving the cohesin complex at the onset of
anaphase, and altered ESPL1 activity is correlated with
aneuploidy and cancer [21]. Genomic analysis of transitional
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were discovered from CR.
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FIGURE 4: (a) CCNBI, (b) ESPLI, (c) CENPM, (d) BLM, and (e) ASPM were 4.795-, 5.028-, 8.691-, 2.083-, and 3.725-fold higher in BC than
in normal tissues (p =3.86E-13, 5.92E-20, 5.91E-26, 5.19E-14, and 2.56E—13, respectively).

cell carcinoma (TCC) by both whole-genome and whole-
exome sequencing of 99 individuals with TCC found fre-
quent alterations in ESPL1 [22]. ESPL1 expression was
negatively correlated with gastric adenocarcinoma patho-
logic stage progression, and the high expression of ESPL1
was significantly correlated with favorable outcomes [23]. In
contrast, ESPLI functions as an oncogene rather than as an
antioncogene in breast cancer [24]. Further work is required
to resolve the conflicting roles of ESPL1 in cancer and
determine its function in BC.

CENPM was also identified as a key gene associated with
BC. CENPM showed an 8.7-fold higher expression in BC
compared to the levels in normal tissues (p =5.91E-26). A
study comparing the effects of garlic extracts and cisplatin
for the treatment of BC identified 515 common anticancer
genes, including CENPM. BC patients with low expression
of CENPM showed significantly better progression-free
survival than those with high expression of CENPM [25].
CENPM encodes centromere protein M, which is a com-
ponent of the CENPA-NAC (nucleosome-associated)
complex. The complex plays a central role in the assembly of

kinetochore proteins, mitotic progression, and chromosome
segregation [26]. Thus, we speculated that CENPM may be
an important gene in BC development and recurrence.
BLM participates in DNA replication and repair and
plays an important role in the maintenance of genome
stability [27, 28]. Mutations altering BLM function are as-
sociated with highly elevated cancer susceptibility [29]. Its
roles in BC are unknown, and our research suggests BLM
function may be related to BC development and recurrence.
The expression of BLM was 2.1-fold higher in BC than the
level in normal tissues (p =5.19E-14), but further research
will be required to uncover the underlying mechanisms.
ASPM is the only gene that we found involved that was
associated with BC development but not recurrence (Sup-
plement Table 1). ASPM exhibited a 3.7-fold higher ex-
pression level in BC than the level in normal tissues
(p=2.56E-13). Abnormal spindle-like microcephaly-asso-
ciated protein is encoded by ASPM and is involved in mitotic
spindle regulation and the coordination of mitotic processes
[30]. Recently, another study reported significant over-
expression of ASPM in bladder cancer that was associated
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with invasive pathological characteristics [31]. These results
support our findings linking ASPM function to BC.

There are some limitations of this analysis that are worth
noting. First, this research was based on data from a single
gene array, so the inclusion of other expression data would
strengthen the conclusions. Second, altered expression levels
of these genes in BC have not been verified by biological
methods, so additional experiments to knock down or
overexpress these genes should be conducted. Finally, a
major drawback of this study is insufficient evidence to
suggest changes at the protein level, since the analysis was
based only on mRNA expression data and protein in-
teractions were predicted by STRING.

In conclusion, our study suggested CCNBI, ESPLI,
CENPM, BLM, and ASPM may be associated with BC
development, and CCNB1, ESPL1, CENPM, and BLM may
be associated with BC recurrence. The functions of most of
these candidate genes have not been the focus of previous
studies of BC, and their functions in this cancer should be
verified by in vivo and in vitro experiments.
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Supplement figure 1: overall survival analysis for 20 hub
genes from cluster SC (surrounding tissue vs. cancer tissue)
(A: CDK1; B. CCNBI; C: CDC20; D: CCNA2; E: AURKB; F:
EZH2; G: KIF2C; H: AURKA; I. TOP2A; J: BUB1B; K:
BUBI; L: CCNB2; M: CDCAS8; N: KIF20A; O: TPX2; P:
CDC45; Q: FOXM1; R: KIF4A; S: ASPM; T: NDC80). None
of the hub genes showed statistical significance in comparing
overall survival for high and low expression. Supplement
figure 2: disease-free survival analysis for 20 hub genes from
cluster CR (cancer tissue vs. recurrent tissue) (A: CCNB1; B:
JUN; C: CCNB2; D: ESPL1; E: RHOA; F: CDC45; G: MKI167;
H: CDK4; I: AR; J: CDT1; K: FANCI; L: PRC1; M: MCM10;
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N: CDC25A; O: ASF1B; P: CDK6; Q: BLM; R: CENPM,; S:
CDKNI1A; T: CCR?). Only (P) CDK6 (HR = 1.4, p = 0.015)
showed statistical significance that higher expression pa-
tients indicated poor disease-free survival. Supplement
figure 3: the expressions of (A) JUN and (B) CDK6 were not
significantly different between BC and normal tissues
(p=0.639 and 0.466). Supplement Table 1: Cox regression
for hub genes in bladder cancer and clinical info. (Supple-
mentary Materials)
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