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The first draft human mitochondrial DNA (mtDNA)
sequence was published in 1981, paving the way
for two decades of discovery linking mtDNA varia-
tion with human disease. Severe pathogenic muta-
tions cause sporadic and inherited rare disorders
that often involve the nervous system. However,
some mutations cause mild organ-specific pheno-
types that have a reduced clinical penetrance, and
polymorphic variation of mtDNA is associated with
an altered risk of developing several late-onset
common human diseases including Parkinson’s
disease. mtDNA mutations also accumulate during
human life and are enriched in affected organs in a
number of age-related diseases. Thus, mtDNA
contributes to a wide range of human pathologies.
For many decades, it has generally been accepted
that mtDNA is inherited exclusively down the
maternal line in humans. Although recent evidence
has challenged this dogma, whole-genome

sequencing has identified nuclear-encoded mito-
chondrial sequences (NUMTs) that can give the
false impression of paternally inherited mtDNA.
This provides a more likely explanation for recent
reports of ‘bi-parental inheritance’, where the
paternal alleles are actually transmitted through
the nuclear genome. The presence of both mutated
and wild-type variant alleles within the same
individual (heteroplasmy) and rapid shifts in allele
frequency can lead to offspring with variable
severity of disease. In addition, there is emerging
evidence that selection can act for and against
specific mtDNA variants within the developing
germ line, and possibly within developing tissues.
Thus, understanding how mtDNA is inherited has
far-reaching implications across medicine. There is
emerging evidence that this highly dynamic system
is amenable to therapeutic manipulation, raising
the possibility that we can harness new under-
standing to prevent and treat rare and common
human diseases where mtDNA mutations play a
key role.

Keywords: human mitochondrial DNA, mitochondrial
bottleneck, mitochondrial disorders, mitochondrial
DNA mutation, mitochondrial inheritance.

Introduction: mitochondrial hiogenesis — a tale of two genomes

Mitochondria are essential intra-cellular organelles
that are the primary source of energy in the form of
adenosine triphosphate (ATP). Over 1000 different
proteins are required to synthesize mitochondria
and originate from two distinct genomes: nuclear
DNA and mitochondrial DNA (mtDNA) [1]. The
nuclear genes are translated and transcribed in
the cytosol, and proteins imported into the mito-
chondria combine with 13 essential peptides made
within the mitochondrial matrix from mtDNA itself.
There are multiple copies of mtDNA present within

each mitochondrion. In addition to the polypeptide
genes, 22 tRNA and 2 ribosomal RNA genes are
also encoded, and are essential for intramitochon-
drial protein synthesis. Thus, the concerted action
of these two genomes plays a fundamental role in
cellular bioenergetics. If disrupted, this can cause
cell dysfunction and human disease [1-3].

mtDNA and human disease

mtDNA mutations were first associated with
disease in 1988 [4,5]. Patients with chronic
progressive external ophthalmoplegia and the
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Kearns-Sayre syndrome have large-scale dele-
tions of mtDNA [5-7] (Table 1). The deletions
were heteroplasmic, with individuals harbouring
a mixture of mutated and wild-type mtDNA. At
around the same time, the m.3243A>G tRNAMY
(UUR) gene mutation was described in Japanese
families with mitochondrial encephalomyopathy
with lactic acidosis and stroke-like episodes
(MELAS) [8], and the m.8344A>G tRNA"Y® muta-
tion was described in families with myoclonic
epilepsy with ragged-red fibres (MERRF) [9,10]
(Table 1). Both mutations were also heteroplas-
mic, with family members harbouring a mixture
of mutated and wild-type mtDNA with varying

proportions in different individuals. Heteroplas-
mic pathogenic mtDNA mutations characteristi-
cally display a threshold effect [11], where single
cells must harbour a high proportion of mutated
molecules before they affect oxidative phosphory-
lation in the production of ATP. From this earlier
stage, it became clear that individuals inheriting
a high proportion of mtDNA heteroplasmy were
more likely to have a severe disease than indi-
viduals with low levels of mtDNA heteroplasmy
(Fig. 1). Most heteroplasmic mtDNA mutations
are inherited, but mtDNA deletions are rarely
transmitted [12] for reasons that are not under-
stood (Table 2).

Table 1

Clinical syndromes caused by mitochondrial DNA mutations

Clinical syndrome

Clinical features

Age of onset

Genetic basis

Chronic progressive
external
ophthalmoplegia
(CPEO)

Kearns—Sayre
syndrome (KSS)

Leber hereditary optic
neuropathy (LHON)

Mitochondrial
encephalopathy,
lactic acidosis,
stroke-like episodes
(MELAS)

Myoclonus, epilepsy,
and ragged-red fibres
(MERRF)

Neurogenic weakness
with ataxia and
retinitis pigmentosa
(NARP)

Ptosis, ophthalmoparesis. Proximal
myopathy often present. Various
other clinical features variably
present

PEO, ptosis, pigmentary
retinopathy, cardiac conduction
abnormality, ataxia, CSF elevated
protein, diabetes mellitus,
sensorineural hearing loss,
myopathy

Subacute painless bilateral visual
failure

Males:females approx. 4:1

Dystonia

Cardiac pre-excitation syndromes

Stroke-like episodes with
encephalopathy, migraine,
seizures. Variable presence of
myopathy, cardiomyopathy,
deafness, endocrinopathy, ataxia.
A minority of patients have PEO.

Stimulus-sensitive myoclonus,
generalized seizures, ataxia,
cardiomyopathy. A minority of
patients have PEO.

Ataxia, pigmentary retinopathy,

weakness

Any age of onset.
Typically more
severe phenotype
with younger onset

<20 years

Median age of onset

24 years

Typically <40 years
of age but
childhood more

common

Teenage or early
adult life

Childhood or early
adult life

mtDNA single deletions

mtDNA point mutations
(including m.3243A>G,
m.8344A>Q)

mtDNA single deletions

mtDNA point mutations
(m.11778G>A, m.14484T>C,
m.3460A>G and other rare point
mutations in ~5%)

mtDNA point mutations
(m.3243A>G in 80%,
m.3256C>T, m.3271T>C,
m.4332G>A, m.13513G>A,
m.13514A>G)

mtDNA point mutations
(m.8344A>G most common;
m.8356T>C, m.12147G>A)

MTATP6 mutation (usually at
m.8993)
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Fig. 1 mtDNA genetic bottleneck and changes of heteroplasmy level throughout the lifetime. Each oocyte can inherit a
different proportion of mutated mtDNA molecules from maternal mitochondria. When cells divide (shown in pink),
heteroplasmy levels in each daughter cell can either increase, decrease or stay approximately the same. Once inherited,
mtDNA mutations can continuously ‘clonally expand’ throughout life, even in nondiving cells (shown in green, blue and
yellow). If one genotype is copied more frequently than another, it will change the overall proportion of different genotypes
within the cell over time. The direction of this change can be influenced by selection for or against a particular mtDNA variant
(shown in blue and yellow). When a mutated mtDNA molecule has a replicative advantage, the level will increase during life
and possibly exceed the biochemical threshold, and thus contribute to the age-related pathologies or the ageing process

(shown in the blue box).

In parallel, maternally transmitted mtDNA muta-
tions were also described in Leber hereditary optic
neuropathy (LHON), with the three most common
affecting respiratory chain complex I (m.11778A>G
in MTND4, m.14484T>C in MTND6, and
m.3460A>G in MTNDI) [4,13,14] (Table 1). Most
families with LHON only transmit mutated mtDNA
(homoplasmy), but the disorder has a markedly
reduced penetrance which predominantly affects
males. Thus, many people harbouring what is
ostensibly a pathogenic mutation do not develop
any illness, implicating additional environmental
or genetic factors in the aetiology of LHON and
related disorders. Other organ-specific diseases

caused by homoplasmic mtDNA mutations also
have variable clinical penetrance (e.g. m.4300A>G.
and maternally inherited cardiomyopathy [15]).
Additional genetic, physiological and environmen-
tal factors are thought to explain the reduced and
variable penetrance in these disorders [16]. Many
LHON in families belongs to a specific mtDNA
population haplogroup (European haplogroup J)
[17], raising the possibility that the mtDNA genetic
background modulates the clinical expression of
the disorder [18] (Fig. 2).

Based on these findings, several investigators
looked to see whether homoplasmic polymorphisms
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Table 2 Genetic counselling for mitochondrial DNA disorders

mtDNA Homoplasmy or Inheritance
mutation  heteroplasmy pattern Recurrence risks
Large Heteroplasmic Sporadic <1/24
deletions Transmission may be through an intermediate duplicated mtDNA
molecule
Point Homoplasmic Maternal Variable reduced penetrance. Evidence that environmental exposures
mutation modulate penetrance. Male predominance in Leber hereditary optic
neuropathy (LHON)
Point Heteroplasmic Maternal Variable penetrance correlates with the heteroplasmy level
mutation
Point Heteroplasmic Sporadic Tissue-specific mutations typically affect skeletal muscle only, with low/
mutation no recurrence

of mtDNA found in many healthy individuals could
alter the risk of developing common complex human
disorders. Although many of the early studies were
under-powered and led to inconsistent findings [19],
several recent investigations have confirmed that
common polymorphic variations of mitochondrial
DNA, often clustered into ‘haplogroups’, alter our
risk of developing disorders including Parkinson’s
disease [20], type II diabetes [21], Alzheimer’s
disease [22] and other late-onset disorders [23].

Thus, mtDNA mutations and polymorphisms can
contribute to a wide range of human pathologies.
However, they do not always do this in isolation. In
LHON, individuals carrying mtDNA mutations
known to cause LHON are at increased risk of
developing the disorder if they are exposed to
cigarette smoking or heavy alcohol consumption
[24]. Likewise, individuals carrying the m.1555A>G
variant are at increased risk of developing sen-
sorineural deafness if exposed to aminoglycoside
antibiotics [25,26]. In keeping with these findings,
common mtDNA haplogroups also influence the
risk of surviving severe infection and sepsis [27].
Thus, there is emerging evidence of a complex
interaction between mtDNA mutations and vari-
ants of differing severity, with the environment to
cause both rare and common human diseases in
different contexts.

In parallel to these discoveries, several laboratories
have identified apparently acquired mtDNA muta-
tions in tissues and organs affected by several late-
onset disorders including type II diabetes, idio-
pathic cardiomyopathy and neurodegenerative

diseases such as Alzheimer’s disease [28,29]. A
combination of both mtDNA point mutations and
large-scale mtDNA deletions can accumulate with
a different mutation in each cell. These mutations
‘clonally expand’ throughout life, reaching higher
levels and affecting cellular bioenergetics, and thus
potentially contributing to the underlying pathol-
ogy. Although observations made in human tissues
only showed an association between the mtDNA
mutations and disease, the subsequent genera-
tions of animal models established a causal link
[30,31], where clonally expanded mtDNA muta-
tions in single cells contribute to age-related
pathologies and may even contribute to the ageing
process itself (Fig. 1).

Until recently, mtDNA heteroplasmy was assumed
to be very rare, and as a consequence, the acqui-
sition of clonally expanded mtDNA mutations dur-
ing human life was assumed to have been driven by
a somatic mutation process. However, the recent
development of deep re-sequencing techniques has
shown that mtDNA heteroplasmy is extremely
common [32,33], raising the possibility that some
of the clonally expanded mutations observed in
older individuals were actually inherited as low-
level heteroplasmies and present at birth, albeit at
very low levels [34]. Thus, both heteroplasmic and
homoplasmic mtDNA mutations can be inherited
and contribute to both severe highly penetrant
primarily genetic rare diseases and common mul-
tifactorial disorders in combination with other
mechanisms. Understanding how these mutations
are inherited has therefore far-reaching implica-
tions for medicine.
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Principles of mtDNA inheritance in humans
Is there exclusive maternal inheritance?

Cytoplasmic genomes, which include mtDNA, are
all almost always exclusively inherited from one
parent. In some species, it is the male, but in most
species, it is the female. There are unusual exam-
ples in nature where mtDNA can be inherited bi-
parentally, and intriguingly, this can change in
response to environmental constraint. Paternal
transmission has been documented in sheep Ovis
aries [35] and the Great tit Parus major [36], but
the leakage’ of paternal mtDNA during transmis-
sion is seen in highly unusual situations, such as
inter-species breeding in mice [37], and in vitro
embryo manipulation in cattle (Bos taurus) [38]. In
humans, there have been similar exceptions. The
first description was in a patient with a mitochon-
drial disease caused by a two base pair deletion of
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mtDNA that was not detectable in either parent,
but occurred on a paternal haplotype [39]. Subse-
quent larger studies in other patients with mtDNA
deletions failed to reproduce these findings [40,41].
However, the recent description of three families
has rekindled the discussion. Luo et al. observed
three multi-generational pedigrees where a pater-
nal haplotype was transmitted down several gen-
erations [42]. Intriguingly, the paternal haplotype
showed a high allele frequency (up to 40% of the
alleles detected), with the allele frequency remain-
ing stable down several generations. The authors
presented these cases as examples of bi-parental
inheritance of mtDNA, but there has been consid-
erable debate on this issue in the literature. Several
alternative explanations have been proposed
[43,44], including the transmission of nuclear-
encoded mitochondrial sequences (NUMTs) [45]
down the paternal line, creating the impression of
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false impression of paternal inheritance of mtDNA.

heteroplasmy, when in actual fact the mixed hap-
lotype is a combination of nuclear and mtDNA
alleles (Fig. 3).

We recently looked for similar evidence of bi-
parental transmission of mtDNA in 11 035 trios
[46]. We identified the signature in seven trios and
showed that in these cases, the explanation was
likely a paternally transmitted NUMT. The high
allele frequency could be explained by the NUMT
being complex, with multiple concatenated frag-
ments of mtDNA (Fig. 3). Several authors [45] have
argued this provides a more parsimonious expla-
nation for the original findings of Luo et al. One
could speculate that in some families, there is an
inherited predisposition to paternal mtDNA trans-
mission, perhaps through the genetic disruption of
the normal mechanisms that have evolved to
prevent bi-parental transmission (e.g. by prevent-
ing the ubiquitin-tagging of sperm mitochondria
shortly after fertilization, and thus stopping the
destruction of sperm mitochondria and mtDNA
by autophagy/mitophagy). However, on theoretical

grounds, some have argued it is a highly unlikely
explanation [47].

Based on current evidence, it seems highly unlikely
that paternal transmission occurs, and if it does, it
must be exceptionally rare [48]. Thus, any paternal
leakage is unlikely to compromise the widespread
use of mtDNA in anthropological and population
genetic studies.

Heteroplasmy and the genetic bottleneck

Initial observations in Holstein cows showed that a
new mtDNA variant could be heteroplasmic in one
cow, but rapidly become fixed down the maternal
line within a few generations [49,50]. This led to the
genetic bottleneck hypothesis, which predicted
that only a small proportion of the mtDNA in a
mother was used to repopulate the offspring of the
next generation (Fig. 1). Mathematical analysis of
heteroplasmy shifts observed across several verte-
brate and invertebrate species supported the
existence of an mtDNA genetic bottleneck, and
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experimental work in mice has cast light on the
timing and underlying cellular mechanisms (com-
prehensively reviewed in Ref. [51]).

Jack Jenuth and Eric Shoubridge’s observations in
the mid-1990s showed that the variance in hetero-
plasmy levels seen amongst siblings was deter-
mined during the development of the mother’s
oocytes [52]. This implied that the genetic bottle-
neck was occurring before the formation of oogo-
nia, at least in large part. Analysing the mtDNA
content of single cells, two laboratories subse-
quently showed a dramatic reduction in the mtDNA
content in primordial germ cells just after their
induction at day ~7.5 postconception in developing
female mouse embryos [53,54]. Modelling studies
showed that this reduction in mtDNA content
could, on its own, make a substantial contribution
to the variants seen in oogonia, perhaps account-
ing for up to ~70% of the variants in heteroplasmy
levels seen in offspring [53]. These findings confirm
the presence of an mtDNA genetic bottleneck, but
do not exclude the possibility that other mecha-
nisms play a part, such as the compartmentaliza-
tion of mtDNA molecules into individual nucleoids
or mitochondria [55,56], or additional mechanisms
occurring after the formation of oogonia, perhaps
involving the focal replication of mtDNA molecules
[54].

A similar reduction in mtDNA content has been
seen in several other vertebrate species including
the sheep, zebrafish and salmon [57-59]. Recently,
it had been possible to isolate early primordial
germ cells, from developing human embryos, and
to generate primordial germ cell-like cells from
human embryonic stem cells in vitro. These find-
ings confirm that a similar genetic bottleneck
comes into play in the developing human germ
line [60], contributing to the segregation of mtDNA
variants in human pedigrees.

Are all bottlenecks the same?

Empirical observations in human pedigrees trans-
mitting heteroplasmic mtDNA mutations imply
that there are genetic bottlenecks of different sizes,
with some mutations showing faster segregation
than others. This would explain why some muta-
tions (e.g. m.8993T>G in MT-ATP6) usually present
in sporadic cases, having segregated from very low
to high levels over one generation [61]. On the other
hand, some mutations (e.g. m.8344A>G in MT-TK)
show much more stable heteroplasmy levels with

multiple generations being affected over time [10].
A systematic evaluation of 577 mother—child pairs
identified through the clinic from pedigrees trans-
mitting pathogenic mtDNA mutations appears to
support this conclusion [62], but these studies are
very difficult to carry out because the pedigrees
were identified through an affected individual. This
introduces an ascertainment bias, where the pro-
band in the most recent generation inevitably has a
higher mutation load than individuals in previous
generations where unaffected individuals did not
reach medical attention. Although there are plau-
sible ways that different mtDNA mutations could
cause different genetic bottlenecks (e.g. by modu-
lating the mtDNA copy number, as noted in the
blood of individuals harbouring LHON mtDNA
mutations [63]), decisive evidence is lacking at
present. It will be very interesting to see whether
these findings can be reproduced in animal models
transmitting mtDNA mutations affecting different
genes.

Selection for and against mtDNA variants

Studies of heteroplasmy transmission in human
pedigrees imply that there may be selective forces
acting during the transmission of mtDNA hetero-
plasmy. For example, a large population study in
Finland raised the possibility that m.3243A>G
levels progressively increase with subsequent gen-
erations [64]. For the reasons explained above, it is
very difficult to exclude the possibility that ascer-
tainment bias explains the findings. Excluding the
probands helps to mitigate against this problem,
but does not completely remove the ascertainment
bias. On the other hand, studying the transmission
of mtDNA heteroplasmy in a number of mouse
models supports the idea that there may be selec-
tion during transmission, particularly against high
levels of mtDNA heteroplasmy. In extensive mouse
pedigrees, Jim Stewart and colleagues showed
clear evidence of selection against homoplasmic
protein-coding mtDNA variants [65]. There is also
evidence of selection against heteroplasmic mtDNA
protein-coding [66,67] and tRNA gene mutations
[68,69] in mice.

Recent evidence supports the idea of selection both
for and against variants in different genes in
human pedigrees. Analysing 1526 mother—child
pairs in the NIHR BioResource and UK 100 000
genomes project, Wei et al. studied the transmis-
sion of mtDNA heteroplasmy at levels well below
the threshold typically thought to cause mtDNA
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disease [70]. Analysis of these data was consistent
with selection acting against the transmission of
variants in the mtDNA ribosomal RNA genes, but
there was also evidence of preferential transmis-
sion of mtDNA heteroplasmy in certain regions of
the noncoding mtDNA D-loop involved in the
transcription and replication of mtDNA. Analysing
heteroplasmy levels also suggested the signature of
heteroplasmy acting against nonsynonymous
mtDNA variants compared to synonymous mtDNA
variants within the protein-coding genes. Intrigu-
ingly, when mtDNA heteroplasmy was detected and
transmitted, the variants were more likely to have
been seen in population data gathered from across
the globe. This implies that the selective forces
acting during maternal transmission of mtDNA
shape the genetic landscape of mtDNA in the
human population [70]. Studying individuals
where the nuclear genome and the mtDNA have a
different genetic ancestry (presumably because of
an admixture event in the past), there is even the
suggestion that the nuclear genome may be mod-
ulating this process, potentially under environ-
mental constraint. These population-based
findings are supported by deep-sequencing data
from human embryos, where there is a signature of
selection seen as germ cells proliferate and migrate
from the hindgut region to the developing gonad
between weeks 4 and 7 postconception [60]. This
coincides with a metabolic switch from dependence
on glycolysis to oxidative phosphorylation, provid-
ing one potential way that negative selection might
occur against variants that compromise ATP pro-
duction. Alternatively, variants that promote
mtDNA in their replication could be preferentially
propagated during this time of intense DNA repli-
cation. Other mechanisms may be involved,
including selective autophagy targeting organelles
containing high levels of deleterious mtDNA vari-
ants, as shown recently in drosophila [71].

In conclusion, the dynamics of mtDNA hetero-
plasmy during germ cell specification appear to be
shaped by selection, perhaps ensuring that the
respiratory chain proteins encoded by the nuclear
DNA and mtDNA remain compatible over the
generations.

Implications for Clinical Practice

Are these recent findings relevant for clinical prac-
tice (Table 2)? Based on current evidence, the
paternal transmission of mtDNA appears to be
exceptionally rare, if it occurs a tall. Thus, from a

genetic counselling perspective, maternal trans-
mission remains the established rule [72]. For
women harbouring pathogenic mtDNA mutations,
homoplasmic mutations are transmitted to all of
their offspring, and there are empiric recurrence
risks for males and females based on extensive
pedigree analyses for the more common mutations
causing LHON. For other homoplasmic mutations,
the recurrence risks are unclear at present,
although accumulating data over the common
years will likely address this issue. For women
harbouring heteroplasmic mtDNA mutations, the
recurrence risks for mtDNA deletions is low (~1 in
24) [12], but much higher for mtDNA point muta-
tions. The presence of a genetic bottleneck creates
considerable uncertainty, making it difficult to
predict the outcome of pregnancy. There is growing
experience using pre-implantation and prenatal
diagnostic techniques, but several laboratories
have developed new approaches to prevent the
transmission of mtDNA diseases by exchanging the
nuclear genetic material, either through pro-nu-
clear or chromosome spindle transfer [73,74].
These approaches have been used to prevent
mtDNA disease in a Mexican child [75]. However,
there are theoretical concerns about the long-term
consequences, largely based on observations in in-
bred animal strains [76]. In addition, several
groups have seen the unexplained reversion of
mtDNA heteroplasmy in human embryonic stem
cells generated following mitochondrial transfer
[73,74]. The reasons for this are not clear, and it
certainly appears to occur more than one would
expect simply by chance, raising the possibility
that the original mutation is favoured by the
nuclear genetic background. Further work is
clearly required to clarify whether this is the case.
In the longer term, observations in mice and
drosophila raise the possibility that a more subtle
nuclear-mitochondrial DNA mismatch might lead
to late-onset cardiometabolic traits [77] which in
humans could take decades to emerge. Under-
standing the transmission of mtDNA hetero-
plasmy, the importance of the nuclear genetic
background and the mechanisms of selection for
or against specific variants will help inform our
understanding of this process. It is also plausible
that, by defining the mechanisms which favour
transmission of one variant or another, it will be
possible to influence heteroplasmy transmission
using small molecules or other medical means,
without recourse to mitochondrial transfer and the
associated theoretical concerns. If this becomes a
reality, then at some point in the future, it is
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conceivable that a similar approach would be used
to prevent the inheritance of low-level heteroplas-
mies in an attempt to reduce our lifetime risk of
developing age-related diseases, and possibly slow
down the ageing process itself.

Conclusion

For many years, the inheritance of mtDNA was
thought to be simple and straightforward in
humans. However, the recent discovery of near-
universal heteroplasmy, complexity introduced by
the mtDNA bottleneck and evidence of selection for
and against variants in particular regions of the
mtDNA shows that the situation is far more com-
plex than we previously thought. Given the emerg-
ing evidence implicating mtDNA mutations in the
pathogenesis of common late-onset diseases, and
their possible contribution to the ageing process, a
deeper understanding of these processes is key if
we are to harness this knowledge and prevent and
treat human disorders caused by mutations of
mitochondrial DNA by manipulating their inheri-
tance.
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