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Abstract

Multilayer network models have been proposed as an effective means of capturing the dynamic 

configuration of distributed neural circuits and quantitatively describing how communities vary 

over time. Beyond general insights into brain function, a growing number of studies have begun to 

employ these methods for the study of individua differences. However, test–retest reliabilities for 

multilayer network measures have yet to be fully quantified or optimized, potentially limiting their 

utility for individual difference studies. Here, we systematically evaluated the impact of multilayer 

community detection algorithms, selection of network parameters, scan duration, and task 

condition on test–retest reliabilities of multilayer network measures (i.e., flexibility, integration, 

and recruitment). A key finding was that the default method used for community detection by the 

popular generalized Louvain algorithm can generate erroneous results. Although available, an 

updated algorithm addressing this issue is yet to be broadly adopted in the neuroimaging literature. 

Beyond the algorithm, the present work identified parameter selection as a key determinant of 

test–retest reliability; however, optimization of these parameters and expected reliabilities 

appeared to be dataset-specific. Once parameters were optimized, consistent with findings from 

the static functional connectivity literature, scan duration was a much stronger determinant of 
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reliability than scan condition. When the parameters were optimized and scan duration was 

sufficient, both passive (i.e., resting state, Inscapes, and movie) and active (i.e., flanker) tasks were 

reliable, although reliability in the movie watching condition was significantly higher than in the 

other three tasks. The minimal data requirement for achieving reliable measures for the movie 

watching condition was 20 min, and 30 min for the other three tasks. Our results caution the field 

against the use of default parameters without optimization based on the specific datasets to be 

employed – a process likely to be limited for most due to the lack of test–retest samples to enable 

parameter optimization.
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1. Introduction

Following early seminal contributions (Watts and Strogatz, 1998; Barabasi and Albert, 

1999), network science has played a pivotal role in revealing the structure and interactions of 

complex systems, such as social and transportation networks. More recently, this 

methodological approach has been applied to neuroscience, helping to further characterize 

the architecture of the human brain and launch the field of network neuroscience (Bullmore 

and Sporns, 2009; Bassett and Sporns, 2017). Accordingly, various tools have been 

developed to understand the brain as a complex network, highlighting variations in brain 

organization across development (Gu et al., 2015), aging (Voss et al., 2013), and clinical 

populations (Bassett et al., 2018). In many studies, brain networks are constructed from 

anatomic or functional neuroimaging data as a single network or static representation 

(Rubinov and Sporns, 2010; Sporns, 2013). As the human brain is intrinsically organized 

into functionally specialized modules, a common approach for analyzing brain networks is 

to investigate community structure, which identifies areas in the brain that are densely 

connected internally (Sporns and Betzel, 2016). While this construction is useful, a growing 

literature suggests that the brain, particularly its functional interactions, varies over time, 

thus necessitating the need to characterize these dynamic changes (Lurie et al., 2020).

Multilayer network models have been proposed as an effective means of capturing the 

temporal dependence between distributed neural circuits and quantitatively describing how 

communities vary over time (Mucha et al., 2010; Kivela et al., 2014). Multilayer network 

models can be used to optimize the partitioning of nodes into modules by maximizing a 

multilayer modularity quality function that compares edge weights in an observed network 

to expected edge weights in a null network. In this approach, two parameters are essential: 

the intra-layer coupling parameter, which tunes the number of communities within a layer, 

and the inter-layer coupling parameter, which tunes the temporal dependence of 

communities detected across layers. Dynamic network measures derived from multilayer 

modularity include but are not limited to flexibility, recruitment, and integration. Flexibility 

quantifies how frequently a region changes its community membership over time (Bassett et 

al., 2011); recruitment can be defined as the probability that a region is assigned to a 

community that is the same as its initial pre-defined network (e.g., visual, sensorimotor, or 
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limbic network); and integration can be defined as the probability that a region is assigned to 

a community that is different from its initial pre-defined network (Bassett et al., 2015).

Initial applications of this approach have provided key insights into the brain network 

dynamics that underlie learning (Bassett et al., 2011, 2015). Recently, there has been 

increased enthusiasm to utilize these methods in the neuroimaging field (Table 1). 

Specifically, these measures have been used to link network dynamics to inter-individual 

differences in a broad range of functional domains, including motor learning (Bassett et al., 

2011, 2015; Wymbs et al., 2012; Telesford et al., 2016), working memory (Braun et al., 

2015; Finc et al., 2020), attention (Shine et al., 2016), language (Chai et al., 2016), mood 

(Betzel et al., 2017), creativity (Feng et al., 2019; He et al., 2019), and reinforcement 

learning (Gerraty et al., 2018). Additionally, dynamic network reconfiguration has been 

suggested as a potential biomarker for diseases, such as schizophrenia (Braun et al., 2016; 

Gifford et al., 2020), temporal lobe epilepsy (He et al., 2018), and depression (Wei et al., 

2017; Zheng et al., 2018; Shao et al., 2019; Han et al., 2020), and has been used to predict 

antidepressant treatment outcome (Tian et al., 2020).

Despite these encouraging developments, several questions remain open. First, it is unclear 

whether there are optimal parameter values for characterizing community structure 

dynamics, and the extent to which parameter choice may affect the reliability of findings. 

Second, the minimum data requirements to obtain reliable estimates for multilayer network-

based measures have not been established. Previous studies vary in scan duration from 5 min 

to 3.45 h (see Table 1). Third, how the choice of task during the scan (e.g., resting state, 

naturalistic viewing, or active tasks) impacts the reliability of multilayer network 

measurements has not been directly compared. As dynamic network methods become more 

widespread, a systematic evaluation of the impact of these important factors on the test–

retest reliability of those derived measures is important and timely, given concerns about the 

reproducibility of neuroimaing research (Poldrack et al., 2017).

In this investigation, we aim to evaluate the impact of parameter selection, scan duration, 

and task condition on the test–retest reliabilities of dynamic measures obtained from 

multilayer modularity maximization (see Table 2 for an overview). We first identified the 

optimal intra-layer and inter-layer coupling parameters for the particular multilayer 

community detection algorithm that we employ, based on test–retest reliability. With the 

optimized parameters, we then evaluated test–retest reliability at various scan durations (i.e., 

10, 20, 30, 40, 50, and 60 min) to determine the minimum data requirements for sufficient 

reliability. Given the growing popularity of naturalistic viewing, we examined reliability 

while participants were either watching Inscapes (Vanderwal et al., 2015) or movie clips 

(e.g., “The Matrix ”), as well as resting-state and a flanker task to directly quantify the 

modulatory effect of mental states. Importantly, given recent updates to dynamic community 

detection algorithms (Bazzi et al., 2016), we also evaluated the impact of algorithms on 

dynamic measurements and their test–retest reliability.
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2. Material and methods

2.1. Datasets

Our primary analysis utilized data from the Healthy Brain Network-Serial Scanning 

Initiative (HBN-SSI: http://fcon_1000.projects.nitrc.org/indi/hbn_ssi/), a project specifically 

designed for evaluating the test–retest reliability of functional connectivity measures during 

different task states. Ten out of thirteen participants whose median framewise displacement 

(FD: Jenkinson et al., 2002) within 1.5 interqualtile range were included (29.8 ± 5.3 years, 

50% males, median FD ranging from 0.04 to 0.08 mm). A detailed description of the 

experimental design and data collection can be found in O’Connor et al. (2017). Specific 

details on the flanker task can also be found in our Supplementary Materials. Briefly, each 

participant had 12 scanning sessions collected using the same imaging protocol over a 1–2-

month period. At each session, a high-resolution structural image and four fMRI scans (i.e., 

resting state, Inscapes, movie, and flanker; 10 min/condition) were collected. All imaging 

data were collected using a 1.5 T Siemens Avanto MRI scanner equipped with a 32-channel 

head coil in a mobile trailer (Medical Coaches, Oneonta, NY). Structural scans were 

collected for registration using a multi-echo MPRAGE sequence (TR = 2.73 s, echo time = 

1.64 ms, field of view = 256 × 256 mm2, voxel size = 1.0 × 1.0 mm3, flip angle = 7°). fMRI 

scans were collected using a multiband echo-planar imaging (EPI) sequence (multiband 

factor = 3, TR = 1.45 s, echo time = 40 ms, field of view = 192 × 192 mm2, voxel size = 

2.46 × 2.46 × 2.5 mm3, flip angle = 55°).

To test the impact of implementation choices in the multilayer community detection code, 

we included resting-state fMRI data from 25 adults from the Human Connectome Project 

retest dataset (https://www.humanconnectome.org/study/hcp-young-adult/data-releases) 

(Van Essen et al., 2013), as well as created a simulated multilayer network dataset (see 

Supplementary Methods for details on these datasets). Furthermore, the generalizability of 

parameters optimized on the HBN-SSI dataset was evaluated on the HCP retest dataset.

2.2. Imaging preprocessing

Functional images were preprocessed using the Configurable Pipeline for the Analysis of 

Connectomes (C-PAC 1.3: http://fcp-indi.github.io/) with the following steps: (1) 

realignment to the mean EPI image to correct for motion; (2) nuisance signal regression: 

regressed out linear and quadratic trends, signals of the five principal components derived 

from white matter and cerebrospinal fluid (CompCor, Behzadi et al., 2007), global signal 

(Yang et al., 2014), and Friston 24-parameter motion model (Friston et al., 1996); and (3) 

spatial normalization of functional data to Montreal Neurological Institute (MNI) space by 

combining boundary based registration (BBR) (Greve and Fischl, 2009) and Advanced 

Normalization Tools (Avants et al., 2011). Because we are interested in the impact of both 

the event-related signals and the state evoked by the flanker task, we did not regress out task 

effects. See Fig. 1 for the flowchart summarizing the major steps of the current analytical 

framework.
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2.3. Network construction

We defined nodes in the network using the functional parcellation from the CC200 atlas 

(Craddock et al., 2012) generated by a spatially constrained spectral clustering method. This 

functional parcellation consists of 200 ROIs covering the whole brain, each of which is 

homogeneous in its estimated functional connectivity. This commonly chosen atlas was 

previously used for studying static functional connectivity in the HBN-SSI dataset 

(O’Connor et al., 2017) and for evaluating the reproducibility and reliability of state-based 

temporal dynamic methods (Yang et al., 2014). To determine whether our results were 

sensitive to functional parcellations and the resolution of parcellations, we tested the 

robustness of our findings using the Schaefer 200 and 600 brain parcellations (Schaefer et 

al., 2018). After preprocessing, we extracted mean signals from each ROI and then applied a 

sliding window to the time series. The window length (~100 s, 68 TRs, no overlap) was 

selected based on a previous multilayer network study (Telesford et al., 2016), which 

demonstrated that the number of communities stabilizes at a window length of ~100 s and 

that the inter-region variance of flexibility peaks at a window size of 75–120 s across 

different cognitive tasks. Since we are interested in comparing the test–retest reliabilities of 

dynamic network measures among task conditions, we selected the window length of ~100 s 

to also capture low frequency fluctuations with a low cutoff at 0.01 Hz. However, we 

acknowledge that this window selection may not have sufficient temporal resolution to relate 

network dynamic changes to changing conditions in naturalistic viewing or in the flanker 

task.

For each window or layer, edges were estimated using wavelet coherence using the wavelet 

coherence toolbox (Grinsted et al., 2004) (http://grinsted.github.io/wavelet-coherence/). As 

the most commonly used edge estimation for multilayer network analyses (Table 1), wavelet 

coherence is robust to outliers (Achard et al., 2006) and has advantages in terms of its utility 

for estimating correlations between fMRI time series, which display slowly decaying 

positive autocorrelations or long memory (Zhang et al., 2016; Telesford et al., 2017). 

Specifically, magnitude-squared coherence Cxy between a given pair of regions (x, y) is a 

function of the frequency (f) and defined by the equation:

Cxy(f) =
Fxy(f) 2

Fxx(f)Fyy(f) ,

where Fxy(f) is the cross-spectral density between region x and region y. The variables Fxx(f) 
and Fyy(f) are the autospectral densities of signals from region x and region y, respectively. 

The mean of Cxy(f) over the frequency band of interest, in our case 0.01–0.10 Hz, is defined 

as the edge weight between regions x and y. The range of wavelet coherence is bounded 

between 0 and 1. For each subject, we obtained a 200 × 200 × 6 (region × region × window) 

coherence matrix per task per session, which is coupled into a multilayer network by linking 

a node to itself in the preceding and the following windows or layers (Mucha et al., 2010; 

Bassett et al., 2011). Dynamic community detection was then performed for each session.
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2.4. Dynamic community detection algorithm

Multiplex communities can be defined by modularity maximization (Mucha et al., 2010), 

spectral clustering (Lin et al., 2009; Michoel and Nachtergaele, 2012), or other data-mining 

approaches (Ströele et al., 2009, 2011, 2012). Among these methods, the optimization of 

multislice modularity is the most popular approach for fMRI research, possibly due to its 

feasibility of representing dynamic functional networks (Bassett et al., 2011, Bassett et al., 

2013a, Bassett et al., 2013b). While there are numerous methods for determining community 

structure, here we used a Louvain-like locally greedy algorithm (Blondel et al., 2008). We 

chose this algorithm because: (1) it has been shown to outperform other community 

detection methods (Yang et al., 2016), (2) is most commonly used in the field of network 

neuroscience (Blondel et al., 2008), (3) has been adapted to multilayer network models 

(Mucha et al., 2010; Bassett et al., 2011, Bassett et al., 2013a), and (4) has been commonly 

used in studies linking multilayer network measures to cognition and disorders. For 

detecting communities, the multilayer modularity quality function (Q) is optimized (details 

given in Section 2.4.1) and is defined as in Mucha et al. (2010):

Q = 1
2μ ∑

ijlr
Aijl − γlMijl δlr + δijωjlr δ gil, gjr

where μ is the sum of edge weights across all nodes and layers; δij is the Kronecker’s δ-

function that equals 1 when i = j and equals 0 otherwise. The element Aijl gives the strength 

of the edge between nodes i and j in layer l, and the element Mijl is the corresponding edge 

expected in a null model. Different choices of the null model in modularity could lead to 

different community structures (Sarzynska et al., 2016); based on the scope of the current 

paper, we adopted the widely used setting in the dynamic network reconfiguration papers: 

the Newman-Girvan null model which defines Mijl as:

Mij1 =
kilkj1
2m1

,

where m1 = 1
2 ∑ijAij1 is the total edge weight in layer l. The variables kil and kjl are the intra-

layer strengths of node i and node j in layer l, respectively. In the quality function, gil 

represents the community assignment of node i in layer l, and gjr represents the community 

assignment of node j in layer r. Finally, δ(gil, gjr) = 1 if gil = gjr and δ(gil, gjr) = 0 if gil ≠ gjr.

We performed multilayer community detection using the generalized Louvain package 

implemented in MATLAB (Lucas et al., 2011–2019). This method treats intra-layer and 

inter-layer edges as unique and assigns communities to regions in all layers. This allows for 

the investigation of communities that are coherent over time and simultaneously across 

layers. Moreover, as the community labels are consistent across layers, this avoids the 

common problem of community matching.

2.4.1. Algorithm selection—Optimization of the quality function or modularity (Q) 

includes two phases: community detection and community merging (Fig. 2). In the first 

phase, each node starts as its own community. Starting from a randomly chosen initial node, 
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modularity is calculated after merging this node with every other community, one by one. 

Then all merges that increase modularity are identified. The default algorithm (Maximum 

Modularity Method: MMM) and the revised algorithm (Modularity Probability Method: 

MPM) differ in how the merge is selected. The MMM selects the merge that produces the 

highest increase in modularity. In the MPM, a probability is attached to all merges that 

increase modularity (the higher the proportion of modularity increases, the higher the 

probability). Afterward, a merge is chosen randomly, weighted by the probability 

distribution of modularity increases. If no improvement in modularity is found, the node is 

left unmerged. This process is then repeated sequentially for all other nodes. In the second 

phase, any multi-node community is merged and treated as a single node. Then the two 

phases are repeated until all communities are merged into a single community or no further 

improvement is possible.

The MMM was the default method implemented in the original code publicly released in 

2011. The MPM was added in 2016 (Version 2.1) to address an abrupt change in the 

behavior of the default method when the inter-layer coupling parameter increased (see Bazzi 

et al., 2016 for details). This abrupt change was initially observed in financial data and has 

not been evaluated in neuroimaging data. Given that the default method was widely used in 

the fMRI literature, we evaluated the impact of the default and the improved methods on the 

values of dynamic network measures, as well as the reliability and validity of these measures 

before making a selection.

2.4.2. Parameter optimization—When optimizing multilayer modularity, we must 

choose values for the two parameters γ and ω. The parameter γl is the intra-layer coupling 

parameter for layer l, which defines how much weight we assign to the null network and 

controls the size of the communities detected within layer l. The parameter ωjlr is the inter-

layer coupling parameter, which defines the weight of the inter-slice edges that link node j to 

itself between layer l and layer r; this parameter controls the number of communities formed 

across layers. Here, following previous work in the neuroimaging literature (Table 1), these 

two parameters have been set as constants (γl = γ and ωjlr = ω) across layers. The choice of 

these two parameters is critical for multilayer modularity optimization, as they have a large 

impact on the detected community structure, as well as on the dynamic measures derived 

from multilayer communities (Bassett et al., 2013a; Mattar et al., 2015; Chai et al., 2016). 

Multilayer modularity approaches were also shown to detect spurious group differences in 

dynamic network measures when these parameters were set inappropriately (Lehmann et al., 

2017). Here, we optimized these two parameters based on test–retest reliability. Specifically, 

we computed intra-class correlation coefficients (ICC) for each of the three dynamic 

network measures across a range of γ and ω for each of the four tasks. Specifically, we 

considered the space spanned by the following ranges: γ= [0.95, 1.3] and ω = [0.1, 3.0]. We 

determined these ranges by applying the criterion that the number of modules be ≥ 2 and ≤ 

100. As the space for γ is much smaller than that for ω, a smaller increment of 0.05 was 

used for γ and an increment of 0.1 was used for ω. After estimating the ICC at each point in 

this space, we identified the parameter value pair that produced the largest ICC. The γ and ω 
pair that produced the largest ICC most frequently across the 12 conditions (3 dynamic 

network measures and 4 tasks) was chosen as the optimal one for the dataset.
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In addition to ICC, we also used discriminability to quantify the reliability and optimize the 

parameters for multilayer network measurement. Discriminability is a non-parametric 

statistic to quantify the degree to which an individual’s samples are relatively similar to one 

another, which can be used to measure reliability without restricting the data to be univariate 

and Gaussian distribution (Bridgford et al., 2019). Here, we computed the discriminability 

across the γ-ω plane for flexibility, integration, and recruitment separately. Considering n 

subjects, where each subject has s measurements, then we have N = n × s total 

measurements across subjects for a given dynamic measure. Then discriminability is 

computed in the following three steps: (1) Compute the distance (in this case the Euclidean 

distance) between all pairs of measurements, resulting in a N × N matrix; (2) For 

measurements of all subjects, compute the fraction of times that a within-subject distance is 

smaller than a between-subject distance, resulting in N × (s-1) numbers between 0 and 1. 

The discriminability of the dataset is the average of the above mentioned fractions, resulting 

in a single number between 0 and 1. A high discriminability indicates that within-subject 

measurements are more similar to one another than between-subject measurements, 

suggesting the measurement is more reliable. The calculation of discriminability is 

conducted using R package (https://github.com/ebridge2/Discriminability).

2.4.3. Other considerations—When implementing the GenLouvain method, we used 

fully weighted, unthresholded coherence matrices to minimize the known near degeneracy 

of the modularity landscape (Good et al., 2010). After applying this algorithm, the 200 ROIs 

were assigned to communities that spanned across layers. Due to the roughness of the 

modularity landscape (Good et al., 2010) and the stochastic nature of the algorithm (Blondel 

et al., 2008), the output of community detection often varies across optimizations. Thus, 

rather than focus on any single optimization, we computed the dynamic measures based on 

100 optimizations, following the precedent of previous work (Bassett et al., 2011, Bassett et 

al., 2013a, Bassett et al., 2013b, 2015). Specifically, we first calculated network measures 

(see next section for details) for each run of the community detection algorithm, and then we 

averaged those measures over the 100 optimizations.

2.5. Calculation of dynamic network measures

For each participant, we computed the following measures to characterize the dynamics of 

the multilayer network based on the dynamic community structure detected in each 

optimization.

2.5.1. Flexibility—For each brain region, the flexibility is calculated as the number of 

times a brain region changes its community assignment across layers, divided by the number 

of possible changes, which is the number of layers minus 1 (Bassett et al., 2011). This 

measure characterizes a region’s stability in community allegiance and can be used to 

differentiate brain regions into a highly stable core and a highly flexible periphery (Bassett 

et al., 2013b). Regions with high flexibility are thought to have a larger tendency to interact 

with different networks. Average flexibility across the brain is also computed to examine the 

global flexibility of the system.
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2.5.2. Module allegiance—The module allegiance matrix is the fraction of layers in 

which two nodes are assigned to the same community (Bassett et al., 2015). For each layer, a 

co-occurrence matrix (200 × 200) can be created based on the community assignment of 

each node pair. The element of the co-occurrence matrix is 1 if two nodes are assigned to the 

same community, and 0 otherwise. The module allegiance matrix is computed by averaging 

the co-occurrence matrices across layers, and the value of the matrix elements thus ranges 

from 0 to 1.

2.5.3. Integration and recruitment—To quantify the dynamic functional interactions 

among sets of brain regions located within predefined functional systems (i.e., seven 

networks defined by Yeo et al., 2011), we computed two network measures based on the 

module allegiance matrix: recruitment and integration (Bassett et al., 2015). Recruitment can 

measure the fraction of layers in which a region is assigned to the same community as other 

regions from the same pre-defined system. The recruitment of region i in system S is defined 

as:

Ri
S = 1

nS ∑
j∈S

Pij

where nS is the number of regions in S, and Pij is the module allegiance between node i and 

node j. The integration of region i with respect to system S is defined as:

Ii
S = 1

N − nS ∑
j∉S

Pij

where N is the total number of brain regions. Integration IiS measures the fraction of layers in 

which region i is assigned to the same community as regions from systems other than S.

2.6. Assessment of reliability

Test-retest reliability and between-code reliability were assessed with the ICC estimated 

using the following linear mixed model:

Y ij(v) = μ00(v) + θi0(v) + εij(v),

where Yij(v) represents the dynamic measure (i.e., flexibility, integration, or recruitment) for 

a given brain region v (υ = 1, 2…, 200), i indexes participants (i = 1, 2, … 10), and j indexes 

either the session for analyses of test–retest reliability or the code implementation options 

for analyses of between-code reliability (j= 1, 2). Further, μ00 (v) is the intercept or a fixed 

effect of the group average dynamic measure at region v; θi0 (v) is the random effect for the 

ith participant at region v; and εij(v) is the error term. The total variance of a given dynamic 

measure can be decomposed into two parts: (1) inter-individual variance across all 

participants σθ
2 = Var[θ] , and (2) intra-individual variance for a single participant across two 

measurements σε2 = Var[ε] . The reliability of each dynamic measure can then be calculated 

as:
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ICC =
σθ

2

σθ
2 + σε2

.

The model estimations were implemented using the linear mixed effect (lme) function from 

the nlme R package (http://cran.r-project.org/web/packages/nlme).

2.7. Determination of the minimal data requirement

To establish minimal data requirements for sufficient test–retest reliability, we compared 

ICC values of six scan durations: 10 min, 20 min, 30 min, 40 min, 50 min, and 60 min. 

Different scan durations were obtained by pseudo-randomly selecting 1, 2, 3, 4, 5, or 6 10-

min sessions from 12 available sessions for each participant. Dynamic features were first 

computed for each of the 12 10-min sessions, and then averaged across the sessions that 

were selected for each scan duration. We did not compute the dynamic measures on 

concatenated time series data to avoid artifactually introducing community changes at the 

concatenation point. For each scan duration, ICC was estimated using linear mixed models. 

To increase the robustness of the results and to extract stable features, we repeated the 

analysis on 100 randomized samples for each duration. The same process was performed for 

each of the four tasks to determine the data necessary for each condition.

2.8. Determination of task dependency

To investigate how estimates of test–retest reliability might depend on task states, we first 

used hierarchical linear mixed models to assess between-condition and between-session 

reliability in the same model. Hierarchical linear mixed models separate the variations 

among task conditions (i.e., between-condition reliability) from variations between sessions 

(i.e., test–retest reliability) by estimating variance between participants, across the four task 

conditions (for the same participant), and between sessions within each condition (O’Connor 

et al., 2017). Our model took the following form:

Y ijk(v) = μ000(v) + θjk(v) + ϕk(v) + εijk(v) .

The dynamic measure for a given brain region v can be denoted as Yijk(v), where i indexes 

over sessions, j indexes over conditions, and k indexes over participants. In this model, μ000 

represents the intercept; θjk represents a random effect between sessions for the j-th 

condition of the k-th participant; ϕk represents a random effect for the k-th participant; and 

εijk represents the error term. The variables θjk, ϕk, and εijk are assumed to be independent 

and to follow a normal distribution with a zero mean. The total variances of a given dynamic 

measure can be decomposed into three parts: (1) variance between participants 

(σϕ
2 = Var[ϕ]); (2) variance between conditions for the same participant (σθ

2 = Var[θ]); and (3) 

variance of the residual, indicating variance between sessions (σε2 = Var[ε]). The reliability of 

each dynamic measure across conditions can be calculated as
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ICC (conditions) =
σϕ

2

σϕ
2 + σθ

2,

and across sessions as

ICC (sessions ∣ conditions ) =
σϕ

2 + σθ
2

σϕ
2 + σθ

2 + σε2
.

Next, we estimated the test–retest reliability for each task using the simple linear mixed 

models described in Section 2.6. The main effect of task condition on ICC values was tested 

using a nonparametric Friedman test. The Wilcoxon signed-rank test was used for post hoc 
analyses to determine which tasks differed significantly in test–retest reliability. As ICCs 

consistently increase with scan duration (Laumann et al., 2015; Xu et al., 2016; O’Connor et 

al., 2017), hierarchical and simple linear mixed models were performed using 60 min of data 

(the optimal scan duration in the current sample) to determine the impact of task condition.

3. Results

3.1. Impact of modularity maximization algorithm

In 2016, a comprehensive examination of multilayer networks with financial data revealed 

an abrupt discontinuity in values across the γ-ω landscape when the Maximum Modularity 

Method (MMM; the default method) was used. These findings raised concerns about the 

robustness of MMM (see Fig. 5.4 in Bazzi et al., 2016). In our study, when we used MMM, 

we observed a similar discontinuity in multilayer network-based dynamic measures in two 

independent human brain imaging datasets (HBN-SSI and HCP), as well as in a simulated 

multilayer-network dataset (Fig. 3). When the updated Modularity Probability Method 

(MPM) was used, we no longer observed such apparent discontinuities. To compare the 

dynamic measures computed using these two methods, we assessed the between-method 

reliability of flexibility for the two algorithms. Consistent with our intuition, we found that 

most of the ICC values above the discontinuity were near zero, suggesting that flexibility 

values obtained using different randomization methods can differ dramatically in that 

portion of the parameter space. In addition to flexibility, we also investigated the impact of 

these two methods on integration and recruitment. We found that flexibility was the most 

impacted, integration was impacted less, and recruitment was the least impacted (Fig. S1). 

Furthermore, we found that the updated method produced measures with greater test–retest 

reliability than the default method (Fig. S2), and better recovered known underlying 

dynamics in the simulated data - especially in the portions of parameter space above the 

apparent discontinuity (See Figs. S3 and S4 for details). Thus, the updated method (MPM) 

was used in the present work.

3.2. Parameter optimization based on test–retest reliability

Because our goal is to optimize multilayer network-derived measures to study individual 

differences, we chose our parameters based on test–retest reliability scores. The parameter γ 
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is the intra-layer coupling parameter, which defines how much weight we assign to the null 

network and controls the size of communities detected within a layer. The parameter ω is an 

inter-layer coupling parameter which defines the weight of the inter-slice edges that link a 

node to itself between two consecutive layers; it controls the number of communities formed 

across layers. We found that the selection of γ and ω had a large impact on the test–retest 

reliability of dynamic network measures (Fig. 4). Depending on parameter choice, test–

retest reliability can range from poor to good. Overall, recruitment (mean ICC across the 

landscape: 0.54 ± 0.11) is more reliable than integration (0.37 ± 0.17), and integration is 

more reliable than flexibility (0.30 ± 0.15). For each measure, the pattern of ICC values 

across the 2-dimensional parameter space is highly similar across tasks. For each task, the 

portions of the parameter space with good ICCs are consistent across measures. Thus, we 

were able to identify an optimal range of parameters generalizable across tasks and 

measures. For flexibility and integration, good ICCs (≥ 0.6) occur within a range of γ= [1.0–

1.1] and ω = [1.7–3.0]. For recruitment, the range is broader: γ= [1.05–1.25] and ω = [1.2–

3.0].

For the current analysis, we chose the parameters γ= 1.05 and ω = 2.05, which produce 

maximal ICC values in 7 of the 12 γ-ω planes and still produce relatively good ICC values 

(ICC > 0.65) in the other 5 γ-ω planes. Tuning ω up to 2.05 yielded low estimates of 

flexibility. In a previous study, when the ω value was too high, flexibility values followed a 

heavy-tailed distribution with most values of flexibility equal to zero (i.e., close to a static 

network representation) (Telesford et al., 2016). In our investigation, the distribution of 

flexibility did not resemble this heavy-tailed distribution (Fig. S5A), thus mitigating the 

potential concern that the parameter was tuned too high.

Because the ICC is determined by both within- and between-subject variability, good ICC 

could be caused by increased between-subject variability, decreased within-subject 

variability, or a combination of both. To understand the driver of this variation in test–retest 

reliability, we examined the landscape of dynamic measures, as well as the between- and 

within-subject variance of these dynamic measures. To make the variance values 

comparable, we normalized the between- and within-subject variance by the total variance. 

We found that the mean and variance of these dynamic measures also depended on the 

values chosen for γ and ω (Fig. S6). The parameter values associated with good ICC 

overlapped with areas showing high between-subject variability and low within-subject 

variability, and largely overlapped with areas that had relatively low values of the dynamic 

measures (with a few exceptions for integration).

When the MPM was used, we found that reliability was poor for the previously 

recommended and commonly used values of γ= 1 and ω = 1. To better understand this poor 

reliability, we compared the recommended parameter choice with our reliability-optimized 

set. We found that although the spatial maps of flexibility were similar between two 

parameter choices (r = 0.70), the magnitude of flexibility was much larger for [γ= 1, ω = 1] 

compared to [γ= 1.05, ω = 2.5]: 0.66 ± 0.01 vs 0.16 ± 0.01, respectively (Fig. S5A). In the 

reviewed literature, when [γ= 1, ω = 1] was used, the range of flexibility is typically < 0.25 

(Table 1). This discrepancy is likely because previous studies used the MMM (Bassett et al., 

2011, Bassett et al., 2013a, Bassett et al., 2013b, 2015; Telesford et al., 2016; Finc et al., 
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2020). The poor ICC of [γ= 1, ω = 1] (mean: 0.19 ± 0.21) relative to [γ= 1.05, ω = 2.5] 

(mean: 0.79 ± 0.08) when the updated method was used was driven by the much lower 

between- and higher within-subject variance for [γ= 1, ω = 1] compared to [γ= 1.05, ω = 

2.5] (except for the visual cortex).

To test whether functional parcellation and the resolution of a parcellation have an impact on 

dynamic reconfiguration, we repeated our analysis using Schaefer et al. (2018) 200 and 600 

functional parcellations. We found that our results are relatively stable across different 

parcellations with the same number of ROIs, but parcellation resolution has an impact on 

parameter selection. Specifically, ICC values and dynamic network measures are similar 

between the Schaefer 200 and Craddock 200 atlases, and the optimized γ-ω are identical for 

the two atlases (γ= 1.05 and ω = 2.5) (Fig. S7). However, when the number of ROIs 

increases from 200 to 600, values of dynamic reconfiguration measures increase and a 

higher γ value is required to achieve good ICC values (Fig. S8). The optimized γ-ω for this 

higher resolution atlas is: γ= 1.15 and ω = 2.6. These results suggest that higher resolution 

atlases may augment values for node reconfiguration measures by increasing the number of 

communities at parameters around γ= 1.05 and ω = 2.5. However, these measures are not 

reliable. Higher values for the inter-layer coupling parameter are needed to generate 

dynamic communities that span multiple layers and higher values for the intra-layer 

coupling parameter are needed to reduce the number of communities to a level comparable 

to that of a low-resolution atlas.

To test whether the optimized parameters are generalizable, we applied the same multilayer 

analysis to HCP data and evaluated the test–retest reliability of flexibility. Compared to 

results for the HBN-SSI data, areas with relatively better reliability were located at values 

with lower γ and higher ω for the HCP data, although flexibility values were lower. 

Importantly, we were unable to identify any parameter value pairs with an ICC ≥ 0.6 for the 

HCP data, and the overall reliability is poorer for the HCP data compared to HBN-SSI data 

(HBN-SSI mean: 0.30 ± 0.15; HCP mean: 0.19 ± 0.05) (Fig. 5). This can be explained by 

lower between-subject variability and higher within-subject variability in the HCP data. To 

investigate the impact of preprocessing, we repeated our analysis on the HCP data using 

publicly released extensively preprocessed data. We found that both the flexibility values 

and reliability for the HCP data were similar between CPAC and HCP preprocessing, though 

the average reliability across the γ-ω landscape is higher for the HCP pipeline (CPAC mean: 

0.19 ± 0.05; HCP mean: 0.27 ± 0.04). These results suggest that parameters optimized in 

one dataset (e.g., HBN-SSI, HCP) and/or preprocessing strategy (e.g., HCP pipeline 

employed ICA-FIX, while the C-PAC based pipeline used CompCor and global singal 

regression) may not be optimal for others (See Fig. 5 for visualization of γ-ω landscapes for 

HBN-SSI: CPAC, HCP: CPAC, and HCP: Enhanced).

Furthermore, we tested whether parameters optimized based on ICC are generalizable to 

parameters optimized for discriminability - a reliability index that is applicable to 

multivariate data (e.g., full brain or connectome). Similar to ICC, we found that 

discriminability was highest for recruitment, followed by integration, and lowest for 

flexibility (Fig. S9). For recruitment, most discriminability values across the γ-ω plane were 

high (>0.9; Bridgford et al., 2019). For integration, high discriminability values were located 
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in the portion of γ-ω with medium ICC. For flexibility, high discriminability values were 

located in the portion of γ-ω with small ICC. Our results illustrate that parameters 

optimized based on one criterion may not always be optimal for another criterion.

3.3. Data requirements for characterizing inter-individual differences in network 
dynamics

To establish the minimal data requirements for these types of analyses, we calculated the 

ICC for each measure and each task at six different scan durations: 10 min, 20 min, 30 min, 

40 min, 50 min, and 60 min. Consistent with previous static analyses (Laumann et al., 2015; 

Xu et al., 2016; O’Connor et al., 2017), we found that the test–retest reliability of dynamic 

measures improves with increased scan duration, and that this pattern is consistent across 

tasks and dynamic network measures (Fig. 6). From 10 to 60 min, the largest improvement 

is from 10 to 20 min. After 40 min, most regions achieved good ICCs and improvements 

were less notable for longer scan durations. For regional and system-level variations in 

improvement of reliability as a function of scan duration, see Fig. S10.

Regarding the question of how much data is needed for sufficient reliability, the answer 

depends on the criteria, the task, and the measure. Here, we define good test–retest reliability 

as over 50% of ROIs with ICC ≥ 0.5 (Xu et al., 2016). For the movie condition, good test–

retest reliability was achieved for all three measures at 20 min (81.5% of ROIs had an ICC ≥ 

0.5 on average across all three measures) (Fig. 7). For the flanker condition, good reliability 

was achieved at 20 min for integration (83.0% of ROIs ICC ≥ 0.5) and recruitment (57.0% 

of ROIs ICC ≥ 0.5). For the rest and Inscapes conditions, good reliability was achieved at 20 

min only for integration (52.0% and 55.5% of ROIs ICC ≥ 0.5, respectively). With 30 min of 

data, all measures and all tasks had good test–retest reliability. Across scan duration and task 

condition, integration is more reliable than recruitment (Wilcoxon signed-rank test: p < 

0.001) and recruitment is more reliable than flexibility (p = 0.02).

When data for one task is insufficient, a potential solution is to combine data across different 

tasks to increase scan duration, and thus improve reliability (O’Connor et al., 2017; Elliott et 

al., 2019a). To test whether this approach is relevant to the types of analyses performed here, 

we compared the ICCs obtained from 10 min of resting state data with the ICCs obtained 

from 10 min of Inscapes, movie, or flanker task condition, as well as those obtained from 

longer data created by adding either more resting state data or data from the other three tasks 

(Fig. 8). We found that at 10 min, ICCs are poor for all four tasks (over 75% of ROIs with 

ICC < 0.4), with resting state the poorest (96.5% of ROIs with ICC < 0.4). With increased 

scan duration, the reliability for the pure task condition increases, with the movie condition 

having the most ROIs showing good ICC at each scan duration. When comparing pure 

resting state data with mixed data of the same duration, generally the pure data had a greater 

number of ROIs with good to excellent ICC compared to the mixed data. When comparing 

10 min of resting state data with longer mixed data, we found that combining data from 

different tasks improved reliability. The degree of improvement depended more on how 

much data was combined, and less on what task conditions were combined.
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3.4. Task modulation on test–retest reliability of network dynamics: hierarchical linear 
mixed model

To separate variation among scan conditions from variations between sessions, we assessed 

between-condition reliability and between-session reliability simultaneously in a 

hierarchical linear mixed model. With the optimized γ-ω and the maximal amount of data 

available (60 min), we found that both between-session (two sessions, 60 min/session) and 

between-condition (four conditions) reliability were excellent (between-session median ± 

interquartile range: flexibility, 0.76 ± 0.05; integration, 0.80 ± 0.02; recruitment, 0.77 ± 

0.08; between-condition: flexibility, 0.74 ± 0.10; integration, 0.76 ± 0.07; recruitment, 0.77 

± 0.16) (Fig. 9). Consistent with previous work (O’Connor et al., 2017), we found that 

between-condition reliability of the visual and somatomotor network tended to be the 

poorest for recruitment which quantifies within-network functional interactions. Because 

different task states vary systematically in the richness of visual stimuli (movie > Inscapes > 

flanker > rest) and motor demands (flanker > the other three conditions), it is reasonable that 

these primary networks re-configure themselves according to unique task demands.

3.5. Task modulation on test–retest reliability of network dynamics: linear mixed model

Following the high-level model, we investigated test–retest reliability for each task 

separately using simple linear mixed models. We found that all four tasks have good to 

excellent test–retest reliability for all three measures (Fig. 10). Median ± interquartile range 

of ICC for rest, Inscapes, movie, and flanker were: flexibility (0.73 ± 0.09, 0.75 ± 0.09, 0.81 

± 0.07, 0.73 ± 0.08), integration (0.78 ± 0.05, 0.76 ± 0.05, 0.84 ± 0.04, 0.79 ± 0.05), and 

recruitment (0.74 ± 0.13, 0.74 ± 0.16, 0.81 ± 0.09, 0.76 ± 0.11). When reliability was 

directly compared between tasks, there was a significant main effect of task for all three 

measures (Friedman test: p < 0.001). Using post hoc testing, we found that the movie 

condition displayed significantly better test–retest reliability in all dynamic network 

measures than the other three conditions (Wilcoxon signed-rank test: all p-values < 0.001, 

Bonferroni corrected for 18 tests: 3 measures × 6 possible pairing).

For the comparison of the remaining conditions, the results were measure dependent. For 

flexibility, test–retest reliability in the Inscapes condition was significantly higher than in the 

flanker condition (p < 0.001, corrected), and the other comparisons were not significant; for 

integration, reliability differed significantly (flanker > rest > Inscapes, p < 0.001, corrected); 

for recruitment, reliability in the flanker condition was also significantly higher than in the 

rest and Inscapes conditions (p < 0.001, corrected). Generally, the reliability of these 

dynamic measures did not simply increase as a function of task engagement. Higher ICC 

scores were typically associated with relatively higher between-subject variance and lower 

within-subject variance (Fig. 10).

After considering overall reliability (median ICC), we next visualized regional and network 

differences in reliability between tasks. Consistent with overall results, we found that the 

movie condition exhibited higher reliability than the other three conditions in most brain 

regions/networks (Fig. 11). The other three conditions are similar to each other with a few 

exceptions: flexibility of the somatomotor, visual, and default mode networks, and 

recruitment of the visual and somatomotor networks. The observation that task effects were 
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most robust within the primary cortices is consistent with the hierarchical linear mixed 

model and with previous work (O’Connor et al., 2017). Furthermore, we found that the 

spatial topographies of ICC differ among dynamic measures. This is expected because 

different measures capture different features of the dynamic community structure. Overall, 

the spatial variation of ICC was small for integration at 60 min (i.e., all regions showed good 

to excellent reliability) across conditions. The spatial topography for flexibility and 

recruitment seems more complex. For example, the visual cortex was most reliable for 

recruitment during the movie condition but least reliable for flexibility. These results may 

suggest that the likelihood that a visual region will be assigned to the same community as 

other visual network regions (quantified by recruitment) is stable during the movie watching 

condition when visual stimuli were continuously presented. However, the number of times 

that a visual region switches its community membership (captured by flexibility) is not as 

reliable.

3.6. Addressing concerns regarding head motion

Head motion remains a major concern for dynamic functional connectivity estimation (Yang 

et al., 2014; Bassett et al., 2018; Satterthwaite et al., 2019). In the present work, we only 

included participants with minimal head motion (median FD range: 0.04~0.08 mm). During 

preprocessing, we regressed out 24 motion-related parameters (Friston et al., 1996); as well 

as controlled motion with more generalized approaches such as global signal regression at 

the individual level (Yan et al., 2013; Yang et al., 2014; Lydon-Staley et al., 2019a). To 

provide further insights into this concern, we examined the correlation between head motion 

(median FD) and the global mean of each dynamic measure and no significant correlations 

were found. Furthermore, we re-estimated test–retest reliability for flexibility on the movie 

condition using the optimized parameter while including median FD as a covariate at the 

group level in the linear mixed model. We found similarly good reliability with and without 

head motion included in the model (ICC = 0.67 and 0.74, respectively), suggesting that the 

impact of head motion on test–retest reliability was small.

4. Discussion

Optimizing the reliability of dynamic network methods is key to accurately characterizing 

trait-like individual differences in brain function. The present work examined the impact of 

the modularity maximization algorithm, network parameter selection, scan duration, and 

task condition on the test–retest reliability of dynamic network measures obtained using 

multilayer network models. We found that each of these factors impacted reliability to 

differing degrees. As suggested by prior work, optimal parameter selection was found to be 

an important determinant of reliability; interestingly, our findings revealed a more complex 

story than previously appreciated, as reliability across the multivariate parameter space was 

found to depend on an update in the multilayer community detection algorithm. Consistent 

with findings from the static functional connectivity literature, scan duration was found to be 

a much stronger determinant of reliability than scan condition. As discussed in greater detail 

in the following sections, our findings suggest that rather than selecting a single set of 

parameters or methods previously used in the literature, optimization of multilayer network 

models per dataset is essential.
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Multilayer network models of neural systems offer the potential to illuminate time-varying 

aspects of brain function that could not otherwise be revealed from traditional static network 

approaches. The aim of the present work is to quantify and optimize test–retest reliability for 

multilayer network models, establish minimum data requirements, and identify which task 

condition(s) can provide a reliable context in which to investigate time-invariant network 

dynamics. Although we only evaluated the reliability of the GenLouvain algorithm, which is 

one of the most popular algorithms, the framework presented can be applied to other 

software and multilayer network modularity-maximizing algorithms. With increased interest 

in linking the time-resolved reconfiguration of functional brain networks to normal 

cognition and disorders, it is important for the field to establish standards to guide the 

application of dynamic connectivity approaches. The present work systematically evaluated 

the impact of parameter selection, scan duration, and task condition on the test–retest 

reliability of dynamic network measures, which addresses an important gap in the literature. 

Although the present work focused on fMRI data, our analytical methods and results are 

broadly applicable, as multilayer network modeling has been widely applied to other 

neuroimaging modalities (e.g., structural MRI, EEG, MEG) and non-neuroimaging data, 

such as social, economic, gene, and protein networks (Boccaletti et al., 2014).

4.1. A cautionary note on the selection of GenLouvain algorithms

When using the GenLouvain algorithm for modularity maximization, a critical step is to 

merge nodes into communities. The MMM is the default method used in the implementation 

of this algorithm, which merges nodes that produce the highest increase in modularity. In 

2016, a newer approach was introduced, the MPM, which selects merges based on the 

probability distribution of modularity increases. A previous study of financial data reported 

that when the default method was used, two computational issues arise in the multilayer 

setting: an under-emphasis of persistence and an abrupt drop in the number of intra-layer 

merges in certain portions of the parameter space - both of which can lead to an abrupt 

change in the quantitative measure derived (Bazzi et al., 2016). Here, when the default 

method was used, we observed an abrupt dropoff in the optimization landscape in brain 

imaging data as well as in synthesized data (Fig. 3).

The abrupt discontinuity in the γ-ω landscape is not a coding error. Instead, it is a reflection 

of how the edges are defined (e.g., functional neuroimaging datasets generally use 

normalized correlation/coherence values between regions/voxels), the relationship between 

the multilayer inherited parameters, and the strengths of edges. The abrupt change occurs 

when the inter-layer coupling parameter (ω) is greater than the average intra-layer edge 

strength. As the optimization of the modularity function has proven to be non-deterministic 

polynomial-time-hard (Newman, 2006), the default deterministic algorithm suffers from 

local minimum issues and results in fewer merges - especially when ω values are high. In 

contrast, the probabilistic approach, with a mechanism analogous to a simulated annealing 

algorithm, is better suited to approximate the global optimum of the quality function (Bazzi 

et al., 2016). Using the probabilistic approach leads to more variability across multiple 

simulations for a given dataset, thus mitigating the abrupt change seen in the optimization 

landscape.
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The fact that abrupt discontinuities were observed consistently regardless of data type raises 

concerns regarding the accuracy of dynamic measures derived using the default option and 

with parameters selected above the point of apparent discontinuity in the 2-dimensional 

parameter space. Based on these results, as well as our demonstration that the MPM has 

higher test–retest reliability and better validity compared to the MMM, we strongly 

recommend that investigators use the updated method for multilayer network analysis, 

especially when applied to ordinal or temporal networks. Caution should be taken when 

attempting to judge findings obtained with the MPM based on older findings obtained with 

the MMM.

4.2. Parameter optimization for multilayer network analyses

To detect community structure, we employed the most commonly used algorithm to 

maximize the multilayer modularity quality function (Mucha et al., 2010). Communities that 

are detected using this algorithm are highly dependent on free parameters (i.e., γ and ω), 

thus we aimed to explore the space defined by these parameters and identify optimal 

parameter selection ranges in terms of test–retest reliability. As one parameter may affect the 

other parameter’s optimal setting, it can prove useful to optimize γ-ω jointly. Although 

several heuristics exist for choosing the “best ” value of γ and ω (Bassett et al., 2013a; Chai 

et al., 2016; Weir et al., 2017), optimizing the ICC has not previously been proposed, 

possibly because it requires the acquisition of a retest dataset. Our results suggest that a 

systematic evaluation of the parameters in terms of reliability has marked utility, as 

parameter choices directly impact reliability.

In the 2-dimensional parameter space of the γ-ω plane, we were able to find a range of 

parameters that produced dynamic network measures with good reliability. For flexibility 

and integration, better reliability was achieved with higher ω (i.e., when there is a stronger 

temporal coupling) and lower γ (i.e., when there are fewer communities). For recruitment, 

good reliability was achieved with high ω and a wide range of γ from low to high. Stronger 

temporal coupling in a multilayer network is typically associated with lower temporal 

variability in network partitions over time. The good test–retest reliability obtained at high ω 
and low γ for flexibility and integration, may suggest that the temporal variability reserved 

after tuning up ω is composed of more between-subject variability than within-subject 

variability when the number of communities is small. The relative insensitivity of 

recruitment to the number of communities may be explained by our choice of predefined 

systems in which ROIs tend to be grouped together over time. These results suggest that 

ICC-guided parameter selection can potentially maximize between-subject variability and 

minimize within-subject variability. This practice is consistent with the recent call for 

including assessment and optimization for reliability as a common practice in neuroimaging, 

as it helps to improve statistical power and decrease the amount of data required per subject 

(Zuo et al., 2019).

A critical cautionary note for the identification of an optimal parameter set comes from the 

dependence of reliability across the 2-dimensional parameter space on the specific 

modularity maximization algorithm. A parameter choice of [γ= 1, ω = 1] was recommended 

in the literature based on modularity and partition similarity, as well as the differences 
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between measures estimated on a real network compared to an appropriate multilayer 

network null model (Bassett et al., 2013a). Following these initial publications (Bassett et 

al., 2011, Bassett et al., 2013a), most studies have used [γ= 1, ω = 1] as their parameter 

choices (see Table 1) and tested the robustness of this parameter selection with small 

variations. Given this parameter choice falls in the dropoff area when the default MMM was 

used (Figs. 3 and S1) and it also falls in the poor test–retest reliability area when the updated 

MPM was used (Fig. S5), the parameter choice of [γ=1, ω = 1] needs to be reconsidered.

4.3. Generalizability of the optimized parameters to HCP data

To determine whether the parameters optimized for one dataset can be generalized to a 

different dataset, we compared the reliability landscapes from the HBN-SSI to those 

obtained with the HCP Test-Retest dataset. Recognizing the differences in preprocessing, we 

compared two datasets with identical preprocessing using CPAC. To investigate the impact 

of preprocessing, we also repeated the HCP analysis using the publicly released 

preprocessed data using the Enhanced HCP pipeline. We found that the reliability between 

the HCP Test (60 min) and Retest (60 min) data was much lower than that observed in the 

HBN-SSI dataset across the 2-dimensional γ-ω parameter space and this pattern was 

consistent regardless of preprocessing pipelines. One potential explanation for this 

difference between two datasets is that HCP data were acquired using faster sampling than 

the HBN-SSI data (TR: 0.72 s vs. 1.45 s). While static studies have indicated that increasing 

temporal resolution can either improve (Birn et al., 2013; Liao et al., 2013; Zuo et al., 2013) 

or have no impact (Horien et al., 2018) on reliability, the opposite was observed for dynamic 

analyses (Choe et al., 2017). In addition to TR, these two datasets were collected in scanners 

with different magnet strength (1.5 T vs 3 T) and used different multiband factors (3 vs 8 for 

HBN-SSI and HCP, respectively). Furthermore, although the subjects in the HCP and HBN-

SSI were similar in terms of participant age and sex (HBN-SSI: 29.8 ± 5.3 years old, 50% 

males; HCP: 30.3 ± 3.3 years old, 36% males), intervals between acquistion of test and 

retest datasets differed. For the HBN-SSI, the sessions were acquired within two months, 

while the HCP has a large variation in test–retest interval (range from 52 to 326 days: 133.4 

± 58.3 days). These factors may impact the reliability of network flexibility assessment.

Importantly, our results raise significant concerns about the potential dependencies of 

‘optimal parameters’ for multilayer network analysis on the datasets employed, beyond the 

specific properties identified in our work (i.e., amount of data per subject, or per condition). 

Demonstrating that test–retest reliability can differ substantially between datasets is a 

significant concern, as it suggests that parameters optimized in one dataset may not be 

optimal for others. Compounding the challenge at hand, few data collection efforts include 

test–retest samples, and few contain the amounts of data per subject that our analyses 

suggest may be needed to achieve sufficient reliability. These varying factors raise concerns 

about the appropriateness of applying this approach to datasets that do not have a retest 

sample. It is also important for future studies to assess the generalizability of parameter 

optimization to datasets harmonized for key aspects of undesirable non-biological sources of 

variation, such as scanner manufacturer, acquisition protocol, and preprocessing steps. If 

such datasets are not available, applying statistical harmonization techniques, such as 
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ComBat (i.e., combining batches) (Johnson et al., 2007; Fortin et al., 2018; Yu et al., 2018), 

may decrease unwanted site effects and optimize multilayer network analysis.

4.4. Minimal data requirements for obtaining reliable dynamic estimates

Many factors impact the test–retest reliability of functional connectivity-based measures, 

among which scan duration is one of the most important (Zuo and Xing 2014; Zuo et al., 

2019). Establishing minimal data requirements to obtain reliable estimates is an active 

research area for static connectivity analysis (Van Dijk et al. 2010; Anderson et al., 2011; 

Birn et al., 2013; Liao et al., 2013; Zuo et al., 2013; Laumann et al., 2015; Xu et al., 2016; 

Noble et al., 2017; Tomasi et al., 2017). However, to date, few efforts have been made to 

determine the scan duration needed to obtain reliable estimates of dynamic network 

measures. Here, we found that the test–retest reliability of dynamic network measures was 

poor for 10 min of data; it improved greatly when data increased to 20 min for movie fMRI 

and to 30 min for the other scan conditions. While increased scan duration has consistently 

been shown to improve reliability, studies vary in conclusions about the necessary data 

required to obtain reliable estimates. Studies have suggested that 5–10 min of data are 

sufficient to achieve respectable test–retest reliability (Van Dijk et al. 2010; Liao et al., 2013; 

Zuo et al., 2013; Tomasi et al., 2017); importantly, these studies have either focused on the 

default and frontoparietal networks, which have better reliabilities than other functional 

networks, or used more complex derived measures than simple edgewise indices. More 

recent work has convergently reported a substantial improvement in reliability to a level 

more useful for characterizing trait-like individual differences when data are increased from 

5 to 10 min to 20–30 min (Laumann et al., 2015; Xu et al., 2016; Noble et al., 2017; 

O’Connor et al., 2017; Elliott et al., 2019a). Our results are consistent with these static 

functional connectivity studies.

As temporal dynamic analyses are susceptible to spurious variations (Hutchison et al., 2013; 

Leonardi and Van De Ville 2015; Lehmann et al., 2017), one would assume more data are 

required to obtain reliable measures for dynamic analyses compared to static analyses. 

Instead, our data recommendations for estimating flexibility, recruitment, and integration 

from multilayer community detection analyses are comparable to those for static functional 

connectivity analysis (20–30 min). This result may reflect our having optimized the analyses 

for test–retest reliability. As previous multilayer network-based studies vary widely in scan 

duration (ranging from 5 min to 3.45 h: Table 1), it is crucial to establish minimal data 

requirements for the study of trait-like individual differences.

4.5. Improvement of test–retest reliability by combining different conditions

It may not be practical to collect 20–30 min of data for a single condition, which motivates 

the question of whether different conditions can be combined to increase scan duration and 

improve test–retest reliability. Our hierarchical linear mixed model revealed good between-

condition reliability, as well as good between-session reliability. These results are consistent 

with previous static connectivity analysis using the HBN-SSI dataset which demonstrated 

good between-condition reliability (O’Connor et al., 2017). Our findings are also consistent 

with previous work showing that task and resting-state data share a large proportion of 

variance (Cole et al., 2014; Geerligs et al., 2015) and that inter-task variance is much smaller 
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relative to inter-subject variance in functional connectivity (Finn et al., 2015; Gratton et al., 

2018). Recent work leveraging shared features across resting-state and task fMRI using a 

method called ‘general functional connectivity’ has demonstrated that static intrinsic 

connectivity estimated based on a combination of task and resting-state data offers better 

test–retest reliability than that estimated from the same amount of resting state data alone 

(Elliott et al., 2019a). Here, we found that depending on how much data and what task 

conditions were combined, mixed data have either comparable or lower reliability compared 

to the same amount of pure resting state data. When compared to 10 min of resting state 

data, longer duration created by combining task and resting-state data had better relaibility. 

Extending our understanding beyond prior studies of static connectivity, our results support 

the feasibility of combining data from different task conditions to improve reliability when 

the desired amount of a single condition is not available.

4.6. Movie fMRI identified as the most reliable condition

Another factor that impacts test–retest reliability of brain imaging-based measures is 

experimental paradigm due to the condition-dependent nature of brain activities (Zuo et al., 

2019). Multilayer networks have been used to assess network reconfiguration during resting 

state (Mattar et al., 2015; Betzel et al., 2017; Wei et al., 2017; He et al., 2018; Khambhati et 

al., 2018; Pedersen et al., 2018; Zheng et al., 2018; Al-Sharoa et al., 2019; Feng et al., 2019; 

He et al., 2019; Li et al., 2019; Shao et al., 2019; Tian et al., 2019; Lydon-Staley et al., 

2019a, 2019b), as well as during controlled cognitive tasks (Bassett et al., 2011, 2015; Braun 

et al., 2015; Chai et al., 2016; Telesford et al., 2016; Schlesinger et al., 2017a, 2017b; 

Gerraty et al., 2018; Cooper et al., 2019). The present work extended previous studies by 

including naturalistic viewing paradigms which offer increased ecological validity. 

Naturalistic paradigms allow researchers to study highly interactive dynamic cognitive 

processes (Bottenhorn et al., 2019) and probe complex multimodal integration (Sonkusare et 

al., 2019). They are emerging as powerful tools for exploring brain function and 

characerizing individual differences, with the potential for clinical applications (Eickhoff et 

al., 2020). Thus, establishing test–retest reliability of these paradigms is critical for 

enhancing our understanding of cognition as it occurs more naturally and advancing 

biomarker discovery for psychiatric disorders. A recent meta-analysis revealed that the 

flexible cognition during naturalistic viewing involves a common set of networks that allow 

separate processing of different streams of information, as well as integration of relevant 

information (Bottenhorn et al., 2019).

Compared to a passive resting state and an active flanker condition, we found that the movie 

condition had the best test–retest reliability. These results are consistent with previous static 

network studies which suggested better test–retest reliability for movie conditions than 

resting state (Wang et al., 2017). Naturalistic viewing was shown to have enhanced ability to 

identify brain-behavioral correlations compared to conventional tasks (Cantlon and Li 2013; 

Vanderwal et al., 2019) and was less impacted by head motion (Vanderwal et al., 2015), 

especially for pediatric samples. Some have suggested that the better reliability may be 

explained by the enhanced ability of movie watching to detect inter-individual differences in 

functional connectivity that are unique at the individual level compared to resting state 

(Vanderwal et al., 2017); alternatively, findings might be related to the increased level of 
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engagement for movies compared to resting state. The poorer reliability of the flanker 

condition compared to movies could be ascribed to its having been designed to minimize 

between-subject variance to “isolate ” a single cognitive process (Elliott et al., 2019b). 

Regardless of explanation, the present results support the utility of movie fMRI as a reliable 

context in which to investigate time-invariant network dynamics.

4.7. Limitations and future work

To estimate functional connectivity, we used wavelet coherence based on its predominance 

across similar studies in the literature (see Table 1), as well as due to its advantages in terms 

of denoising, robustness to outliers, and appropriateness for fMRI time series (Zhang et al., 

2016). While wavelet coherence offers several advantages, it is a frequency-specific measure 

and does not utilize phase information (Percival and Walden, 2000). As such, wavelet 

coherence is not useful when the phase of the signal is critical. Ongoing work is examining 

the reliability of other connectivity estimation methods, such as the Pearson’s correlation 

coefficient (Bassett et al., 2011; Mattar et al., 2015; Chai et al., 2016; Pedersen et al., 2018), 

which is informed by both phase and frequency information and can be computed more 

swiftly. Future work should investigate how edge density and threshold as well as edge 

weight sign (i.e., inclusion/exclusion of negative correlations) might impact the reliability of 

the dynamic network measures studied here.

We focused our analyses on low frequency fluctuations (0.01–0.1 Hz). The poorer reliability 

of the flanker condition compared to the movie condition could reflect the fact that we 

ignored the high frequency signals in the flanker task. To evaluate this possibility, we 

assessed flanker data reliability at a higher frequency range: 0.1–0.3 Hz. This range was 

selected to avoid the noisy upper bound (with TR = 1.45 s, the highest frequency we can 

examine is 0.34 Hz). We found that the reliability of dynamic measures obtained in the low 

frequency signals of the flanker task was much higher than in the higher frequency signals 

(Fig. S11). This suggests that the low frequency signals carry more non-random between-

subject variation for this task, and that the relatively poor reliability of the flanker condition 

compared to the movie condition cannot be explained by frequency.

We determined the size of the parameter space by considering the number of communities (≥ 

2 and ≤ 100), and we estimated the ICC at each point in the 2-dimensional γ-ω parameter 

space at a relatively coarse scale (γ: 0.9–1.3 with increments of 0.05; ω: 0.1–3.0 with 

increments of 0.1). We note that this resolution is comparable to most previous work 

(Bassett et al., 2011, Bassett et al., 2013b; Braun et al., 2015, 2016; Chai et al., 2016; He et 

al., 2018). Recent extensions of the multilayer network approach have demonstrated that 

sweeping across a range of intra-coupling parameters can offer insights into the multi-scale 

hierarchical organization of the brain (Ashourvan et al., 2019). Moreover, such studies have 

demonstrated that inter- and intra-subject variability in modular structure are scale specific 

(Betzel et al., 2019). Thus, sampling community structure from more points in the γ, ω 
parameter space may provide a better characterization of the brain’s dynamic network 

reconfiguration.

Indeed, some algorithms have been developed recently which allow a more refined and 

efficient search for parameters, for example, the Convex Hull of Admissible Modularity 
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Partitions (CHAMP) (Weir et al., 2017). Unlike the traditional way of selecting parameters 

in which the optimal partitions obtained at each (γ, ω) were treated independently, CHAMP 

uses the union of all computed partitions to identify the convex hull of a set of linear 

subspaces. It can greatly reduce the number of partitions that can be considered for future 

analyses by eliminating all partitions that were suboptimal across a given range of parameter 

space. Although the CHAMP software package is currently in its early versions (https://

github.com/wweir827/CHAMP), future work implementing these methodological updates 

can potentially facilitate the parameter optimization process and map the ICC landscape in 

greater detail.

We found that our parameter selection was stable across functional parcellations with the 

same resolution. However, it was sensitive to the resolution of a parcellation (i.e., number of 

ROIs of a parcellation). Recent work further demonstrated that functional parcel definitions 

change with task (Salehi et al., 2020a) and individualized functional networks reconfigure 

with cognitive state (Salehi et al., 2020b). Thus, another limitation of the present work is that 

we used fixed nodes and did not consider flexible functional nodes. It is important for future 

work to evaluate the test–retest reliability of multilayer network measures computed using 

flexible functional nodes and taking into consideration the resolution of a parcellation. As 

the network measures we computed are summary measures of dynamic reconfiguration, 

another limitation is that they did not have the temporal resolution to relate to changing 

conditions in the movie or flanker task.

A further limitation is that we optimized parameters based on the global mean of dynamic 

network measures computed across the whole brain. It is possible that each network may 

have different optimal parameters and the parameters optimized at the global level may not 

be optimal at the network level. It is important for future work to test this possibility and 

extend the current maximization framework further. Additionally, we fixed the values of γ 
and ω to be uniform across all layers as done in prior work (Table 1). Another extension of 

the present investigation is to devise heuristics for determining the values of these 

parameters in a layer-specific way, allowing for finer control over the features of detected 

communities.

Optimization of multilayer network measures for reliability has the potential to enhance our 

ability to use these measures and study trait-like brain-behavior relationships more 

efficiently (Choe et al., 2017; Zuo et al., 2019). Establishing good reliability is a key 

component of reproducible research (Nichols et al., 2017; Poldrack et al., 2017). However, 

good test–retest reliability does not necessarily correspond to high sensitivity to detect brain-

behavior relationships (Noble et al., 2017). Thus, it is important for future work to 

investigate the functional relevance of reliability-optimized dynamic network measures, as 

well as to consider optimizing the multilayer modularity framework based on other factors, 

such as predictive accuracy (Dadi et al., 2019). Prior work suggests that pipelines optimized 

on predictive accuracy give the best prediction for diverse targets (including 

neurodegenerative diseases, neuropsychiatric diseases, drug impact, and psychological traits) 

across multiple datasets (Dadi et al., 2019). Thus, adding this new dimension as optimization 

target may enhance the ability of multilayer network measures to become fundamental tools 

to delineate meaningful brain-behavior relationships.
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5. Conclusions

The application of dynamic (i.e., time-varying) graph measures to fMRI data is a rapidly 

growing area and there is a clear need in the network neuroscience field for reliable 

measures that can be used to find trait-like individual differences in cognition and disorders. 

Our results provide evidence that dynamic measures from the well-known multilayer 

community detection technique (multilayer modularity maximization) can be reliable when 

the updated multilayer community detection method is used, the parameters are optimized 

for reliability, and scan duration is sufficient. However, we do not assert that our results are 

directly applicable to any other dataset. Instead, we highlight concerns about generalizability 

arising from our difficulties finding a robust optimization that would generalize across the 

datasets tested. Our results caution the field that continued optimization of multilayer 

network models is needed before any single set of parameters or methods can be accepted as 

standard practice. Future work is needed to continue optimizing this framework by 

evaluating the impact of imaging parameters (e.g., sampling rate, multiband factor), 

preprocessing steps (e.g., global signal regression), and multilayer network analyses-related 

methodological decisions (e.g., window size, edge definition, number of optimizations) on 

reliability, as well as to optimize predictive accuracy.
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Fig. 1. 
Flowchart summarizing the major steps of the current analytical framework.
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Fig. 2. 
Diagram showing the modularity maximization process. The generalized Louvain algorithm 

is a two-phase process that finds communities in a network. In the first phase, every node is 

placed in its own community. At random a node is merged with a neighboring community 

and modularity is calculated; after iterating through all available communities, a node can be 

merged with a community based on different methods. In the Maximum Modularity Method 

(MMM), the merge that resulted in the greatest increase in modularity is chosen. In the 

Modularity Probability Method (MPM), a community is chosen at random based on the 
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probability that it increases the modularity. This process continues sequentially for all nodes 

until there are no improvements (no increase in modularity). In the second phase, detected 

communities are merged into single nodes and the process is repeated again. The algorithm 

ends if all nodes merge into a single community or if there are no improvements in 

modularity after iterating through nodes.

Yang et al. Page 34

Neuroimage. Author manuscript; available in PMC 2021 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The impact of generalized Louvain method on estimated values of flexibility. When the 

default Maximum Modularity Method (MMM) was used, there was a dropoff in flexibility 

values in the 2-dimensional γ-ω parameter space (Top row). This apparent discontinuity was 

observed in two independent human brain imaging datasets, the Healthy Brain Network-

Serial Scanning Initiative (HBN-SSI) and the Human Connectome Project (HCP), as well as 

in simulated data. The issue was mitigated by the updated Modularity Probability Method 

(MPM: Middle row). Reliability between flexibility values obtained using MMM and MPM 

was quantified using intra-class correlation coefficients (ICCs; Bottome row). ICCs were 

good below the apparent discontinuity and was near zero above the discontinuity. Brain 

Imaging results were obtained based on 60 min of resting state data.
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Fig. 4. 
Test–retest reliability of dynamic network measures depends on the γ-ω selection. Based on 

global ICC computed across 200 ROIs (Craddock et al., 2012), we identified a range of 

parameters that produced good test-retest reliability (ICC ≥ 0.6) for three measures 

(flexibility, integration, and recruitment) and four tasks (rest, Inscapes, movie, and flanker). 

For a given measure, global ICCs were highly similar across tasks (compare rows). For a 

given task, the locations of good ICCs were consistent across measures (compare columns). 

The peak ICC value was observed in the same location (γ= 1.05, ω = 2.05) in 7 out of the 12 

two-dimensional γ-ω planes (highlighted by a black dashed line). The ICC score at this 

location was also good (>0.65) in the other 5 two-dimensional γ-ω planes. Thus, this 

parameter value pair was chosen as the optimal γ-ω values for our analyses. Note that the 

values in the parameter space where the number of communities was smaller than 2 or 
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greater than 100 were set to zero in each plane. ICCs were evaluated with the maximal 

amount of data available (60 min) in the HBN-SSI dataset.
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Fig. 5. 
The γ−ω optimized for HBN-SSI cannot be generalized to HCP data. In HBN-SSI data, a 

range of parameters had good reliability (ICC ≥ 0.6). However, in HCP data, we were unable 

to find a range of parameters with good ICCs regardless of preprocessing pipelines (CPAC 

or HCP enhanced pipeline). As ICC was determined by both between-subject variance (Btw-

Sub-Var) and within-subject variance (Within-Sub-Var), good ICCs in HBN-SSI overlapped 

with the portion of the landscape with high Btw-Sub-Var and low Within-Sub-Var. In HCP, 

the poor ICC was associated with low Btw-Sub-Var and high Within-Sub-Var. Furthermore, 

the two datasets also differed in global flexibility. The values dropped more quickly when ω 
increased for the HCP data than for the HBN-SSI data. Results were obtianed using 60 min 

of resting state data for test and retest.
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Fig. 6. 
Test–retest reliability of dynamic network measures increases when the amount of data used 

for estimation increases. The density map of ICC values of 200 ROIs was plotted for three 

dynamic measures (flexibility, integration, and recruitment) and four tasks (rest, Inscapes, 

movie, and flanker) at six scan durations (10 min, 20 min, 30 min, 40 min, 50 min, and 60 

min).
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Fig. 7. 
The minimal data requirements for sufficient reliability depending on the criteria, the 

measure, and the task. Percentage of ROIs with an ICC greater than 0.4 (blue line), 0.5 

(orange line), and 0.6 (red line) were plotted for the three dynamic network measures 

(flexibility, integration, and recruitment) and the four tasks (rest, Inscapes, movie, flanker). 

The dashed gray line was drawn at 50%.
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Fig. 8. 
Combining data from different tasks improved reliability. Percent of ROIs showing poor 

(light blue: ICC < 0.4), fair (medium blue: 0.4 ≤ ICC < 0.6), or good (dark blue: ICC ≥ 0.6) 

reliability were plotted for six durations: 10 min, 20 min, 30 min, 40 min, 50 min, and 60 

min. For each duration, the data can be a single condition or a combination of the four 

conditions: rest (R), Inscapes (I), movie (M), and flanker (F). Each letter (the abbreviation of 

each condition) represents 10 min of data.
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Fig. 9. 
Both between-session and between-condition reliability evaluated in a hierarchical linear 

mixed model were good (ICC ≥ 0.6) to excellent (ICC ≥ 0.8) for 60 min of data. btw-

condition: reliability among rest, Inscapes, movie, and flanker; btw-session: reliability 

between test and retest. ICCs were plotted on the surface map using BrainNet Viewer (Xia et 

al., 2013), as well as summarized per the seven networks defined by Yeo et al. (2011) in bar 

plots. Vis: visual network; SMN: somatomotor network; DAN: dorsal attention network; 

VAN: ventral attention network; Limb: limbic network; FPN: frontoparietal network: DMN: 

default mode network. The same network abbreviations were used for subsequent figures.
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Fig. 10. 
The movie condition was most reliable. Distribution of ICCs of 200 ROIs were plotted for 

four conditions (rest, Inscapes, movie, and flanker) in the left column. Density of between-

subject variance (Btw-Sub-Var: salmon) and within-subject variance (Within-Sub-Var: light 

sea green) were plotted for each condition in the right column.
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Fig. 11. 
The impact of condition on the test-retest reliability of dynamic network measures. Spatial 

maps of ICCs for rest, Inscapes, movie, and flanker condition are shown on the brain surface 

for flexibility, integration, and recruitment. ICCs of 200 ROIs were averaged based on Yeo et 

al. (2011)’s seven networks for each of the four conditions and shown in the radar chart: 

Rest (green line), Inscapes (light blue line), Movie (purple line), and Flanker (red line).
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