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Abstract

Multilayer network models have been proposed as an effective means of capturing the dynamic
configuration of distributed neural circuits and quantitatively describing how communities vary
over time. Beyond general insights into brain function, a growing number of studies have begun to
employ these methods for the study of individua differences. However, test—retest reliabilities for
multilayer network measures have yet to be fully quantified or optimized, potentially limiting their
utility for individual difference studies. Here, we systematically evaluated the impact of multilayer
community detection algorithms, selection of network parameters, scan duration, and task
condition on test-retest reliabilities of multilayer network measures (i.e., flexibility, integration,
and recruitment). A key finding was that the default method used for community detection by the
popular generalized Louvain algorithm can generate erroneous results. Although available, an
updated algorithm addressing this issue is yet to be broadly adopted in the neuroimaging literature.
Beyond the algorithm, the present work identified parameter selection as a key determinant of
test—retest reliability; however, optimization of these parameters and expected reliabilities
appeared to be dataset-specific. Once parameters were optimized, consistent with findings from
the static functional connectivity literature, scan duration was a much stronger determinant of
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reliability than scan condition. When the parameters were optimized and scan duration was
sufficient, both passive (i.e., resting state, Inscapes, and movie) and active (i.e., flanker) tasks were
reliable, although reliability in the movie watching condition was significantly higher than in the
other three tasks. The minimal data requirement for achieving reliable measures for the movie
watching condition was 20 min, and 30 min for the other three tasks. Our results caution the field
against the use of default parameters without optimization based on the specific datasets to be
employed — a process likely to be limited for most due to the lack of test—retest samples to enable
parameter optimization.
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1. Introduction

Following early seminal contributions (Watts and Strogatz, 1998; Barabasi and Albert,
1999), network science has played a pivotal role in revealing the structure and interactions of
complex systems, such as social and transportation networks. More recently, this
methodological approach has been applied to neuroscience, helping to further characterize
the architecture of the human brain and launch the field of network neuroscience (Bullmore
and Sporns, 2009; Bassett and Sporns, 2017). Accordingly, various tools have been
developed to understand the brain as a complex network, highlighting variations in brain
organization across development (Gu et al., 2015), aging (Moss et al., 2013), and clinical
populations (Bassett et al., 2018). In many studies, brain networks are constructed from
anatomic or functional neuroimaging data as a single network or static representation
(Rubinov and Sporns, 2010; Sporns, 2013). As the human brain is intrinsically organized
into functionally specialized modules, a common approach for analyzing brain networks is
to investigate community structure, which identifies areas in the brain that are densely
connected internally (Sporns and Betzel, 2016). While this construction is useful, a growing
literature suggests that the brain, particularly its functional interactions, varies over time,
thus necessitating the need to characterize these dynamic changes (Lurie et al., 2020).

Multilayer network models have been proposed as an effective means of capturing the
temporal dependence between distributed neural circuits and quantitatively describing how
communities vary over time (Mucha et al., 2010; Kivela et al., 2014). Multilayer network
models can be used to optimize the partitioning of nodes into modules by maximizing a
multilayer modularity quality function that compares edge weights in an observed network
to expected edge weights in a null network. In this approach, two parameters are essential:
the intra-layer coupling parameter, which tunes the number of communities within a layer,
and the inter-layer coupling parameter, which tunes the temporal dependence of
communities detected across layers. Dynamic network measures derived from multilayer
modularity include but are not limited to flexibility, recruitment, and integration. Flexibility
quantifies how frequently a region changes its community membership over time (Bassett et
al., 2011); recruitment can be defined as the probability that a region is assigned to a
community that is the same as its initial pre-defined network (e.g., visual, sensorimotor, or
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limbic network); and integration can be defined as the probability that a region is assigned to
a community that is different from its initial pre-defined network (Bassett et al., 2015).

Initial applications of this approach have provided key insights into the brain network
dynamics that underlie learning (Bassett et al., 2011, 2015). Recently, there has been
increased enthusiasm to utilize these methods in the neuroimaging field (Table 1).
Specifically, these measures have been used to link network dynamics to inter-individual
differences in a broad range of functional domains, including motor learning (Bassett et al.,
2011, 2015; Wymbs et al., 2012; Telesford et al., 2016), working memory (Braun et al.,
2015; Finc et al., 2020), attention (Shine et al., 2016), language (Chai et al., 2016), mood
(Betzel et al., 2017), creativity (Feng et al., 2019; He et al., 2019), and reinforcement
learning (Gerraty et al., 2018). Additionally, dynamic network reconfiguration has been
suggested as a potential biomarker for diseases, such as schizophrenia (Braun et al., 2016;
Gifford et al., 2020), temporal lobe epilepsy (He et al., 2018), and depression (WWei et al.,
2017; Zheng et al., 2018; Shao et al., 2019; Han et al., 2020), and has been used to predict
antidepressant treatment outcome (Tian et al., 2020).

Despite these encouraging developments, several questions remain open. First, it is unclear
whether there are optimal parameter values for characterizing community structure
dynamics, and the extent to which parameter choice may affect the reliability of findings.
Second, the minimum data requirements to obtain reliable estimates for multilayer network-
based measures have not been established. Previous studies vary in scan duration from 5 min
to 3.45 h (see Table 1). Third, how the choice of task during the scan (e.g., resting state,
naturalistic viewing, or active tasks) impacts the reliability of multilayer network
measurements has not been directly compared. As dynamic network methods become more
widespread, a systematic evaluation of the impact of these important factors on the test—
retest reliability of those derived measures is important and timely, given concerns about the
reproducibility of neuroimaing research (Poldrack et al., 2017).

In this investigation, we aim to evaluate the impact of parameter selection, scan duration,
and task condition on the test—retest reliabilities of dynamic measures obtained from
multilayer modularity maximization (see Table 2 for an overview). We first identified the
optimal intra-layer and inter-layer coupling parameters for the particular multilayer
community detection algorithm that we employ, based on test-retest reliability. With the
optimized parameters, we then evaluated test—retest reliability at various scan durations (i.e.,
10, 20, 30, 40, 50, and 60 min) to determine the minimum data requirements for sufficient
reliability. Given the growing popularity of naturalistic viewing, we examined reliability
while participants were either watching Inscapes (Vanderwal et al., 2015) or movie clips
(e.g., “The Matrix ), as well as resting-state and a flanker task to directly quantify the
modulatory effect of mental states. Importantly, given recent updates to dynamic community
detection algorithms (Bazzi et al., 2016), we also evaluated the impact of algorithms on
dynamic measurements and their test—retest reliability.
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Material and methods

Datasets

Our primary analysis utilized data from the Healthy Brain Network-Serial Scanning
Initiative (HBN-SSI: http://fcon_1000.projects.nitrc.org/indi/hbn_ssi/), a project specifically
designed for evaluating the test—retest reliability of functional connectivity measures during
different task states. Ten out of thirteen participants whose median framewise displacement
(FD: Jenkinson et al., 2002) within 1.5 interqualtile range were included (29.8 + 5.3 years,
50% males, median FD ranging from 0.04 to 0.08 mm). A detailed description of the
experimental design and data collection can be found in O’Connor et al. (2017). Specific
details on the flanker task can also be found in our Supplementary Materials. Briefly, each
participant had 12 scanning sessions collected using the same imaging protocol over a 1-2-
month period. At each session, a high-resolution structural image and four fMRI scans (i.e.,
resting state, Inscapes, movie, and flanker; 10 min/condition) were collected. All imaging
data were collected using a 1.5 T Siemens Avanto MRI scanner equipped with a 32-channel
head coil in a mobile trailer (Medical Coaches, Oneonta, NY). Structural scans were
collected for registration using a multi-echo MPRAGE sequence (TR = 2.73 s, echo time =
1.64 ms, field of view = 256 x 256 mm2, voxel size = 1.0 x 1.0 mm3, flip angle = 7°). fMRI
scans were collected using a multiband echo-planar imaging (EPI) sequence (multiband
factor = 3, TR = 1.45 s, echo time = 40 ms, field of view = 192 x 192 mm?, voxel size =
2.46 x 2.46 x 2.5 mm3, flip angle = 55°).

To test the impact of implementation choices in the multilayer community detection code,
we included resting-state fMRI data from 25 adults from the Human Connectome Project
retest dataset (https://www.humanconnectome.org/study/hcp-young-adult/data-releases)
(Van Essen et al., 2013), as well as created a simulated multilayer network dataset (see
Supplementary Methods for details on these datasets). Furthermore, the generalizability of
parameters optimized on the HBN-SSI dataset was evaluated on the HCP retest dataset.

Imaging preprocessing

Functional images were preprocessed using the Configurable Pipeline for the Analysis of
Connectomes (C-PAC 1.3: http://fcp-indi.github.io/) with the following steps: (1)
realignment to the mean EPI image to correct for motion; (2) nuisance signal regression;
regressed out linear and quadratic trends, signals of the five principal components derived
from white matter and cerebrospinal fluid (CompCor, Behzadi et al., 2007), global signal
(YYang et al., 2014), and Friston 24-parameter motion model (Friston et al., 1996); and (3)
spatial normalization of functional data to Montreal Neurological Institute (MNI) space by
combining boundary based registration (BBR) (Greve and Fischl, 2009) and Advanced
Normalization Tools (Avants et al., 2011). Because we are interested in the impact of both
the event-related signals and the state evoked by the flanker task, we did not regress out task
effects. See Fig. 1 for the flowchart summarizing the major steps of the current analytical
framework.
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2.3. Network construction

We defined nodes in the network using the functional parcellation from the CC200 atlas
(Craddock et al., 2012) generated by a spatially constrained spectral clustering method. This
functional parcellation consists of 200 ROIs covering the whole brain, each of which is
homogeneous in its estimated functional connectivity. This commonly chosen atlas was
previously used for studying static functional connectivity in the HBN-SSI dataset
(O’Connor et al., 2017) and for evaluating the reproducibility and reliability of state-based
temporal dynamic methods (Yang et al., 2014). To determine whether our results were
sensitive to functional parcellations and the resolution of parcellations, we tested the
robustness of our findings using the Schaefer 200 and 600 brain parcellations (Schaefer et
al., 2018). After preprocessing, we extracted mean signals from each ROI and then applied a
sliding window to the time series. The window length (~100 s, 68 TRs, no overlap) was
selected based on a previous multilayer network study (Telesford et al., 2016), which
demonstrated that the number of communities stabilizes at a window length of ~100 s and
that the inter-region variance of flexibility peaks at a window size of 75-120 s across
different cognitive tasks. Since we are interested in comparing the test—retest reliabilities of
dynamic network measures among task conditions, we selected the window length of ~100 s
to also capture low frequency fluctuations with a low cutoff at 0.01 Hz. However, we
acknowledge that this window selection may not have sufficient temporal resolution to relate
network dynamic changes to changing conditions in naturalistic viewing or in the flanker
task.

For each window or layer, edges were estimated using wavelet coherence using the wavelet
coherence toolbox (Grinsted et al., 2004) (http://grinsted.github.io/wavelet-coherence/). As
the most commonly used edge estimation for multilayer network analyses (Table 1), wavelet
coherence is robust to outliers (Achard et al., 2006) and has advantages in terms of its utility
for estimating correlations between fMRI time series, which display slowly decaying
positive autocorrelations or long memory (Zhang et al., 2016; Telesford et al., 2017).
Specifically, magnitude-squared coherence Cy, between a given pair of regions (x, y) is a
function of the frequency (# and defined by the equation:

|ny(f)|2

D) = T DFyy

where Fy(7) is the cross-spectral density between region x and region y. The variables Fy (7
and F,(1) are the autospectral densities of signals from region x and region y, respectively.
The mean of Cy(#) over the frequency band of interest, in our case 0.01-0.10 Hz, is defined
as the edge weight between regions x and y. The range of wavelet coherence is bounded
between 0 and 1. For each subject, we obtained a 200 x 200 x 6 (region x region x window)
coherence matrix per task per session, which is coupled into a multilayer network by linking
a node to itself in the preceding and the following windows or layers (Mucha et al., 2010;
Bassett et al., 2011). Dynamic community detection was then performed for each session.
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2.4. Dynamic community detection algorithm

Multiplex communities can be defined by modularity maximization (Mucha et al., 2010),
spectral clustering (Lin et al., 2009; Michoel and Nachtergaele, 2012), or other data-mining
approaches (Stréele et al., 2009, 2011, 2012). Among these methods, the optimization of
multislice modularity is the most popular approach for fMRI research, possibly due to its
feasibility of representing dynamic functional networks (Bassett et al., 2011, Bassett et al.,
2013a, Bassett et al., 2013b). While there are numerous methods for determining community
structure, here we used a Louvain-like locally greedy algorithm (Blondel et al., 2008). We
chose this algorithm because: (1) it has been shown to outperform other community
detection methods (Yang et al., 2016), (2) is most commonly used in the field of network
neuroscience (Blondel et al., 2008), (3) has been adapted to multilayer network models
(Mucha et al., 2010; Bassett et al., 2011, Bassett et al., 2013a), and (4) has been commonly
used in studies linking multilayer network measures to cognition and disorders. For
detecting communities, the multilayer modularity quality function (Q) is optimized (details
given in Section 2.4.1) and is defined as in Mucha et al. (2010):

1

=55 2 {(Aij = 1M j0)our + i jojr Y (&(sir- )
ijlr

0

where s the sum of edge weights across all nodes and layers; &; is the Kronecker’s &-
function that equals 1 when 7= jand equals O otherwise. The element Ajj gives the strength
of the edge between nodes /and /in layer |, and the element Mj; is the corresponding edge
expected in a null model. Different choices of the null model in modularity could lead to
different community structures (Sarzynska et al., 2016); based on the scope of the current
paper, we adopted the widely used setting in the dynamic network reconfiguration papers:
the Newman-Girvan null model which defines Mj;; as:

kilkj1

1= 2m, ¢

where m; = %Eiinjl is the total edge weight in layer |. The variables kjj and k; are the intra-

layer strengths of node 7and node jin layer I, respectively. In the quality function, gj
represents the community assignment of node /in layer |, and gj, represents the community
assignment of node /in layer 7. Finally, 8(gj, gjr) = 1 if gj| = gjr and &(gi, gjr) = 0 if gjj # gjr.

We performed multilayer community detection using the generalized Louvain package
implemented in MATLAB (Lucas et al., 2011-2019). This method treats intra-layer and
inter-layer edges as unique and assigns communities to regions in all layers. This allows for
the investigation of communities that are coherent over time and simultaneously across
layers. Moreover, as the community labels are consistent across layers, this avoids the
common problem of community matching.

2.4.1. Algorithm selection—Optimization of the quality function or modularity (Q)
includes two phases: community detection and community merging (Fig. 2). In the first
phase, each node starts as its own community. Starting from a randomly chosen initial node,
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modularity is calculated after merging this node with every other community, one by one.
Then all merges that increase modularity are identified. The default algorithm (Maximum
Modularity Method: MMM) and the revised algorithm (Modularity Probability Method:
MPM) differ in how the merge is selected. The MMM selects the merge that produces the
highest increase in modularity. In the MPM, a probability is attached to all merges that
increase modularity (the higher the proportion of modularity increases, the higher the
probability). Afterward, a merge is chosen randomly, weighted by the probability
distribution of modularity increases. If no improvement in modularity is found, the node is
left unmerged. This process is then repeated sequentially for all other nodes. In the second
phase, any multi-node community is merged and treated as a single node. Then the two
phases are repeated until all communities are merged into a single community or no further
improvement is possible.

The MMM was the default method implemented in the original code publicly released in
2011. The MPM was added in 2016 (Version 2.1) to address an abrupt change in the
behavior of the default method when the inter-layer coupling parameter increased (see Bazzi
et al., 2016 for details). This abrupt change was initially observed in financial data and has
not been evaluated in neuroimaging data. Given that the default method was widely used in
the fMRI literature, we evaluated the impact of the default and the improved methods on the
values of dynamic network measures, as well as the reliability and validity of these measures
before making a selection.

2.4.2. Parameter optimization—When optimizing multilayer modularity, we must
choose values for the two parameters y and w. The parameter -y, is the intra-layer coupling
parameter for layer I, which defines how much weight we assign to the null network and
controls the size of the communities detected within layer I. The parameter wj) is the inter-
layer coupling parameter, which defines the weight of the inter-slice edges that link node jto
itself between layer | and layer r; this parameter controls the number of communities formed
across layers. Here, following previous work in the neuroimaging literature (Table 1), these
two parameters have been set as constants () = y and wjr = w) across layers. The choice of
these two parameters is critical for multilayer modularity optimization, as they have a large
impact on the detected community structure, as well as on the dynamic measures derived
from multilayer communities (Bassett et al., 2013a; Mattar et al., 2015; Chai et al., 2016).
Multilayer modularity approaches were also shown to detect spurious group differences in
dynamic network measures when these parameters were set inappropriately (Lehmann et al.,
2017). Here, we optimized these two parameters based on test—retest reliability. Specifically,
we computed intra-class correlation coefficients (ICC) for each of the three dynamic
network measures across a range of y and w for each of the four tasks. Specifically, we
considered the space spanned by the following ranges: = [0.95, 1.3] and w = [0.1, 3.0]. We
determined these ranges by applying the criterion that the number of modules be = 2 and <
100. As the space for y is much smaller than that for w, a smaller increment of 0.05 was
used for y and an increment of 0.1 was used for w. After estimating the ICC at each point in
this space, we identified the parameter value pair that produced the largest ICC. The yand w
pair that produced the largest ICC most frequently across the 12 conditions (3 dynamic
network measures and 4 tasks) was chosen as the optimal one for the dataset.
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In addition to ICC, we also used discriminability to quantify the reliability and optimize the
parameters for multilayer network measurement. Discriminability is a non-parametric
statistic to quantify the degree to which an individual’s samples are relatively similar to one
another, which can be used to measure reliability without restricting the data to be univariate
and Gaussian distribution (Bridgford et al., 2019). Here, we computed the discriminability
across the y-w plane for flexibility, integration, and recruitment separately. Considering n
subjects, where each subject has s measurements, then we have V= nx stotal
measurements across subjects for a given dynamic measure. Then discriminability is
computed in the following three steps: (1) Compute the distance (in this case the Euclidean
distance) between all pairs of measurements, resulting in a A/x A/ matrix; (2) For
measurements of all subjects, compute the fraction of times that a within-subject distance is
smaller than a between-subject distance, resulting in A/ x (s-1) numbers between 0 and 1.
The discriminability of the dataset is the average of the above mentioned fractions, resulting
in a single number between 0 and 1. A high discriminability indicates that within-subject
measurements are more similar to one another than between-subject measurements,
suggesting the measurement is more reliable. The calculation of discriminability is
conducted using R package (https://github.com/ebridge2/Discriminability).

2.4.3. Other considerations—When implementing the GenLouvain method, we used
fully weighted, unthresholded coherence matrices to minimize the known near degeneracy
of the modularity landscape (Good et al., 2010). After applying this algorithm, the 200 ROIs
were assigned to communities that spanned across layers. Due to the roughness of the
modularity landscape (Good et al., 2010) and the stochastic nature of the algorithm (Blondel
et al., 2008), the output of community detection often varies across optimizations. Thus,
rather than focus on any single optimization, we computed the dynamic measures based on
100 optimizations, following the precedent of previous work (Bassett et al., 2011, Bassett et
al., 20133, Bassett et al., 2013b, 2015). Specifically, we first calculated network measures
(see next section for details) for each run of the community detection algorithm, and then we
averaged those measures over the 100 optimizations.

2.5. Calculation of dynamic network measures

For each participant, we computed the following measures to characterize the dynamics of
the multilayer network based on the dynamic community structure detected in each
optimization.

2.5.1. Flexibility—For each brain region, the flexibility is calculated as the number of
times a brain region changes its community assignment across layers, divided by the number
of possible changes, which is the number of layers minus 1 (Bassett et al., 2011). This
measure characterizes a region’s stability in community allegiance and can be used to
differentiate brain regions into a highly stable core and a highly flexible periphery (Bassett
et al., 2013b). Regions with high flexibility are thought to have a larger tendency to interact
with different networks. Average flexibility across the brain is also computed to examine the
global flexibility of the system.
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2.5.2. Module allegiance—The module allegiance matrix is the fraction of layers in
which two nodes are assigned to the same community (Bassett et al., 2015). For each layer, a
co-occurrence matrix (200 x 200) can be created based on the community assignment of
each node pair. The element of the co-occurrence matrix is 1 if two nodes are assigned to the
same community, and 0 otherwise. The module allegiance matrix is computed by averaging
the co-occurrence matrices across layers, and the value of the matrix elements thus ranges
fromOto 1.

2.5.3. Integration and recruitment—To quantify the dynamic functional interactions
among sets of brain regions located within predefined functional systems (i.e., seven
networks defined by Yeo et al., 2011), we computed two network measures based on the
module allegiance matrix: recruitment and integration (Bassett et al., 2015). Recruitment can
measure the fraction of layers in which a region is assigned to the same community as other
regions from the same pre-defined system. The recruitment of region i in system S is defined
as:

where ng is the number of regions in S, and Pjj is the module allegiance between node i and
node j. The integration of region i with respect to system S is defined as:

s_ 1 .
= N —ng ZPU
JES

where N is the total number of brain regions. Integration IiS measures the fraction of layers in
which region i is assigned to the same community as regions from systems other than S.

2.6. Assessment of reliability

Test-retest reliability and between-code reliability were assessed with the ICC estimated
using the following linear mixed model:

Yij(v) = noo(v) + 0ip(v) + &j(v),

where Y/j;(v) represents the dynamic measure (i.e., flexibility, integration, or recruitment) for
a given brain region v (v =1, 2..., 200), /indexes participants (/= 1, 2, ... 10), and jindexes
either the session for analyses of test—retest reliability or the code implementation options
for analyses of between-code reliability (/= 1, 2). Further, oo (v) is the intercept or a fixed
effect of the group average dynamic measure at region v; 6jq (V) is the random effect for the
ith participant at region v; and e;j(v) is the error term. The total variance of a given dynamic
measure can be decomposed into two parts: (1) inter-individual variance across all
participants (cé = Var[e]), and (2) intra-individual variance for a single participant across two

measurements (cg = Var[s]). The reliability of each dynamic measure can then be calculated
as:
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55
Ge+6‘(2:.

ICC =

The model estimations were implemented using the linear mixed effect (Ime) function from
the nIme R package (http://cran.r-project.org/web/packages/nime).

2.7. Determination of the minimal data requirement

To establish minimal data requirements for sufficient test—retest reliability, we compared
ICC values of six scan durations: 10 min, 20 min, 30 min, 40 min, 50 min, and 60 min.
Different scan durations were obtained by pseudo-randomly selecting 1, 2, 3, 4, 5, or 6 10-
min sessions from 12 available sessions for each participant. Dynamic features were first
computed for each of the 12 10-min sessions, and then averaged across the sessions that
were selected for each scan duration. We did not compute the dynamic measures on
concatenated time series data to avoid artifactually introducing community changes at the
concatenation point. For each scan duration, ICC was estimated using linear mixed models.
To increase the robustness of the results and to extract stable features, we repeated the
analysis on 100 randomized samples for each duration. The same process was performed for
each of the four tasks to determine the data necessary for each condition.

2.8. Determination of task dependency

To investigate how estimates of test-retest reliability might depend on task states, we first
used hierarchical linear mixed models to assess between-condition and between-session
reliability in the same model. Hierarchical linear mixed models separate the variations
among task conditions (i.e., between-condition reliability) from variations between sessions
(i.e., test—retest reliability) by estimating variance between participants, across the four task
conditions (for the same participant), and between sessions within each condition (O’Connor
etal., 2017). Our model took the following form:

Yijk(v) = pooo(v) + Bjk(V) + ¢K(v) + &ijk (V) -

The dynamic measure for a given brain region v can be denoted as Yijk(v), where 7indexes
over sessions, j indexes over conditions, and k indexes over participants. In this model, Hggo
represents the intercept; 6ji represents a random effect between sessions for the j-th
condition of the k-th participant; ¢y represents a random effect for the A-th participant; and
ejjk represents the error term. The variables jk, ¢, and ejji are assumed to be independent
and to follow a normal distribution with a zero mean. The total variances of a given dynamic
measure can be decomposed into three parts: (1) variance between participants

(cé = Var[¢]); (2) variance between conditions for the same participant (0% = Var[0]); and (3)

variance of the residual, indicating variance between sessions (c2 = Var[e]). The reliability of
each dynamic measure across conditions can be calculated as
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%
ICC (conditions) = R
o2 + o3
$T°0
and across sessions as
Gé + G%
ICC (sessions | conditions ) = 55 -
G¢ + %9 + Gg

Next, we estimated the test—retest reliability for each task using the simple linear mixed
models described in Section 2.6. The main effect of task condition on ICC values was tested
using a nonparametric Friedman test. The Wilcoxon signed-rank test was used for post hoc
analyses to determine which tasks differed significantly in test—retest reliability. As ICCs
consistently increase with scan duration (Laumann et al., 2015; Xu et al., 2016; O’Connor et
al., 2017), hierarchical and simple linear mixed models were performed using 60 min of data
(the optimal scan duration in the current sample) to determine the impact of task condition.

3. Results

3.1. Impact of modularity maximization algorithm

In 2016, a comprehensive examination of multilayer networks with financial data revealed
an abrupt discontinuity in values across the y-w landscape when the Maximum Modularity
Method (MMM; the default method) was used. These findings raised concerns about the
robustness of MMM (see Fig. 5.4 in Bazzi et al., 2016). In our study, when we used MMM,
we observed a similar discontinuity in multilayer network-based dynamic measures in two
independent human brain imaging datasets (HBN-SSI and HCP), as well as in a simulated
multilayer-network dataset (Fig. 3). When the updated Modularity Probability Method
(MPM) was used, we no longer observed such apparent discontinuities. To compare the
dynamic measures computed using these two methods, we assessed the between-method
reliability of flexibility for the two algorithms. Consistent with our intuition, we found that
most of the ICC values above the discontinuity were near zero, suggesting that flexibility
values obtained using different randomization methods can differ dramatically in that
portion of the parameter space. In addition to flexibility, we also investigated the impact of
these two methods on integration and recruitment. We found that flexibility was the most
impacted, integration was impacted less, and recruitment was the least impacted (Fig. S1).
Furthermore, we found that the updated method produced measures with greater test—retest
reliability than the default method (Fig. S2), and better recovered known underlying
dynamics in the simulated data - especially in the portions of parameter space above the
apparent discontinuity (See Figs. S3 and S4 for details). Thus, the updated method (MPM)
was used in the present work.

3.2. Parameter optimization based on test-retest reliability

Because our goal is to optimize multilayer network-derived measures to study individual
differences, we chose our parameters based on test—retest reliability scores. The parameter -y
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is the intra-layer coupling parameter, which defines how much weight we assign to the null
network and controls the size of communities detected within a layer. The parameter w is an
inter-layer coupling parameter which defines the weight of the inter-slice edges that link a
node to itself between two consecutive layers; it controls the number of communities formed
across layers. We found that the selection of -y and w had a large impact on the test-retest
reliability of dynamic network measures (Fig. 4). Depending on parameter choice, test—
retest reliability can range from poor to good. Overall, recruitment (mean ICC across the
landscape: 0.54 + 0.11) is more reliable than integration (0.37 + 0.17), and integration is
more reliable than flexibility (0.30 = 0.15). For each measure, the pattern of ICC values
across the 2-dimensional parameter space is highly similar across tasks. For each task, the
portions of the parameter space with good ICCs are consistent across measures. Thus, we
were able to identify an optimal range of parameters generalizable across tasks and
measures. For flexibility and integration, good ICCs (= 0.6) occur within a range of y= [1.0-
1.1] and w = [1.7-3.0]. For recruitment, the range is broader: y=[1.05-1.25] and w = [1.2—
3.0].

For the current analysis, we chose the parameters y= 1.05 and w = 2.05, which produce
maximal ICC values in 7 of the 12 -y-w planes and still produce relatively good ICC values
(ICC > 0.65) in the other 5 y-w planes. Tuning w up to 2.05 yielded low estimates of
flexibility. In a previous study, when the w value was too high, flexibility values followed a
heavy-tailed distribution with most values of flexibility equal to zero (i.e., close to a static
network representation) (Telesford et al., 2016). In our investigation, the distribution of
flexibility did not resemble this heavy-tailed distribution (Fig. S5A), thus mitigating the
potential concern that the parameter was tuned too high.

Because the ICC is determined by both within- and between-subject variability, good ICC
could be caused by increased between-subject variability, decreased within-subject
variability, or a combination of both. To understand the driver of this variation in test-retest
reliability, we examined the landscape of dynamic measures, as well as the between- and
within-subject variance of these dynamic measures. To make the variance values
comparable, we normalized the between- and within-subject variance by the total variance.
We found that the mean and variance of these dynamic measures also depended on the
values chosen for y and w (Fig. S6). The parameter values associated with good ICC
overlapped with areas showing high between-subject variability and low within-subject
variability, and largely overlapped with areas that had relatively low values of the dynamic
measures (with a few exceptions for integration).

When the MPM was used, we found that reliability was poor for the previously
recommended and commonly used values of y= 1 and w = 1. To better understand this poor
reliability, we compared the recommended parameter choice with our reliability-optimized
set. We found that although the spatial maps of flexibility were similar between two
parameter choices (r=0.70), the magnitude of flexibility was much larger for [y= 1, w=1]
compared to [y= 1.05, w = 2.5]: 0.66 £ 0.01 vs 0.16 + 0.01, respectively (Fig. S5A). In the
reviewed literature, when [y= 1, w = 1] was used, the range of flexibility is typically < 0.25
(Table 1). This discrepancy is likely because previous studies used the MMM (Bassett et al.,
2011, Bassett et al., 2013a, Bassett et al., 2013b, 2015; Telesford et al., 2016; Finc et al.,
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2020). The poor ICC of [y= 1, w = 1] (mean: 0.19 + 0.21) relative to [y= 1.05, w = 2.5]
(mean: 0.79 = 0.08) when the updated method was used was driven by the much lower
between- and higher within-subject variance for [y= 1, w = 1] compared to [y= 1.05, w =
2.5] (except for the visual cortex).

To test whether functional parcellation and the resolution of a parcellation have an impact on
dynamic reconfiguration, we repeated our analysis using Schaefer et al. (2018) 200 and 600
functional parcellations. We found that our results are relatively stable across different
parcellations with the same number of ROIs, but parcellation resolution has an impact on
parameter selection. Specifically, ICC values and dynamic network measures are similar
between the Schaefer 200 and Craddock 200 atlases, and the optimized »-w are identical for
the two atlases (= 1.05 and w = 2.5) (Fig. S7). However, when the number of ROIs
increases from 200 to 600, values of dynamic reconfiguration measures increase and a
higher y value is required to achieve good ICC values (Fig. S8). The optimized - w for this
higher resolution atlas is: y=1.15 and w = 2.6. These results suggest that higher resolution
atlases may augment values for node reconfiguration measures by increasing the number of
communities at parameters around = 1.05 and w = 2.5. However, these measures are not
reliable. Higher values for the inter-layer coupling parameter are needed to generate
dynamic communities that span multiple layers and higher values for the intra-layer
coupling parameter are needed to reduce the number of communities to a level comparable
to that of a low-resolution atlas.

To test whether the optimized parameters are generalizable, we applied the same multilayer
analysis to HCP data and evaluated the test-retest reliability of flexibility. Compared to
results for the HBN-SSI data, areas with relatively better reliability were located at values
with lower y and higher o for the HCP data, although flexibility values were lower.
Importantly, we were unable to identify any parameter value pairs with an ICC = 0.6 for the
HCP data, and the overall reliability is poorer for the HCP data compared to HBN-SSI data
(HBN-SSI mean: 0.30 + 0.15; HCP mean: 0.19 + 0.05) (Fig. 5). This can be explained by
lower between-subject variability and higher within-subject variability in the HCP data. To
investigate the impact of preprocessing, we repeated our analysis on the HCP data using
publicly released extensively preprocessed data. We found that both the flexibility values
and reliability for the HCP data were similar between CPAC and HCP preprocessing, though
the average reliability across the )~ landscape is higher for the HCP pipeline (CPAC mean:
0.19 + 0.05; HCP mean: 0.27 £ 0.04). These results suggest that parameters optimized in
one dataset (e.g., HBN-SSI, HCP) and/or preprocessing strategy (e.g., HCP pipeline
employed ICA-FIX, while the C-PAC based pipeline used CompCor and global singal
regression) may not be optimal for others (See Fig. 5 for visualization of y-w landscapes for
HBN-SSI: CPAC, HCP: CPAC, and HCP: Enhanced).

Furthermore, we tested whether parameters optimized based on ICC are generalizable to
parameters optimized for discriminability - a reliability index that is applicable to
multivariate data (e.g., full brain or connectome). Similar to ICC, we found that
discriminability was highest for recruitment, followed by integration, and lowest for
flexibility (Fig. S9). For recruitment, most discriminability values across the y-w plane were
high (>0.9; Bridgford et al., 2019). For integration, high discriminability values were located
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in the portion of »-w with medium ICC. For flexibility, high discriminability values were
located in the portion of »-w with small ICC. Our results illustrate that parameters
optimized based on one criterion may not always be optimal for another criterion.

3.3. Data requirements for characterizing inter-individual differences in network

dynamics

To establish the minimal data requirements for these types of analyses, we calculated the
ICC for each measure and each task at six different scan durations: 10 min, 20 min, 30 min,
40 min, 50 min, and 60 min. Consistent with previous static analyses (Laumann et al., 2015;
Xu et al., 2016; O’Connor et al., 2017), we found that the test-retest reliability of dynamic
measures improves with increased scan duration, and that this pattern is consistent across
tasks and dynamic network measures (Fig. 6). From 10 to 60 min, the largest improvement
is from 10 to 20 min. After 40 min, most regions achieved good ICCs and improvements
were less notable for longer scan durations. For regional and system-level variations in
improvement of reliability as a function of scan duration, see Fig. S10.

Regarding the question of how much data is needed for sufficient reliability, the answer
depends on the criteria, the task, and the measure. Here, we define good test—retest reliability
as over 50% of ROIs with ICC = 0.5 (Xu et al., 2016). For the movie condition, good test—
retest reliability was achieved for all three measures at 20 min (81.5% of ROIs had an ICC =
0.5 on average across all three measures) (Fig. 7). For the flanker condition, good reliability
was achieved at 20 min for integration (83.0% of ROIs ICC = 0.5) and recruitment (57.0%
of ROIs ICC = 0.5). For the rest and Inscapes conditions, good reliability was achieved at 20
min only for integration (52.0% and 55.5% of ROIs ICC = 0.5, respectively). With 30 min of
data, all measures and all tasks had good test—retest reliability. Across scan duration and task
condition, integration is more reliable than recruitment (Wilcoxon signed-rank test: p <
0.001) and recruitment is more reliable than flexibility (o= 0.02).

When data for one task is insufficient, a potential solution is to combine data across different
tasks to increase scan duration, and thus improve reliability (O’Connor et al., 2017; Elliott et
al., 2019a). To test whether this approach is relevant to the types of analyses performed here,
we compared the ICCs obtained from 10 min of resting state data with the ICCs obtained
from 10 min of Inscapes, movie, or flanker task condition, as well as those obtained from
longer data created by adding either more resting state data or data from the other three tasks
(Fig. 8). We found that at 10 min, ICCs are poor for all four tasks (over 75% of ROIls with
ICC < 0.4), with resting state the poorest (96.5% of ROIs with ICC < 0.4). With increased
scan duration, the reliability for the pure task condition increases, with the movie condition
having the most ROIs showing good ICC at each scan duration. When comparing pure
resting state data with mixed data of the same duration, generally the pure data had a greater
number of ROIs with good to excellent ICC compared to the mixed data. When comparing
10 min of resting state data with longer mixed data, we found that combining data from
different tasks improved reliability. The degree of improvement depended more on how
much data was combined, and less on what task conditions were combined.

Neuroimage. Author manuscript; available in PMC 2021 January 25.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yang et al.

Page 15

3.4. Task modulation on test—retest reliability of network dynamics: hierarchical linear
mixed model

To separate variation among scan conditions from variations between sessions, we assessed
between-condition reliability and between-session reliability simultaneously in a
hierarchical linear mixed model. With the optimized »-w and the maximal amount of data
available (60 min), we found that both between-session (two sessions, 60 min/session) and
between-condition (four conditions) reliability were excellent (between-session median +
interquartile range: flexibility, 0.76 + 0.05; integration, 0.80 £ 0.02; recruitment, 0.77 +
0.08; between-condition: flexibility, 0.74 £ 0.10; integration, 0.76 + 0.07; recruitment, 0.77
+ 0.16) (Fig. 9). Consistent with previous work (O’Connor et al., 2017), we found that
between-condition reliability of the visual and somatomotor network tended to be the
poorest for recruitment which quantifies within-network functional interactions. Because
different task states vary systematically in the richness of visual stimuli (movie > Inscapes >
flanker > rest) and motor demands (flanker > the other three conditions), it is reasonable that
these primary networks re-configure themselves according to unique task demands.

3.5. Task modulation on test-retest reliability of network dynamics: linear mixed model

Following the high-level model, we investigated test—retest reliability for each task
separately using simple linear mixed models. We found that all four tasks have good to
excellent test—retest reliability for all three measures (Fig. 10). Median * interquartile range
of ICC for rest, Inscapes, movie, and flanker were: flexibility (0.73 £ 0.09, 0.75 + 0.09, 0.81
+0.07, 0.73 £ 0.08), integration (0.78 £ 0.05, 0.76 + 0.05, 0.84 + 0.04, 0.79 £ 0.05), and
recruitment (0.74 £ 0.13, 0.74 £ 0.16, 0.81 £ 0.09, 0.76 £ 0.11). When reliability was
directly compared between tasks, there was a significant main effect of task for all three
measures (Friedman test: p < 0.001). Using post hoc testing, we found that the movie
condition displayed significantly better test—retest reliability in all dynamic network
measures than the other three conditions (Wilcoxon signed-rank test: all p-values < 0.001,
Bonferroni corrected for 18 tests: 3 measures x 6 possible pairing).

For the comparison of the remaining conditions, the results were measure dependent. For
flexibility, test—retest reliability in the Inscapes condition was significantly higher than in the
flanker condition (p < 0.001, corrected), and the other comparisons were not significant; for
integration, reliability differed significantly (flanker > rest > Inscapes, p < 0.001, corrected);
for recruitment, reliability in the flanker condition was also significantly higher than in the
rest and Inscapes conditions (p < 0.001, corrected). Generally, the reliability of these
dynamic measures did not simply increase as a function of task engagement. Higher ICC
scores were typically associated with relatively higher between-subject variance and lower
within-subject variance (Fig. 10).

After considering overall reliability (median ICC), we next visualized regional and network
differences in reliability between tasks. Consistent with overall results, we found that the
movie condition exhibited higher reliability than the other three conditions in most brain
regions/networks (Fig. 11). The other three conditions are similar to each other with a few
exceptions: flexibility of the somatomotor, visual, and default mode networks, and
recruitment of the visual and somatomotor networks. The observation that task effects were
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most robust within the primary cortices is consistent with the hierarchical linear mixed
model and with previous work (O’Connor et al., 2017). Furthermore, we found that the
spatial topographies of ICC differ among dynamic measures. This is expected because
different measures capture different features of the dynamic community structure. Overall,
the spatial variation of ICC was small for integration at 60 min (i.e., all regions showed good
to excellent reliability) across conditions. The spatial topography for flexibility and
recruitment seems more complex. For example, the visual cortex was most reliable for
recruitment during the movie condition but least reliable for flexibility. These results may
suggest that the likelihood that a visual region will be assigned to the same community as
other visual network regions (quantified by recruitment) is stable during the movie watching
condition when visual stimuli were continuously presented. However, the number of times
that a visual region switches its community membership (captured by flexibility) is not as
reliable.

3.6. Addressing concerns regarding head motion

Head motion remains a major concern for dynamic functional connectivity estimation (Yang
et al., 2014; Bassett et al., 2018; Satterthwaite et al., 2019). In the present work, we only
included participants with minimal head motion (median FD range: 0.04~0.08 mm). During
preprocessing, we regressed out 24 motion-related parameters (Friston et al., 1996); as well
as controlled motion with more generalized approaches such as global signal regression at
the individual level (Yan et al., 2013; Yang et al., 2014; Lydon-Staley et al., 2019a). To
provide further insights into this concern, we examined the correlation between head motion
(median FD) and the global mean of each dynamic measure and no significant correlations
were found. Furthermore, we re-estimated test—retest reliability for flexibility on the movie
condition using the optimized parameter while including median FD as a covariate at the
group level in the linear mixed model. We found similarly good reliability with and without
head motion included in the model (ICC = 0.67 and 0.74, respectively), suggesting that the
impact of head motion on test-retest reliability was small.

4. Discussion

Optimizing the reliability of dynamic network methods is key to accurately characterizing
trait-like individual differences in brain function. The present work examined the impact of
the modularity maximization algorithm, network parameter selection, scan duration, and
task condition on the test-retest reliability of dynamic network measures obtained using
multilayer network models. We found that each of these factors impacted reliability to
differing degrees. As suggested by prior work, optimal parameter selection was found to be
an important determinant of reliability; interestingly, our findings revealed a more complex
story than previously appreciated, as reliability across the multivariate parameter space was
found to depend on an update in the multilayer community detection algorithm. Consistent
with findings from the static functional connectivity literature, scan duration was found to be
a much stronger determinant of reliability than scan condition. As discussed in greater detail
in the following sections, our findings suggest that rather than selecting a single set of
parameters or methods previously used in the literature, optimization of multilayer network
models per dataset is essential.
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Multilayer network models of neural systems offer the potential to illuminate time-varying
aspects of brain function that could not otherwise be revealed from traditional static network
approaches. The aim of the present work is to quantify and optimize test-retest reliability for
multilayer network models, establish minimum data requirements, and identify which task
condition(s) can provide a reliable context in which to investigate time-invariant network
dynamics. Although we only evaluated the reliability of the GenLouvain algorithm, which is
one of the most popular algorithms, the framework presented can be applied to other
software and multilayer network modularity-maximizing algorithms. With increased interest
in linking the time-resolved reconfiguration of functional brain networks to normal
cognition and disorders, it is important for the field to establish standards to guide the
application of dynamic connectivity approaches. The present work systematically evaluated
the impact of parameter selection, scan duration, and task condition on the test—retest
reliability of dynamic network measures, which addresses an important gap in the literature.
Although the present work focused on fMRI data, our analytical methods and results are
broadly applicable, as multilayer network modeling has been widely applied to other
neuroimaging modalities (e.g., structural MRI, EEG, MEG) and non-neuroimaging data,
such as social, economic, gene, and protein networks (Boccaletti et al., 2014).

4.1. A cautionary note on the selection of GenLouvain algorithms

When using the GenLouvain algorithm for modularity maximization, a critical step is to
merge nodes into communities. The MMM is the default method used in the implementation
of this algorithm, which merges nodes that produce the highest increase in modularity. In
2016, a newer approach was introduced, the MPM, which selects merges based on the
probability distribution of modularity increases. A previous study of financial data reported
that when the default method was used, two computational issues arise in the multilayer
setting: an under-emphasis of persistence and an abrupt drop in the number of intra-layer
merges in certain portions of the parameter space - both of which can lead to an abrupt
change in the quantitative measure derived (Bazzi et al., 2016). Here, when the default
method was used, we observed an abrupt dropoff in the optimization landscape in brain
imaging data as well as in synthesized data (Fig. 3).

The abrupt discontinuity in the )~ landscape is not a coding error. Instead, it is a reflection
of how the edges are defined (e.g., functional neuroimaging datasets generally use
normalized correlation/coherence values between regions/voxels), the relationship between
the multilayer inherited parameters, and the strengths of edges. The abrupt change occurs
when the inter-layer coupling parameter (w) is greater than the average intra-layer edge
strength. As the optimization of the modularity function has proven to be non-deterministic
polynomial-time-hard (Newman, 2006), the default deterministic algorithm suffers from
local minimum issues and results in fewer merges - especially when w values are high. In
contrast, the probabilistic approach, with a mechanism analogous to a simulated annealing
algorithm, is better suited to approximate the global optimum of the quality function (Bazzi
et al., 2016). Using the probabilistic approach leads to more variability across multiple
simulations for a given dataset, thus mitigating the abrupt change seen in the optimization
landscape.
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The fact that abrupt discontinuities were observed consistently regardless of data type raises
concerns regarding the accuracy of dynamic measures derived using the default option and
with parameters selected above the point of apparent discontinuity in the 2-dimensional
parameter space. Based on these results, as well as our demonstration that the MPM has
higher test-retest reliability and better validity compared to the MMM, we strongly
recommend that investigators use the updated method for multilayer network analysis,
especially when applied to ordinal or temporal networks. Caution should be taken when
attempting to judge findings obtained with the MPM based on older findings obtained with
the MMM.

4.2. Parameter optimization for multilayer network analyses

To detect community structure, we employed the most commonly used algorithm to
maximize the multilayer modularity quality function (Mucha et al., 2010). Communities that
are detected using this algorithm are highly dependent on free parameters (i.e.,  and w),
thus we aimed to explore the space defined by these parameters and identify optimal
parameter selection ranges in terms of test—retest reliability. As one parameter may affect the
other parameter’s optimal setting, it can prove useful to optimize )-w jointly. Although
several heuristics exist for choosing the “best ” value of y and w (Bassett et al., 2013a; Chai
etal., 2016; Weir et al., 2017), optimizing the ICC has not previously been proposed,
possibly because it requires the acquisition of a retest dataset. Our results suggest that a
systematic evaluation of the parameters in terms of reliability has marked utility, as
parameter choices directly impact reliability.

In the 2-dimensional parameter space of the »-w plane, we were able to find a range of
parameters that produced dynamic network measures with good reliability. For flexibility
and integration, better reliability was achieved with higher w (i.e., when there is a stronger
temporal coupling) and lower y (i.e., when there are fewer communities). For recruitment,
good reliability was achieved with high w and a wide range of i from low to high. Stronger
temporal coupling in a multilayer network is typically associated with lower temporal
variability in network partitions over time. The good test—retest reliability obtained at high w
and low y for flexibility and integration, may suggest that the temporal variability reserved
after tuning up w is composed of more between-subject variability than within-subject
variability when the number of communities is small. The relative insensitivity of
recruitment to the number of communities may be explained by our choice of predefined
systems in which ROIs tend to be grouped together over time. These results suggest that
ICC-guided parameter selection can potentially maximize between-subject variability and
minimize within-subject variability. This practice is consistent with the recent call for
including assessment and optimization for reliability as a common practice in neuroimaging,
as it helps to improve statistical power and decrease the amount of data required per subject
(Zuo et al., 2019).

A critical cautionary note for the identification of an optimal parameter set comes from the
dependence of reliability across the 2-dimensional parameter space on the specific
modularity maximization algorithm. A parameter choice of [ )= 1, w = 1] was recommended
in the literature based on modularity and partition similarity, as well as the differences

Neuroimage. Author manuscript; available in PMC 2021 January 25.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yang et al.

Page 19

between measures estimated on a real network compared to an appropriate multilayer
network null model (Bassett et al., 2013a). Following these initial publications (Bassett et
al., 2011, Bassett et al., 2013a), most studies have used [y= 1, w = 1] as their parameter
choices (see Table 1) and tested the robustness of this parameter selection with small
variations. Given this parameter choice falls in the dropoff area when the default MMM was
used (Figs. 3 and S1) and it also falls in the poor test-retest reliability area when the updated
MPM was used (Fig. S5), the parameter choice of [ =1, w = 1] needs to be reconsidered.

4.3. Generalizability of the optimized parameters to HCP data

To determine whether the parameters optimized for one dataset can be generalized to a
different dataset, we compared the reliability landscapes from the HBN-SSI to those
obtained with the HCP Test-Retest dataset. Recognizing the differences in preprocessing, we
compared two datasets with identical preprocessing using CPAC. To investigate the impact
of preprocessing, we also repeated the HCP analysis using the publicly released
preprocessed data using the Enhanced HCP pipeline. We found that the reliability between
the HCP Test (60 min) and Retest (60 min) data was much lower than that observed in the
HBN-SSI dataset across the 2-dimensional )-w parameter space and this pattern was
consistent regardless of preprocessing pipelines. One potential explanation for this
difference between two datasets is that HCP data were acquired using faster sampling than
the HBN-SSI data (TR: 0.72 s vs. 1.45 s). While static studies have indicated that increasing
temporal resolution can either improve (Birn et al., 2013; Liao et al., 2013; Zuo et al., 2013)
or have no impact (Horien et al., 2018) on reliability, the opposite was observed for dynamic
analyses (Choe et al., 2017). In addition to TR, these two datasets were collected in scanners
with different magnet strength (1.5 T vs 3 T) and used different multiband factors (3 vs 8 for
HBN-SSI and HCP, respectively). Furthermore, although the subjects in the HCP and HBN-
SSI were similar in terms of participant age and sex (HBN-SSI: 29.8 + 5.3 years old, 50%
males; HCP: 30.3 £ 3.3 years old, 36% males), intervals between acquistion of test and
retest datasets differed. For the HBN-SSI, the sessions were acquired within two months,
while the HCP has a large variation in test—retest interval (range from 52 to 326 days: 133.4
+ 58.3 days). These factors may impact the reliability of network flexibility assessment.

Importantly, our results raise significant concerns about the potential dependencies of
‘optimal parameters’ for multilayer network analysis on the datasets employed, beyond the
specific properties identified in our work (i.e., amount of data per subject, or per condition).
Demonstrating that test—retest reliability can differ substantially between datasets is a
significant concern, as it suggests that parameters optimized in one dataset may not be
optimal for others. Compounding the challenge at hand, few data collection efforts include
test—retest samples, and few contain the amounts of data per subject that our analyses
suggest may be needed to achieve sufficient reliability. These varying factors raise concerns
about the appropriateness of applying this approach to datasets that do not have a retest
sample. It is also important for future studies to assess the generalizability of parameter
optimization to datasets harmonized for key aspects of undesirable non-biological sources of
variation, such as scanner manufacturer, acquisition protocol, and preprocessing steps. If
such datasets are not available, applying statistical harmonization techniques, such as
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ComBat (i.e., combining batches) (Johnson et al., 2007; Fortin et al., 2018; Yu et al., 2018),
may decrease unwanted site effects and optimize multilayer network analysis.

4.4. Minimal data requirements for obtaining reliable dynamic estimates

4.5.

Many factors impact the test—retest reliability of functional connectivity-based measures,
among which scan duration is one of the most important (Zuo and Xing 2014; Zuo et al.,
2019). Establishing minimal data requirements to obtain reliable estimates is an active
research area for static connectivity analysis (Van Dijk et al. 2010; Anderson et al., 2011;
Birn et al., 2013; Liao et al., 2013; Zuo et al., 2013; Laumann et al., 2015; Xu et al., 2016;
Noble et al., 2017; Tomasi et al., 2017). However, to date, few efforts have been made to
determine the scan duration needed to obtain reliable estimates of dynamic network
measures. Here, we found that the test-retest reliability of dynamic network measures was
poor for 10 min of data; it improved greatly when data increased to 20 min for movie fMRI
and to 30 min for the other scan conditions. While increased scan duration has consistently
been shown to improve reliability, studies vary in conclusions about the necessary data
required to obtain reliable estimates. Studies have suggested that 5-10 min of data are
sufficient to achieve respectable test-retest reliability (Van Dijk et al. 2010; Liao et al., 2013;
Zuo et al., 2013; Tomasi et al., 2017); importantly, these studies have either focused on the
default and frontoparietal networks, which have better reliabilities than other functional
networks, or used more complex derived measures than simple edgewise indices. More
recent work has convergently reported a substantial improvement in reliability to a level
more useful for characterizing trait-like individual differences when data are increased from
5 to 10 min to 20-30 min (Laumann et al., 2015; Xu et al., 2016; Noble et al., 2017;
O’Connor et al., 2017; Elliott et al., 2019a). Our results are consistent with these static
functional connectivity studies.

As temporal dynamic analyses are susceptible to spurious variations (Hutchison et al., 2013;
Leonardi and Van De Ville 2015; Lehmann et al., 2017), one would assume more data are
required to obtain reliable measures for dynamic analyses compared to static analyses.
Instead, our data recommendations for estimating flexibility, recruitment, and integration
from multilayer community detection analyses are comparable to those for static functional
connectivity analysis (20-30 min). This result may reflect our having optimized the analyses
for test—retest reliability. As previous multilayer network-based studies vary widely in scan
duration (ranging from 5 min to 3.45 h: Table 1), it is crucial to establish minimal data
requirements for the study of trait-like individual differences.

Improvement of test—retest reliability by combining different conditions

It may not be practical to collect 20-30 min of data for a single condition, which motivates
the question of whether different conditions can be combined to increase scan duration and
improve test—retest reliability. Our hierarchical linear mixed model revealed good between-
condition reliability, as well as good between-session reliability. These results are consistent
with previous static connectivity analysis using the HBN-SSI dataset which demonstrated
good between-condition reliability (O’Connor et al., 2017). Our findings are also consistent
with previous work showing that task and resting-state data share a large proportion of
variance (Cole et al., 2014; Geerligs et al., 2015) and that inter-task variance is much smaller
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relative to inter-subject variance in functional connectivity (Finn et al., 2015; Gratton et al.,
2018). Recent work leveraging shared features across resting-state and task fMRI using a
method called ‘general functional connectivity’ has demonstrated that static intrinsic
connectivity estimated based on a combination of task and resting-state data offers better
test—retest reliability than that estimated from the same amount of resting state data alone
(Elliott et al., 2019a). Here, we found that depending on how much data and what task
conditions were combined, mixed data have either comparable or lower reliability compared
to the same amount of pure resting state data. When compared to 10 min of resting state
data, longer duration created by combining task and resting-state data had better relaibility.
Extending our understanding beyond prior studies of static connectivity, our results support
the feasibility of combining data from different task conditions to improve reliability when
the desired amount of a single condition is not available.

4.6. Movie fMRI identified as the most reliable condition

Another factor that impacts test-retest reliability of brain imaging-based measures is
experimental paradigm due to the condition-dependent nature of brain activities (Zuo et al.,
2019). Multilayer networks have been used to assess network reconfiguration during resting
state (Mattar et al., 2015; Betzel et al., 2017; Wei et al., 2017; He et al., 2018; Khambhati et
al., 2018; Pedersen et al., 2018; Zheng et al., 2018; Al-Sharoa et al., 2019; Feng et al., 2019;
He et al., 2019; Li et al., 2019; Shao et al., 2019; Tian et al., 2019; Lydon-Staley et al.,
2019a, 2019b), as well as during controlled cognitive tasks (Bassett et al., 2011, 2015; Braun
et al., 2015; Chai et al., 2016; Telesford et al., 2016; Schlesinger et al., 2017a, 2017b;
Gerraty et al., 2018; Cooper et al., 2019). The present work extended previous studies by
including naturalistic viewing paradigms which offer increased ecological validity.
Naturalistic paradigms allow researchers to study highly interactive dynamic cognitive
processes (Bottenhorn et al., 2019) and probe complex multimodal integration (Sonkusare et
al., 2019). They are emerging as powerful tools for exploring brain function and
characerizing individual differences, with the potential for clinical applications (Eickhoff et
al., 2020). Thus, establishing test—retest reliability of these paradigms is critical for
enhancing our understanding of cognition as it occurs more naturally and advancing
biomarker discovery for psychiatric disorders. A recent meta-analysis revealed that the
flexible cognition during naturalistic viewing involves a common set of networks that allow
separate processing of different streams of information, as well as integration of relevant
information (Bottenhorn et al., 2019).

Compared to a passive resting state and an active flanker condition, we found that the movie
condition had the best test—retest reliability. These results are consistent with previous static
network studies which suggested better test—retest reliability for movie conditions than
resting state (Wang et al., 2017). Naturalistic viewing was shown to have enhanced ability to
identify brain-behavioral correlations compared to conventional tasks (Cantlon and Li 2013;
Vanderwal et al., 2019) and was less impacted by head motion (Vanderwal et al., 2015),
especially for pediatric samples. Some have suggested that the better reliability may be
explained by the enhanced ability of movie watching to detect inter-individual differences in
functional connectivity that are unique at the individual level compared to resting state
(Vanderwal et al., 2017); alternatively, findings might be related to the increased level of
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engagement for movies compared to resting state. The poorer reliability of the flanker
condition compared to movies could be ascribed to its having been designed to minimize
between-subject variance to “isolate ” a single cognitive process (Elliott et al., 2019b).
Regardless of explanation, the present results support the utility of movie fMRI as a reliable
context in which to investigate time-invariant network dynamics.

Limitations and future work

To estimate functional connectivity, we used wavelet coherence based on its predominance
across similar studies in the literature (see Table 1), as well as due to its advantages in terms
of denoising, robustness to outliers, and appropriateness for fMRI time series (Zhang et al.,
2016). While wavelet coherence offers several advantages, it is a frequency-specific measure
and does not utilize phase information (Percival and Walden, 2000). As such, wavelet
coherence is not useful when the phase of the signal is critical. Ongoing work is examining
the reliability of other connectivity estimation methods, such as the Pearson’s correlation
coefficient (Bassett et al., 2011; Mattar et al., 2015; Chai et al., 2016; Pedersen et al., 2018),
which is informed by both phase and frequency information and can be computed more
swiftly. Future work should investigate how edge density and threshold as well as edge
weight sign (i.e., inclusion/exclusion of negative correlations) might impact the reliability of
the dynamic network measures studied here.

We focused our analyses on low frequency fluctuations (0.01-0.1 Hz). The poorer reliability
of the flanker condition compared to the movie condition could reflect the fact that we
ignored the high frequency signals in the flanker task. To evaluate this possibility, we
assessed flanker data reliability at a higher frequency range: 0.1-0.3 Hz. This range was
selected to avoid the noisy upper bound (with TR = 1.45 s, the highest frequency we can
examine is 0.34 Hz). We found that the reliability of dynamic measures obtained in the low
frequency signals of the flanker task was much higher than in the higher frequency signals
(Fig. S11). This suggests that the low frequency signals carry more non-random between-
subject variation for this task, and that the relatively poor reliability of the flanker condition
compared to the movie condition cannot be explained by frequency.

We determined the size of the parameter space by considering the number of communities (=
2 and < 100), and we estimated the ICC at each point in the 2-dimensional y-w parameter
space at a relatively coarse scale (y: 0.9-1.3 with increments of 0.05; w: 0.1-3.0 with
increments of 0.1). We note that this resolution is comparable to most previous work
(Bassett et al., 2011, Bassett et al., 2013b; Braun et al., 2015, 2016; Chai et al., 2016; He et
al., 2018). Recent extensions of the multilayer network approach have demonstrated that
sweeping across a range of intra-coupling parameters can offer insights into the multi-scale
hierarchical organization of the brain (Ashourvan et al., 2019). Moreover, such studies have
demonstrated that inter- and intra-subject variability in modular structure are scale specific
(Betzel et al., 2019). Thus, sampling community structure from more points in the y, w
parameter space may provide a better characterization of the brain’s dynamic network
reconfiguration.

Indeed, some algorithms have been developed recently which allow a more refined and
efficient search for parameters, for example, the Convex Hull of Admissible Modularity
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Partitions (CHAMP) (Weir et al., 2017). Unlike the traditional way of selecting parameters
in which the optimal partitions obtained at each (y, w) were treated independently, CHAMP
uses the union of all computed partitions to identify the convex hull of a set of linear
subspaces. It can greatly reduce the number of partitions that can be considered for future
analyses by eliminating all partitions that were suboptimal across a given range of parameter
space. Although the CHAMP software package is currently in its early versions (https://
github.com/wweir827/CHAMP), future work implementing these methodological updates
can potentially facilitate the parameter optimization process and map the ICC landscape in
greater detail.

We found that our parameter selection was stable across functional parcellations with the
same resolution. However, it was sensitive to the resolution of a parcellation (i.e., number of
ROIs of a parcellation). Recent work further demonstrated that functional parcel definitions
change with task (Salehi et al., 2020a) and individualized functional networks reconfigure
with cognitive state (Salehi et al., 2020b). Thus, another limitation of the present work is that
we used fixed nodes and did not consider flexible functional nodes. It is important for future
work to evaluate the test—retest reliability of multilayer network measures computed using
flexible functional nodes and taking into consideration the resolution of a parcellation. As
the network measures we computed are summary measures of dynamic reconfiguration,
another limitation is that they did not have the temporal resolution to relate to changing
conditions in the movie or flanker task.

A further limitation is that we optimized parameters based on the global mean of dynamic
network measures computed across the whole brain. It is possible that each network may
have different optimal parameters and the parameters optimized at the global level may not
be optimal at the network level. It is important for future work to test this possibility and
extend the current maximization framework further. Additionally, we fixed the values of »
and w to be uniform across all layers as done in prior work (Table 1). Another extension of
the present investigation is to devise heuristics for determining the values of these
parameters in a layer-specific way, allowing for finer control over the features of detected
communities.

Optimization of multilayer network measures for reliability has the potential to enhance our
ability to use these measures and study trait-like brain-behavior relationships more
efficiently (Choe et al., 2017; Zuo et al., 2019). Establishing good reliability is a key
component of reproducible research (Nichols et al., 2017; Poldrack et al., 2017). However,
good test—retest reliability does not necessarily correspond to high sensitivity to detect brain-
behavior relationships (Noble et al., 2017). Thus, it is important for future work to
investigate the functional relevance of reliability-optimized dynamic network measures, as
well as to consider optimizing the multilayer modularity framework based on other factors,
such as predictive accuracy (Dadi et al., 2019). Prior work suggests that pipelines optimized
on predictive accuracy give the best prediction for diverse targets (including
neurodegenerative diseases, neuropsychiatric diseases, drug impact, and psychological traits)
across multiple datasets (Dadi et al., 2019). Thus, adding this new dimension as optimization
target may enhance the ability of multilayer network measures to become fundamental tools
to delineate meaningful brain-behavior relationships.
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5. Conclusions

The application of dynamic (i.e., time-varying) graph measures to fMRI data is a rapidly
growing area and there is a clear need in the network neuroscience field for reliable
measures that can be used to find trait-like individual differences in cognition and disorders.
Our results provide evidence that dynamic measures from the well-known multilayer
community detection technique (multilayer modularity maximization) can be reliable when
the updated multilayer community detection method is used, the parameters are optimized
for reliability, and scan duration is sufficient. However, we do not assert that our results are
directly applicable to any other dataset. Instead, we highlight concerns about generalizability
arising from our difficulties finding a robust optimization that would generalize across the
datasets tested. Our results caution the field that continued optimization of multilayer
network models is needed before any single set of parameters or methods can be accepted as
standard practice. Future work is needed to continue optimizing this framework by
evaluating the impact of imaging parameters (e.g., sampling rate, multiband factor),
preprocessing steps (e.g., global signal regression), and multilayer network analyses-related
methodological decisions (e.g., window size, edge definition, number of optimizations) on
reliability, as well as to optimize predictive accuracy.
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Flowchart summarizing the major steps of the current analytical framework.
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Louvain Algorithm

Place each node in its
own community
Merge a node with
neighboring community
: If no improvement in
!:md all merges that modularity, leave node
increase modularity in its own community

Maximum Modularity Method (MMM) Modularity Probability Method (MPM)
Merge node with community that results in Merge node at random with community
highest modularity change based on probability of increasing modularity

P s AP

Looped
through all
nodes?

Merge all detected communities into single
nodes

new
merges

Fig. 2.

Diilgram showing the modularity maximization process. The generalized Louvain algorithm
is a two-phase process that finds communities in a network. In the first phase, every node is
placed in its own community. At random a node is merged with a neighboring community
and modularity is calculated; after iterating through all available communities, a hode can be
merged with a community based on different methods. In the Maximum Modularity Method
(MMM), the merge that resulted in the greatest increase in modularity is chosen. In the
Modularity Probability Method (MPM), a community is chosen at random based on the
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probability that it increases the modularity. This process continues sequentially for all nodes
until there are no improvements (no increase in modularity). In the second phase, detected
communities are merged into single nodes and the process is repeated again. The algorithm
ends if all nodes merge into a single community or if there are no improvements in
modularity after iterating through nodes.
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The impact of generalized Louvain method on estimated values of flexibility. When the
default Maximum Modularity Method (MMM) was used, there was a dropoff in flexibility
values in the 2-dimensional - parameter space (Top row). This apparent discontinuity was
observed in two independent human brain imaging datasets, the Healthy Brain Network-
Serial Scanning Initiative (HBN-SSI) and the Human Connectome Project (HCP), as well as
in simulated data. The issue was mitigated by the updated Modularity Probability Method
(MPM: Middle row). Reliability between flexibility values obtained using MMM and MPM
was quantified using intra-class correlation coefficients (ICCs; Bottome row). ICCs were
good below the apparent discontinuity and was near zero above the discontinuity. Brain
Imaging results were obtained based on 60 min of resting state data.
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Flexibility Integration Recruitment
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Test—retest reliability of dynamic network measures depends on the »-w selection. Based on
global ICC computed across 200 ROIs (Craddock et al., 2012), we identified a range of
parameters that produced good test-retest reliability (ICC = 0.6) for three measures
(flexibility, integration, and recruitment) and four tasks (rest, Inscapes, movie, and flanker).
For a given measure, global ICCs were highly similar across tasks (compare rows). For a
given task, the locations of good ICCs were consistent across measures (compare columns).
The peak ICC value was observed in the same location (= 1.05, w = 2.05) in 7 out of the 12
two-dimensional y-w planes (highlighted by a black dashed line). The ICC score at this
location was also good (>0.65) in the other 5 two-dimensional )-w planes. Thus, this
parameter value pair was chosen as the optimal y-w values for our analyses. Note that the
values in the parameter space where the number of communities was smaller than 2 or
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greater than 100 were set to zero in each plane. ICCs were evaluated with the maximal
amount of data available (60 min) in the HBN-SSI dataset.
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Fig. 5.

Tr?e y—w optimized for HBN-SSI cannot be generalized to HCP data. In HBN-SSI data, a
range of parameters had good reliability (ICC = 0.6). However, in HCP data, we were unable
to find a range of parameters with good 1CCs regardless of preprocessing pipelines (CPAC
or HCP enhanced pipeline). As ICC was determined by both between-subject variance (Btw-
Sub-Var) and within-subject variance (Within-Sub-Var), good ICCs in HBN-SSI overlapped
with the portion of the landscape with high Btw-Sub-Var and low Within-Sub-Var. In HCP,
the poor ICC was associated with low Btw-Sub-Var and high Within-Sub-Var. Furthermore,
the two datasets also differed in global flexibility. The values dropped more quickly when w
increased for the HCP data than for the HBN-SSI data. Results were obtianed using 60 min
of resting state data for test and retest.
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Recruitment
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Test—retest reliability of dynamic network measures increases when the amount of data used
for estimation increases. The density map of ICC values of 200 ROIs was plotted for three
dynamic measures (flexibility, integration, and recruitment) and four tasks (rest, Inscapes,
movie, and flanker) at six scan durations (10 min, 20 min, 30 min, 40 min, 50 min, and 60

min).
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Fig. 7.

Tr?e minimal data requirements for sufficient reliability depending on the criteria, the
measure, and the task. Percentage of ROIs with an ICC greater than 0.4 (blue line), 0.5
(orange line), and 0.6 (red line) were plotted for the three dynamic network measures
(flexibility, integration, and recruitment) and the four tasks (rest, Inscapes, movie, flanker).
The dashed gray line was drawn at 50%.
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Combining data from different tasks improved reliability. Percent of ROls showing poor
(light blue: ICC < 0.4), fair (medium blue: 0.4 < ICC < 0.6), or good (dark blue: ICC = 0.6)
reliability were plotted for six durations: 10 min, 20 min, 30 min, 40 min, 50 min, and 60

min. For each duration, the data can be a single condition or a combination of the four

conditions: rest (R), Inscapes (1), movie (M), and flanker (F). Each letter (the abbreviation of
each condition) represents 10 min of data.
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MBtw-Condition ™ Btw-Session
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Both between-session and between-condition reliability evaluated in a hierarchical linear
mixed model were good (ICC = 0.6) to excellent (ICC = 0.8) for 60 min of data. btw-
condition: reliability among rest, Inscapes, movie, and flanker; btw-session: reliability
between test and retest. ICCs were plotted on the surface map using BrainNet Viewer (Xia et
al., 2013), as well as summarized per the seven networks defined by Yeo et al. (2011) in bar
plots. Vis: visual network; SMN: somatomotor network; DAN: dorsal attention network;
VAN: ventral attention network; Limb: limbic network; FPN: frontoparietal network: DMN:
default mode network. The same network abbreviations were used for subsequent figures.
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Fig. 10.

The movie condition was most reliable. Distribution of ICCs of 200 ROIs were plotted for
four conditions (rest, Inscapes, movie, and flanker) in the left column. Density of between-
subject variance (Btw-Sub-Var: salmon) and within-subject variance (Within-Sub-Var: light
sea green) were plotted for each condition in the right column.
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Fig. 11.
The impact of condition on the test-retest reliability of dynamic network measures. Spatial

maps of ICCs for rest, Inscapes, movie, and flanker condition are shown on the brain surface
for flexibility, integration, and recruitment. ICCs of 200 ROIs were averaged based on Yeo et
al. (2011)’s seven networks for each of the four conditions and shown in the radar chart:
Rest (green line), Inscapes (light blue line), Movie (purple line), and Flanker (red line).

Neuroimage. Author manuscript; available in PMC 2021 January 25.



Page 45

Yang et al.

T T 00d (unw 09~ :dOH) 153y (8102) "[e 19 UssIaPad
570 T 20d (uiw z2) whipesed samuBod uoiressdo ajnu pamnwiad ‘(Ui QT) 153y (ST02) '[e 18 Jenen
T T 80U8J3Y09 J9|aNeM (ulw 9) 159y (a6T0Z) ‘Ie 18 AsfelS-UuopAT
T T 00d (U 9) sy (e6T0Z) '[e 19 AsjeIS-UOPAT
T T 30UBI3Y0J 19[3NEM (unw 2'9~) 159y (6102) e 30 1M
T ST
AT A 00d (unwi 2T) 1581 pajejnuuls (£702) "re 30 uuEWYS
1 1 89Ua18Y02 Jade)-njnw (unw o) 1594 (8102) "1e 10 eyquiey
T T 00d (U g~) 1594 (6102) "Te 19 3H
0 T 80UB13Y09 19]aABM (uiw g) yseyr uonesauab egisA ‘(UIW G) 159y (8T02) ‘'l 18 H
1 T 20d (uw §°8) 158y (0202) '1e 10 ueH
1 T 20d (unw g) 159y (0202) "2 18 pioyID
T 8TT 90U8.3Y09 19|aNeM (utw gz) Burures| Juswadioulay (8102) "2 18 AeLID)
S0'T T 20d (unw 9y) >oeq-N ‘(UIw §'0y) 19y (0202) "Te 12 aui4
T T 00d (U g~) 1594 (6102) "[e 30 Buad
N N 80UB13Y09 19]aABM (uiw 0g) xsel Buibessaw anlsenslad (6T02) ‘Ie 18 Jladoo)D
(1e201 utw 9) _sxisel 2 ‘(uiw 09~) 159y :(dOH) ¢ 19seleq

-0 T 20d (unw z2) whipered aamuBbod uonesado ajnt painwiad ‘(UIW OT) 159y :T 1esereq (¥702) 12 30 8100
T T 20d (ulw 09~) whipesed suorelado ajnt panwiad a184o0u0) ‘(UlW $T) 158y (0202) ‘I 18 ©ZZN20D
S0 T 02d (U 9g~8T) ¥ise) uoisuayaidwiod A1 *(Ulw £°€T) vse) Jualbpnl ssaupsiejal dnuewss (9102) "e 38 rEYD
T T 90U8.3Y09 19]aNeM (ulw g~) Asowsw Buriop (9102) "[e 10 uneig
T T 90UaJY09 19]aneM (utw g~) Alowaw BursJop (5T02) "I 10 UNRIG
1 T 99U3J3Y09 J3]aNBM (suolssas T6 ‘UoISSas/uIW OT) 1534 (L102) "[e 10 [9239g
T T 90Ua13Y09 19]aABM (s1y Gp°g) Burules| 1010\ (STOZ) ‘Ie 18 Nesseg
T T 90UaJaY09 18]aneM (s1y Gi7°'e) Buiuaes J010N (9ETOZ) '[B 10 NAsseg
T T 89Ua13Y09 19]aABM ‘DDd (s1y gp°g) Burutes| 1010\ (TT02) ‘Ie 18 Nasseg
T 1 00d (unw gg) 1584 (6T02) '[e 18 BOIRYS-|V

o A uolrew1se abp3

(uoreunp uess) ssel

Apnis

Author Manuscript

"e1ep YA JO 1X81U09 3Y) Ul Juawilinidal Jo ‘uonelbarul ‘Aijiqixal) Buisn siaded Joud Jo Arewwng

T alqeL

Author Manuscript Author Manuscript

Author Manuscript

Author manuscript; available in PMC 2021 January 25.

roimage.

Neu,



Page 46

Yang et al.

‘papiodal 10U YN

"$HSB) X08g-N pue ‘[e100s ‘[euone|al ‘ojow ‘afenBuel ‘Buljquied ‘[euonows :dJH Woiy sysel /
w

Ja1swreled Burdnoo Jake-1sul i fisyawered Huijdnod Jakel-enul A usId1}Jo09 UOIR|SLI0D S, U0SIesd :DDd 810N

T T 02d (unw g) 159y (8102) '1e 10 Busyz
€00 60 (IX11) rensayur Aox-sau (s1y gp°g) Buturesy Joj0N (e102) "re 10 squihm
T 1 Anfesnes Jabuel euonIpuod (unw g'9) 1594 (£102) '[e 30 19M\
G20 T 00d (unw 2) 159y (6702) " 30 LEIL
T T 90UaJY09 19]aneM (utw 0g) xse1 uonuane a1barens ‘(uiw oz) Alowsw uoniubodsy (9102) "I 10 ploysajal
(@)
1 T SaAIeALIaP [esodwia) o uonealdinw (suoIssas 8 ‘uoIssas/uiw OT) 159y (97T02) ‘[e 18 BUIyS
(0SSV) Jojedado
T 1 uono3|3s pue afe3uLIys aInjosge Jses)| (unw g'9) 1594 (6102) "2 30 OBYS
1 T 90Ua13Y09 19]aABM (uIw $°GT) Yoeg-N (0202) ‘Ie 18 uebnwueys
T000 ST'T
500 1 80U813Y09 19]aAEM (utw g°G2) xse1 Alowaw pIopn (92702) ‘Ie 18 J8bUISAIYOS
(utw §'2g) Ysey
Alowaw a2ey ‘(UIW G'zz) 1INWNAS [BIIX3] UMM Xsel Alowaw ‘(Uiw 0g) sel uonuane ‘(uiw 9) 1say :z 19sereq
T T 80U813Y09 19]aAEM (ulw g'G2) xsel Alowsw uoniuboday :T 19seleq (e2102) '[e 18 Jabuisajyos
™ A uolrew1se abp3

(uoireunp ueds) ssel

Apnis

Author Manuscript

Author Manuscript Author Manuscript

Author Manuscript

Author manuscript; available in PMC 2021 January 25.

roimage.

Neu,



Page 47

Yang et al.

(8 *B1d) Anpigeral snosdwi

SNY) pue ‘UoITeINP URJS 9SBaIdUI 0] SYSE) JUaIayIp
3UIQUIOD UBD aM “JUBIDIYNSUI SI YSE) U0 J0J BIep USUAA
(018 "614)

1uapuadap-ainseawl aJe UOKRINP UBIS JO UOIIUNY & Se
AJ|10B1]34 Ul SUOIIBLIBA [9AB]-XI0MIBU pUe [euoifial ay L
*(£ pue g 'sBi4) suonIpuod 931y} J3Y10 3y} 10}

uIW Og pue Uil Oz SI UOIIPUOD SIAOW Y} 0} SisAjeue
>10MIaU d1weuAp Joj Juswalinbai eyep [ewuiw ay L

"(6S 'B14) SaInseaw pue Syse} SS0Joe JUBISISU0I

s3] aJ4e AljIqeulwiosIp 1oy paziwndo sislaweled

pue (Aufigqeurwiiasip sa Aujigerjas 6e) uoneziwndo
10 BLI3YLID 3Y) 0] BAIISUAS SI -4 O UOIII3|3S 8y L

(g *B14) e1ep dOH 01 pazifeisush

8 Jouued Blep |SS-NgH Uo paseq @-A paziwundo

(85 pue /S

'sBi4) uolejaased Jo UOIIN|OSal By} 03 INg ‘suolre||aoed
[euoI1ouUNy 0 BAINSUSS J0U SI -4 JO UOIII9|8S 8y L

(95 pue gs 'sbi)

Aljigesen 10algns-usamiag pue ulyiim ayl Aq USALIP SI
auejd @A ay) uo Ajiqel|al 158191158} Ul SUOITRLIBA By |
‘(s *B1d)

Aujiqerial 1s8181-1s8) MO pue Aujigixals ybiy ur paynsal
(T= pue T=A) sia1aweled papuswiwodsl A|snoinald
(v 'B1d) §'z= pue Go'T=A

S1 SaInseall pue Sysel SsoJoe 1sow Mead sisjaweled

U} pUe S3INSEaW pUE SYSE} SS0JJk 3|qezijelauah
siajawered Jo abues fewndo ue paynuapl oA

(¥S pue

€S 'sBi4) eyep pajejnwis ul solweuAp BulAjispun umou
3y} Janaq S1an0231 PoYIsIN ANjigeqold AlreinpoN
(¢S

‘Bi4) sainseaw 3Jomiau d1wreuAp oy Aljiger|al 1salel
—1s81 Jaybiy u1 synsas poylsiN Anjigeqold Ayteinpoy
(TS pue

¢ 'sBi4) 19seiep Buibewioinau-uou pue Buibewioinau
juapuadapul ue ul payedl|dal aq Ued S)oayd

953U} pUB S8INSEaL YI0MIBU JIWRUAP JO anJeA ay} uo
10edwi able| e aAeY SpoylaW uoljeziwixew AlLe|npo

UM uonipuod a|Buls e woJj e1ep 40 uiw QT WOy paurelqo sOD| atedwo)
SDDI U0 SUoOnRIpuUOod »Sey buruiquiod Jo oedul ay L

'S)JOMIBU

Uanas s,(TT0OZ) ‘Ie 18 09A U0 paseq uJaned abueyd ay) aziiewwNS pue uoneinp
Ue3S JO uonouny e se sabueyd Q| Jo uianed urelq 8joym ayl Moy azijensin
'9°0 ‘G0 ‘P'0<OI YHM S|OY 40 WdJad sindwo)

'sanjen Q| dzijigess 0}

sa|dwes paziwopuel Uo sawin 00T pateadal sem uolRINP Yoe3 ‘erep Jo uiw 09
pue ‘0G ‘0¥ ‘0E ‘0Z ‘0T YIM SYSE] JN0J pU S8INseaw 9aiy} 104 SO 81ejndfed
uoleinp Ueds Jo uonouny e se D[ JO uoneneny

'6"0< AMlIqeuILILISIp

yum pue Aljiqeuiwiosip sead ul bunjnsas sisiaweled Ajiusp|

“aued -4 ayy

SS0JJB SUOIIPUOD 3SE) JN0J pUB SaINSeall aaiy} 40} Al|IGeuIWLIOSIP alejndjeDd
3INSeall ANIqer|al Jayjoue 1o} s1aaweled Jo uoneziundo

"sjoserep oM} usamiaq auejd A— ssoide

$DD| atedwo) '9'0< D1 Yum pue | dead ul Bunjnsal sisyewesed Anusp|
"eJep dOH

Buisn uonipuod 1sa1 ayy Burnp Ajigixaly 1oy auejd -4 ssoide sOD| arenofeD
S135eTep SS0Joe Siajowered paziwmndo Jo Uonezijelauas

‘uonye||aoed

yoea Buisn parenajed Anjigerren 19afgns-usamiag pue -ulyim Buissassy
'suolye||aated 009 Ja4aeYdS pue OOz Ja4aeyds Buisn uopuod

alnoW ayy Buinp sainseaw a8y} oy auejd m—A ssoide sOO| 81ejndfed
SUOITe|[32ed [eUONdUNY UsaMiaq Sistauieled paziundo Jo Uosiedwo)
‘Aj1genieA 103lgns-usamiag pue -uiyym ayy buissasse Aq D1 asodwodsqg
(1= pue T=A) sis1oweled papuswiwodsl Ajsnoinsid pue

(gz= pue Go'1=A) Aujigeljal 1o} paziwndo uonds|ss Jarawresed no asredwo)d
'9'0<DDI Yum pue D9 Mead ul Buninsal siayswesred Ajnusp|

‘uolye]jaaJed Jeuonouny 0oz Mooppeld Buisn aueld

@—A 3y} SS0II. SUOIIPUOD ¥SE] JN0J PUB SBINSEaW 931U} 40} SO 81e|ndjeD
ANIqeIa] 159191-159) 10 S1ajawieled Jo uoneziundo

'sainseaw
pa12adxa ay) 0] 18s0|9 S}NSaJ SUIBIGO U0 YIIYM aUILILXS pue Spoylaw

oM sy} Buisn paureiqo sabueyd Alunwiwod ay) asedwod ‘eyep pale|nwis uj
SaInseal JIWBUAD JO AJIpI[eA UO SPOUIall UoIjezitrxew AjLejnpow Jo joedul|
"3Inseall |yaea 1o} spoylew

oMy Buisn paurelqo auejd @—A uo sanjea D) 8y aredwod ‘eyep |SS-NgGH Ul
SaInseaul JIWeuAp
1O ATITICRI|3] 1591911531 U0 SPOYIdW UOIRZIWIXeW AJIIe[Npou Jo 1oeduw|

"e1ep pare|nwis pue dOH Ul synsal ayedijday

'SaINsea a1y} ayl Jo yoes

uo Anjigerfas wyiobie-usamiag ayy Bunndwoa Aq swyiiobie omy aredwo)
[e'1-g6°014 pue [oe - T0] @

10 abuel e sso10e (POYIBIN AlljIqeqold A1LeINPOIAl pue POYIBIAl UOIRZIWIXRIA
AlIeINpOIA) SPoyIaW uoreziwixew Ajeinpow om) Buisn (Juawiinioal pue
‘uonelBajul ‘AjIgIXsa]y) sensesw dIWeUAP 921y 81e|nojed ‘elep |1SS-NgH Ul
SaInseall JIWRUAD UO SPOUIall UoITezitrxew AjLe[npow Jo joedul|

0T =v ‘(yoea ulw

-09 pue ‘-0§ ‘-0 -0€ -0Z -0T yum
195e1RP 159134 B pUR 158] B 0)UI J1|dS
Ajwopuelopnasd a1am Jey) SUOISsas
2T ‘UOISSaS/UIW QT YUM Yoes ‘Iyuel)
‘ainow ‘sadeasu] ‘1sal) 1SS-NGH

Gz = ‘(359184 J0}

sunJ ¢ pue 1531 JoJ suni ¢ ‘unijuiw
GT ‘1584) 19SEIep 1581811581 dOH

0T = *(42e3 uIW-09 YIM

19se1ep 159121 B pue 158) B 03Ul J1|ds
Ajwopuelopnasd a1am Jey) suoIssas
2T ‘UOISSas/uIW T YHM YIea ‘Ijuely
‘alnow ‘sadeasu) ‘sal) 1SS-NGH

EIEp pare[nuis

Gz =u ‘(3s8181 10}

sunJ ¢ pue 18} 104 sunJ ¢ ‘un/uiw
GT ‘1s81) 19SEIep 1531911581 dOH

0T =¢ ‘(yoes uI-09 Yum

195e1Rp 159134 B pUR 158] B 0)UI JI|dS
Ajwopuelopnasd a1am Jey) suoIssas
2T ‘uoissas/ull 0T :1s84) ISS-NGH

¢SolwRUAp
SJomiau JaAejinw
Buirewnss Ajqeijas
10} Alessadau

Sl eJep yanw moH

cAunaeral
15318.-1S3) 10}
slajowered jewndo
ay) aJe Jeym

¢erep Buibew
utelq feuonouny
u1 syJomiau
Jake|nnw

JO sisAJeue ayy

10} payNs Janaq si
wyiiobfe ureAno
pazijeauab

ay} Jo poylaw
uoneziwixew
Aprenpow yorym

sBuipuid Aoy

sayoeo.lddy eonAreuy

erq

suoisend

Author Manuscript

“Jaded ay) ul paw.opiad sisAfeue ay1 Jo MIIAIBAQ

¢ dlqeL

Author Manuscript

Author Manuscript

Author Manuscript

available in PMC 2021 January 25.

ipt;

ge. Author manuscri

0ima

Neur



Page 48

Yang et al.

"(TTS "Bi14) Louanbauy ybiy sy 03 pasredwod Aouanbaly
MO] 8U} 0§ JayB1y sI Xse Jaxuely 3y} Jo Anfiger|al ayL
(11

"B14) Juapuadap-ainseaw aJe SUOIIPUOI XSE} JO UoLIouNy
e se All|igel]al Ul SUoIIeLIRA [9A3]-10MIBU pue [euoibay
*(0T '614) 8]geI[34 1SOW Y} SI XSE) AIAOW 3y |

*(6 "B14) wnipaw SI SeaJe 10J0WILIOSUSS

pue [eNnsIA U3 UIYIIM JusWINIdal Jo AIjIgelja] UoRIpUod

"Yse) Jaueyy ayy Butinp

Kouanbauy (zH €:0-T°0) YbIY pue (zH T'0-T0'0) MOJ Je paurelqo sOD| asedwod
5{Se1 Ia5Uely auy bULnp D[ U0 AdUanbaly Jo 1oedull oL

"$yJomau

Uanas s,(TTOZ) ‘Ie 18 08A U0 paseq uaned abueyd sy} 8zLewWNS pue UOIIPUOI
>SE] JO UonouNy e se sabueyd s 40 usened urelq ajoym ay) Moy dZI[ensIA
"UOI}IPUOD Yse)

yaea Jo Ajigelsen 193[gns-usamiag pue -UIyIM 8y} SSasse ‘ainsealul yoes Jo4
1S9} UeWpall4 o1aweseduou e Buisn passasse aiam SUOIIPUOD se) Buowre
Aujiqerjal Ui saousIayIp 1o aouedyIuBIs 8y *Al|ige1|a] UOISS3S-UsaMIaq SSasse
0} UOI}IPUOI 3{SE) YIBa J0j S|apOL Paxiw Jeaul| ajdwis unl ‘ainseaw yoes 104
‘|apow awes ayp ut Ajigerjal (1sa1a1 158}

0T = ‘(49ea ulW-09 YNM
19SeIep 159181 B puUe 158} B 0jUl J1|dS

“"9°1) UOISS3S-U3aM1aq pue (1ayuels pue ‘ainow ‘sadeasu] 1sal “'a°1) UORIPUOD Ajwopuelopnasd a1aMm Jey} sUOISSas ¢a1qetal
-Udamiag ay} Jeys 1daoxa ‘erep Jo uiw 09 1o} ybiy asem -U93MJa( SSaSSe 0} S|9POLU PaxIW Jeaul| [ed1ydJelaly uni ‘ainseal Yyoea Jo4 T ‘UOISSaS/UIW QT YHM Yoea ‘1axuely 1S0W SI UOIIPUOD
AJJ1qeI|81 UORIPU0D-USSMIaQ PUe UOISSas-Uaamiag Liog TOMNIPUO? 5Se} JO UOIIUNJ € SE D[ JO UONeNn[eny ‘alnow ‘sadeasu] ‘1sa1) TSS-NGH 3SE1 YIIYM
*SUOIIPUOD JUBIALIP WOJ4 JO UOIIPUOD
awes ay) Jo Jays eep aiow Buippe Ag paleald (uiw 09—0z) erep Jabuoj
sbuipuid Ao sayoeo.lddy eonAreuy elreq suosand
Author Manuscript Author Manuscript Author Manuscript Author Manuscript

available in PMC 2021 January 25.

1

ipt

ge. Author manuscri

0ima

Neur



	Abstract
	Introduction
	Material and methods
	Datasets
	Imaging preprocessing
	Network construction
	Dynamic community detection algorithm
	Algorithm selection
	Parameter optimization
	Other considerations

	Calculation of dynamic network measures
	Flexibility
	Module allegiance
	Integration and recruitment

	Assessment of reliability
	Determination of the minimal data requirement
	Determination of task dependency

	Results
	Impact of modularity maximization algorithm
	Parameter optimization based on test–retest reliability
	Data requirements for characterizing inter-individual differences in network dynamics
	Task modulation on test–retest reliability of network dynamics: hierarchical linear mixed model
	Task modulation on test–retest reliability of network dynamics: linear mixed model
	Addressing concerns regarding head motion

	Discussion
	A cautionary note on the selection of GenLouvain algorithms
	Parameter optimization for multilayer network analyses
	Generalizability of the optimized parameters to HCP data
	Minimal data requirements for obtaining reliable dynamic estimates
	Improvement of test–retest reliability by combining different conditions
	Movie fMRI identified as the most reliable condition
	Limitations and future work

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Table 1
	Table 2

