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Latent autoimmune diabetes in adults (LADA) is a type of diabetes characterized by slow
autoimmune damage of pancreatic b cells without insulin treatment in the early clinical
stage. There are differences between LADA and classical type 1 diabetes (T1D) and type 2
diabetes (T2D) in genetic background, autoimmune response, rate of islet function
decline, clinical metabolic characteristics, and so on. The disease progression and drug
response of patients with LADA are closely related to the level of islet autoimmunity, thus
exploring the pathogenesis of LADA is of great significance for its prevention and
treatment. Previous studies reported that adaptive immunity and innate immunity play a
critical role in the etiology of LADA. Recent studies have shown that the intestinal
microbiota which impacts host immunity hugely, participates in the pathogenesis of
LADA. In addition, the progression of autoimmune pancreatic b cell destruction in LADA is
slower than in classical T1D, providing a wider window of opportunities for intervention.
Therefore, therapies including antidiabetic drugs with immune-regulation effects and
immunomodulators could contribute to promising interventions for LADA. We also shed
light on potential interventions targeting the gut microbiota and gut-associated immunity,
which may be envisaged to halt or delay the process of autoimmunity in LADA.

Keywords: latent autoimmune diabetes in adults, immunopathogenesis, adaptive immunity, innate immunity, gut-
associated immunity, immunotherapy
1 INTRODUCTION

Latent autoimmune diabetes in adults (LADA), a disease with a phenotype similar to type
2 diabetes (T2D), but with slow destruction of pancreatic b cells, has been recognized by
the American Diabetes Association as a form of type 1 diabetes (T1D) in the 2022 classification
(1–4). LADA accounts for approximately 2%-12% of all diabetic patients (2, 5), affecting more
than 10 million individuals in China (6). Multicenter studies reported that 4% to 14% of
patients initially diagnosed with T2D are further diagnosed as LADA based on autoantibody
tests (7–9). As an autoimmune diabetes, LADA patients exhibit a mild autoimmune process,
and b cell function declines more slowly (10). After onset, it tends not to require insulin therapy
for at least more than 6 months in LADA patients (10). Therefore, there is a relatively long
period before the patients develop pancreatic b cell failure. It is not only conducive to studying
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the mechanism of autoimmune destruction of b cells, but also
provides a valuable time window for actively seeking new
methods to prevent or delay the failure of b cells in
LADA patients.

The pathogenesis of LADA has not yet been clarified, and many
studies have shown that LADA is mainly caused by cell-mediated
immunity (11, 12). In vitro, studies have found that peripheral blood
mononuclear cells (PBMC) of patients with LADA can inhibit the
secretion of insulin by human islets, suggesting that there is a cell-
mediated autoimmune response in LADA (11). Japanese scientists
performed a pancreatic biopsy on patients with LADA and found
that the changes in insulitis were dominated by T cell infiltration,
which is the most direct evidence of the onset of LADAmediated by
cellular immunity (13). A reduced number of regulatory T cells and
their functional defects were considered to be indispensable causes
of autoimmunity in LADA (14). In recent years, more and more
studies have shown that innate immunity is closely related to the
pathogenesis of autoimmune diabetes (15–17). LADA and T1D
may share some immunological features due to the presence of
common identifiable pancreatic b cell-specific autoantibodies,
similar cellular and systemic proinflammatory cytokine profiles,
and consistent alterations in the immunophenotype of certain
immune cells (18–20).

Current research focuses on the interaction between the
intestinal microbiota and the immune system. Intestinal
microbiota and metabolites can regulate the physiological and
pathological conditions of the host through immune regulation.
And for newborn mammals, the existence of symbiotic microbiota
is necessary for the development of their immune system.
Furthermore, the disturbance of the intestinal microbiota may
also lead to impaired intestinal barrier function and leakage of
toxic metabolites into the circulation. Substantial evidence supports
the involvement of gut microbiota in the pathogenesis of multiple
systemic autoimmune diseases (21). A recent study has shown that
the gut microbiome and metabolite profiles of LADA patients are
significantly different from healthy subjects and typical
T1D and T2D patients, and the gut microbial structure of LADA
patients is more similar to glutamic acid decarboxylase antibody
(GADA)-positive T1D patients (22). Thus, revealing the pathogenic
role of microbiota and related metabolites and targeting microbiota-
immune axis may open up new ideas for the treatment of LADA.
Here, we review the current research progress in autoimmune
diabetes and immunology, mainly involving the role
of adaptive immunity, innate immunity , and gut-
associated immunity in the pathogenesis of LADA, and
the potential immunomodulatory treatments.
2 IMMUNOLOGICAL MECHANISMS
OF LADA

2.1 Adaptive Immunity and LADA
Adaptive immune cells such as T cells and B cells play important
roles in autoimmune diabetes. Multiple studies have reported
phenotypic alterations in T and B cells in LADA patients (23–
27). Although previous studies have mainly described the
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phenomenon of cellular and humoral immunity in LADA
patients, further mechanisms have recently been explored. The
first genome-wide association study of LADA suggested that
cytotoxic T cell-related signaling pathways were abnormal in
LADA patients, supporting an important role of adaptive
immunity in the pathogenesis of LADA (28).
2.1.1 Adaptive Immune Cells and LADA
2.1.1.1 T Cells
Autoreactive T cells are the main effector cells of b cell
autoimmunity. In general, pancreatic b cells are damaged or
die in response to various genetic and environmental factors to
release autoantigens, and pancreatic draining lymph nodes
undergo naïve T cell activation after encountering islet
autoantigens, after which T cells migrate to infiltrate the islets
(29, 30). Pancreatic biopsy results revealed that CD8+ T cells
were one of the major contributors to immune cell infiltration
in insulitis in patients with LADA (31). It is well-established
that after recognizing antigenic determinants expressed on the
surface of pancreatic b cells related to MHC-I molecules,
autoreactive CD8+ T cells exert their killing effect on b cells
by cytotoxic degranulation and release of perforin that helps
synergistically release granzymes with serine protease activity
into the cell (32). As mentioned before, although there was no
significant difference in the total number of islet-infiltrating
immune cells between T1D and LADA patients and their
corresponding rat models, there were differences in immune
cell composition, that is, lower level of CD8+ T cells in LADA
compared with T1D (33). Perhaps, the above phenomenon is
involved in the reason why islets in LADA are more mildly
destroyed than those in T1D. In fact, Sachdeva et al. have found
that compared with the T1D group, the frequency of peripheral
islet antigen-specific autoreactive CD8+ T cells in the LADA
group is lower and the central-memory subset is relatively
restrained under in vitro stimulation with pancreatic b cell-
associated antigen, and thus the autoreactive CD8+ T cells in
LADA had inferior proliferative capacity, but their function
was comparable between the two groups (24). These findings
support an important role for CD8+ T cells in the pathogenesis
of LADA, underscoring the importance of developing CD8+ T
cells as therapeutic targets.

Infiltration of CD4+ T cells was also observed in the pancreas
of LADA patients and rat models (33). Previous studies have
reported that in autoimmune diabetes, in addition to
contributing to pancreatic b cell death through secretion of
cytokines (e.g., IFN-g and TNF-a) and direct contact, CD4+ T
cells stimulate macrophages for M1-like polarization, promote
dendritic cells (DCs) to effectively stimulate CD8+ T cell
responses, and contribute to the activation of B cells (34–39).
However, more research has focused on the role of regulatory T
cells (Tregs) in LADA patients. Tregs are important components
of the immune system, which suppress proliferation and
cytokine secretion of CD4+ T cells and CD8+ T cells, and
reduce costimulatory ligand expression on APCs (40). Some
clinical studies have reported significant reductions in the
frequency and number of Tregs in LADA patients (41, 42).
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Other studies have found that the expression of FOXP3 (a Treg
marker) mRNA in CD4+ T cells of LADA patients is significantly
reduced than that of controls, and the FOXP3 promoter region is
hypermethylated (14). IL-35, a novel cytokine, has been
implicated in the maintenance of the normal suppressive
phenotype of Tregs, and systemic administration of IL-35 has
been shown to be effective in preventing the development of
diabetes in the multiple low-dose streptozotocin (MLDSTZ)
mouse model and reversing hyperglycemia in diabetic NOD
mice (43). It has recently been shown that LADA patients have
reduced levels of both IL-35+ Tregs and plasma IL-35 (42). These
suggest that adoptive transfer of Tregs or reversing the abnormal
DNA methylation or cytokine production pattern in Tregs may
provide a new perspective for cell-specific treatment of LADA.

Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an important
negative regulator of T cell activation and expansion
constitutively expressed on the surface of Tregs to mediate the
suppressive functions of Tregs, and can also be detectable on the
surface of activated conventional T cells (44–46). CTLA-4
functions at the cell surface but is primarily localized in
intracellular vesicles in the Trans-Golgi network and secreted
to the cell surface upon TCR activation (47, 48). Studies have
shown that CTLA-4 gene polymorphism is associated with
genetic susceptibility to LADA, and the distribution of CTLA-4
+49A/G genotype in LADA patients is associated with GADA
titers (49, 50). Specifically, the G allele of the +49A/G SNP is
associated with reduced control of T cell proliferation, which
may aid in understanding the pathogenesis of LADA (51, 52).
However, there are few studies on the role of T cell inhibitory
receptors in LADA. Future investigations of T cell inhibitory
receptors such as CTLA-4 are expected to verify the profound
mechanisms and therapeutic potential in LADA.

2.1.1.2 B Cells
Growing evidence also support a role of B cells in autoimmune-
mediated b cell destruction. B cells produce islet autoantibodies
to help identify the risk of autoimmune diabetes, and capture and
present autoantigens to activate autoreactive CD4+ T cells and
facilitate the survival and differentiation of CD8+ T cells (53–55).
A previous study has shown no significant difference in the
frequency of CD19+ B cells in peripheral blood of T1D and
LADA patients compared with healthy subjects with normal
glucose tolerance (NGT), but their B cell subsets are altered; it
can be found that the percentage of marginal zone B (MZB) cells
negatively correlated with fasting C-peptide (FCP) is increased
and the percentage of follicular B (FOB) cells positively
correlated with FCP is decreased (26). MZB cells are reported
to activate naive CD4+ T cells more efficiently than FOB cells
(56). In addition, it is noteworthy that the frequency of
regulatory B cells (Bregs), which can modulate T cell responses
and suppress inflammation by secreting cytokines such as IL-10,
IL-35, etc., is lower in LADA patients than in T1D patients (26,
42). This further explains the immune protection mechanism of
pancreatic b cell destruction more slowly in LADA. Clearly, an
imbalance of pathogenic and regulatory B cells leads to a loss of
immune homeostasis, and a better understanding of the
Frontiers in Endocrinology | www.frontiersin.org 3
interaction between T cells and B cells will also provide new
insights into the pathogenesis of LADA.

2.1.2 Islet Autoantibodies and LADA
The islet autoantibodies of LADA mainly include GADA,
protein tyrosine phosphatase IA-2 autoantibody (IA-2A), zinc
transporter 8 autoantibody (ZnT8A) and insulin autoantibody
(IAA) (5). The presence and levels of islet autoantibodies are
associated with phenotypical features and insulin requirements
in LADA patients. Compared with T1D patients, LADA patients
were more likely to have GADA and a higher frequency of N-
terminal reactive GADA (57, 58). A prospective study showed
that 56.1% of LADA patients progressed to require insulin
therapy during a 7-year follow-up period, compared with
20.9% of T2D patients, and that high GADA titer increased
the risk of insulin requirement in LADA patients (59). As an IA-
2 fragment lacking the COOH-terminal portion of the protein,
IA-2 (256–760) increases with increasing body mass index (BMI)
in obese LADA patients (60). Low-grade inflammation
associated with b cell damage could also determine adaptive
autoimmunity against pancreatic b cells. Tiberti et al. have found
that IA-2(256–760) fragment was the most sensitive marker for
detecting humoral IA-2 immunoreactivity in LADA patients,
which contained a number of IA-2 T cell epitopes recognized by
human CD4+ T cells (61). However, studies have shown that
LADA patients only with IA-2(256–760) antibody have milder
autoimmune responses than LADA patients with high GADA
titers, and progress to insulin treatment phase slowly, suggesting
that this humoral autoimmune response, mainly represented by
IA-2(256–760) autoantibodies, may not necessarily play a
pathogenic role (60, 62). Therefore, it is necessary to focus on
the link between the autoantibodies and the phenotype in LADA
patients to facilitate the understanding of the wide heterogeneity
of LADA, or to predic t b ce l l fa i lure and guide
individualized therapy.

2.2 Innate Immunity and LADA
In recent years, studies on the role of innate immune cells in
LADA have gradually increased. The immune cells are mainly
involved in innate immune responses including neutrophils, NK
cells, macrophages, basophils, and eosinophils (63, 64). Innate
immune cells kill infected microorganisms by production of
inflammatory cytokines and chemokines, and phagocytosis.
Innate immunity is an important step in triggering adaptive
immunity. The changes in the frequency of macrophages,
neutrophils, NK cells, and other innate immune cells indicate
that they may be involved in b cell autoimmunity. Animal
experiments have shown that pattern recognition receptors
(PRRs) such as Toll-like receptor 2 (TLR2) can activate APCs
such as DCs and macrophages to activate autoreactive T cells
inducing b cell autoimmunity.

2.2.1 Innate Immune Cells and LADA
2.2.1.1 Macrophages
Macrophages are cellular components of the innate immune
system and exist in almost all tissues. They are not only
July 2022 | Volume 13 | Article 917169
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conducive to the internal environment homeostasis and repair,
but also the main regulator of the immune response (65). Under
different microenvironments, the function of macrophages
shows heterogeneity (66). Macrophages are usually divided
into two types, M1 type related to host defense and pro-
inflammatory response, or M2 type polarization related to
tissue repair and anti-inflammatory response (66).

In the status of hyperglycemia, the differentiation of
macrophages is affected, resulting in increased expression of
TLR2 and TLR4 and increased expression of inflammatory
factors (67). Notably, the macrophages infiltration of the
pancreas in patients with LADA was significantly more severe
than that in patients with T2D and healthy individuals (33).
Previous studies have found that pancreatic b cells are
particularly sensitive to the cytotoxicity of macrophages (68).
Islet macrophages can damage b function through cell-to-cell
contact (69). When islet autoimmunity is initiated, islet
macrophages may contribute to the development of
autoimmune diabetes by presenting islet autoantigens to T
cells (70). There is also evidence that in the pancreas of LADA
patients and a first spontaneous rat model of LADA, immune cell
infiltration transfers from CD8+ T cells to CD68+ macrophages,
and the gene expression of proinflammatory factors transfer
from TNF-a to IL-1b (33). Compared with other immune cells,
macrophages produce more IL-1b (71), which is dominant in
LADA, versus more TNF-a, which is dominant in T1D. The b
cell cytotoxicity of TNF-a is higher than that of IL-1b (72).This
may contribute to the slower progression of LADA compared to
T1D (33). In addition, recent studies have found macrophages
can create a lineage-specific microenvironment for the
regeneration of mouse pancreatic b cells (73). Brissova M et al.
have found that the proliferation of b cells depends on the
recruitment of macrophages, and the cytokines produced by the
recruitment of macrophages are beneficial to the proliferation of
b cells (74). Pancreatic islet macrophages can sense b cell
activation to promote the stability of islet composition (75).
Whether macrophages become effector cells for the development
of autoimmune diabetes or play a beneficial role in b cell
proliferation and development depends on the stimulation of
macrophages. Further research is needed to clarify the
mechanism of macrophage heterogeneity and to explore
whether it is possible to induce macrophage polarization to
provide new therapies for autoimmune diabetes.

2.2.1.2 Neutrophils
Neutrophils are one of the first innate immune cells recruited to
inflammation sites to initiate antibacterial effects, including
degranulation, phagocytosis, and the production of neutrophil
extracellular traps (NETs) (76). More and more evidence
indicate that neutrophils are involved in the occurrence and
development of LADA. Our clinical studies have shown that the
neutrophil counts of LADA patients are higher than those of
T1D patients and lower than those of T2D patients (77).
Neutrophi l counts and number and ti ters of is let
autoantibodies are closely related. Pancreatic macrophages and
b cells can recruit neutrophils from the circulation to pancreatic
islets (77). Meanwhile, we also found that neutrophils from
Frontiers in Endocrinology | www.frontiersin.org 4
LADA patients showed activation of various biological
pathways such as degranulation, adhesion and migration at the
transcriptional level compared with healthy subjects (78).
Blocking the activity of neutrophils can reduce the
development of insulitis and diabetes (79), suggesting that
neutrophils play an important role in the early pathological
process of autoimmune diabetes.

Neutrophil serine proteases, including neutrophil elastase
(NE), protease 3 (PR3), and cathepsin G (CG), are the main
components involved in the removal of neutrophil azurophilic
granules that are engulfed by microorganisms (80). Among them,
PR3, as one of the main target antigens of anti-neutrophil
cytoplasmic antibody (ANCA), plays a key role in inflammation.
Recent studies have shown that PR3 may mediate neutrophils to
participate in the pathogenesis of diabetes. Our previous study also
found that the serum PR3 level of LADA patients was 4 times
higher than that of healthy controls (81). Injection of recombinant
PR3 can induce blood glucose increase in mice (82). A recent
study found that the inhibition of NE secreted by neutrophils can
reduce the infiltration of macrophages and reduce the
autoimmune destruction of b cells mediated by cytotoxic T cells
(83). Therefore, neutrophils may participate in the pathogenesis of
LADA, but elucidating its specific mechanism requires
further research.

2.2.1.3 NK Cells
NK cells are innate immune cells with direct cytotoxicity against
infectious pathogens (84, 85). They can also secrete different
types of cytokines and regulate antigen presentation and T cell
activation (84). Clinical studies have found that killer Ig-like
receptors (KIRS) expressed on NK cells are related to the
susceptibility and protection of adults in LADA patients in
Latvia and Asia (86). Previous publications showed
contradictory results for NK cell frequency in LADA patients
compared with control groups. However, most studies have
reported an increase in the frequency of circulating NK cells in
LADA (17, 87, 88). This difference may be caused by the
difference in the disease course of LADA patients in each
study. In addition, the percentage of NKp46+ NK cells in
peripheral blood of LADA patients was negatively correlated
with fasting plasma C-peptide levels, which indicates that
NKp46+ NK cells may play a role in the pathogenesis of LADA
(17). The role of NK cells in autoimmune diabetes and its
mechanism of action has not yet been elucidated. This may
due to the researches focuse more on the total number of NK
cells rather than subgroups. NK cell subgroups function diversely
and can be used as targets for immunotherapy.
2.2.2 Innate Immune Modulators and LADA
TLRs are the most characteristic membrane-bound PRRs, and
they participate in the host defense against aggressive
extracellular pathogens (89). To date, 10 human TLRs and
13 mouse TLRs have been identified. Among them, TLR1,
TLR2, TLR4, TLR5, TLR6, and TLR10 are located on the cell
surface. They can recognize pathogen-associated molecular
patterns (PAMPs) such as triacylated lipoprotein, diacylated
July 2022 | Volume 13 | Article 917169
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lipoprotein, lipopolysaccharide and flagellin, and damage-
related molecular patterns (DAMPs) such as heat shock
protein, HMGB1, and proteoglycan (90, 91). TLR3, TLR7,
TLR8, and TLR9 are located in the endosome, which can
recognize PAMPs such as viral single-stranded DNA, viral
and bacterial double-stranded DNA, and DAMPs such as
immune complex self-RNA and chromatin immune complex
self-RNA (92). TLRs can be expressed by a variety of immune
cells, such as neutrophils, macrophages, DCs, NK cells, T cells,
and B cells, as well as various nonimmune cells including
pancreatic b cells. Under infection, stress or injury conditions,
TLRs recruit specific adaptors such as myeloid differentiation
primary response protein 88 (MyD88), MYD88-adaptor-like
(MAL, also known as TIR domain-containing adaptor protein
or TIRAP), which contains the adaptor protein of the TIR
domain induces interferon-b (TRIF), TRIF-related adaptor
molecules (TRAMs) and SARM protein (sterile-a-and
armadillo motif-containing protein) to induce downstream
inflammation cascades and the production of type 1 interferon
(93, 94). Under certain circumstances, inappropriate
activation of TLRs by self-antigens contributes to chronic
inflammation, as well as to systemic autoimmune diseases.

To date, studies targeting TLRs in autoimmune diabetes
have focused on TLR2, TLR3, TLR4, TLR7 and TLR9. Among
them, TLR2 and TLR4 are the most characteristic TLRs in
LADA-related research. However, previous studies have
shown conflicting results regarding the expression levels of
TLR2 and TLR4 in patients with autoimmune diabetes. Some
studies have shown that in circulating monocytes, both TLR2
and TLR4 in patients with T1D and LADA are unregulated
(67, 95–99), while others have shown that TLR4 expression in
T1D is downregulated (100, 101), and the expression level of
TLR4 in LADA CD14+ cells is higher than that in T1D (102).
High glucose upregulates mRNA and protein expressions of
TLR2 and TLR4 human macrovascular aortic endothelial cells
(HMAECs); inhibition of TLR2 and TLR4 signals can
attenuate inflammation induced by high glucose (103). In
addition, apoptotic b cells with secondary necrosis cause the
inflammatory response of macrophages through the TLR2/
MyD88/NF-kB signaling pathway (104). Late apoptotic b cell
destruction can stimulate the initiation of diabetic T cells
through TLR2-dependent antigen-presenting cell activation.
This may be one of the initial events in autoimmune diabetes
(104, 105). Also, TLR2 and TLR4 may be an important
immunological l ink between gut microbes and the
development of autoimmune diabetes (100). Further
research is needed to determine the mechanisms by which
of TLR2 and TLR4 exert effects on in LADA.

2.3 Gut-Associated Immunity and LADA
The intestinal microbiota is necessary for the normal development
of the immune system after birth. The niche inmice with intestinal
microbiota is saturated, so invading pathogens are more difficult to
colonize (106). Many microorganisms and their metabolites have
immunomodulatory effects and play a vital role in immune
development and function. Polysaccharide (PSA) from
Frontiers in Endocrinology | www.frontiersin.org 5
Bacteroides fragilis can maintain the balance of Th1/Th2 and
guide the development of lymphoid organs (107). Bacteroides
fragilis can regulate the homeostasis of host iNKT cells through
sphingolipids (108). Some of the metabolites have been shown to
also engage in innate and adaptive immune regulation. Short-
chain fatty acids (SCFAs) are produced by symbiotic
microorganisms and can be recognized by G protein-coupled
receptors (GPCR), and the most abundant SCFAs in the
mammalian intestine are acetate, propionate and butyrate (109).
SCFAs are active substrates of intestinal epithelial cells, which are
part of the mucosal immune system. It has been shown that
exposure of neutrophils and monocytes to SCFAs can lead to
inactivation of NF-kB and suppression of pro-inflammatory
cytokines (110). Currently, GPR43, GPR41, GPR109A and
olfactory receptor 78 (Olfr78) have been identified as SCFA
receptors, of which GPR109A can be expressed in certain DCs
and macrophages to make them more efficient in inducing
differentiation of Tregs and IL-10-producing T cells, while
GPR43 can be expressed in neutrophils and acts as a neutrophil
chemotactic receptor (111, 112). SCFAs can also modulate
cytokine expression and T cell function by inhibiting the activity
of histone deacetylases (HDAC) and supplying acetyl groups for
acetyl-CoA (113). By combining the characteristics of intestinal
microbiota and its metabolites with human immunity, the
intestinal microbiota or intestinal metabolites may become new
targets for the treatment of human diseases.

An increasing number of studies have reported that gut
microbiota is related to the pathogenesis of autoimmune
diabetes. Fecal microbiota transplantation (FMT) in patients
with new-onset T1D can effectively maintain residual b cell
function and is accompanied by alterations in plasma
metabolites, intestinal gene expression, T cell autoimmunity,
and fecal microbiota composition (114). A multi-omics study
showed correlations between gut microbiota, fecal metabolites,
serum metabolites, and clinical phenotypes (including islet
autoantibodies, glucose metabolism, islet function, and
inflammatory factors) in LADA patients, and the patients with
LADA displayed distinct gut bacterial characteristics, such as a
severe deficiency in SCFA-producing bacteria (e.g. ,
Faecalibacterium spp., Roseburia spp., and Blautia spp.) (22).
A previous study also showed that Blautia were positively
correlated with glycosylated hemoglobin levels, the number of
autoimmune diabetes antibodies and the titers of (IA-2A) (115).
The use of symbiotic bacteria of single species with beneficial
metabolic and immune effects has been initiated as a new
direction for the prevention and treatment of T1D, but
whether it is also applicable in LADA is inconclusive.

The intestinal barrier mainly includes the mechanical barrier of
the intestine, such as the tight junction formed by intestinal
epithelial cells (IECs) and goblet cells (116, 117) and innate
lymphoid cells (ILCs) in the intestinal mucosal tissue (118),
mast cells (119), monocytes (118), and so on. The normal
intestinal barrier is the basis for the intestinal immune system
and the intestinal symbiotic flora to maintain dynamic
balance (120). When intestinal barrier function is impaired, it
may cause the translocation of microorganisms, and initiate a
July 2022 | Volume 13 | Article 917169
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pro-inflammatory immune response via immune cells and
mediators (120). Previous studies have shown that patients with
T1D have increased intestinal permeability (121, 122). It has been
observed that gut bacteria can specifically move to the pancreatic
lymph nodes, contributing to the pathogenesis of autoimmune
diabetes (123, 124). It has been demonstrated that IECs can secrete
a range of mediators to regulate innate and adaptive immune cell
populations (125). Activation of intestinal innate and adaptive
immunity has been found in the local environment of the
duodenum of T1D patients, and the perturbed innate immune
function of IECs may promote the expansion and polarization of
autoreactive T cells (126). In addition, a study found that ILCs
stimulated by intestinal microbes induce expression of b-defensin
14 (MBD14) in pancreatic endocrine cells (127). MBD14 can
induce regulatory macrophages by stimulating TLR2, which in
turn induces protective Tregs and maintains the immune
tolerance of the pancreas (127). However, no relevant research
on intestinal permeability in LADA patients has been found.
Whether intestinal immunity exerts a role in the development of
LADA is still a question worth exploring.
3 IMMUNOTHERAPIES FOR LADA

Immunomodulatory therapy is ideal for LADA patients, who have a
slower decline in pancreatic b cell function. Therefore, a series of
immunomodulatory therapies targeting innate immunity, adaptive
immunity, or gut microbiota have been conducted or are promising
approaches in LADA (Figure 1).

3.1 Therapies Targeting Adaptive Immunity
Tripterygium polyglycoside is an immunosuppressant that has
effects on both humoral and cellular immunity. Our previous
study found that tripterygium polyglycoside has a regulatory
Frontiers in Endocrinology | www.frontiersin.org 6
effect on T cell subsets in LADA patients, which could inhibit the
autoimmune response and improve pancreatic b cell function
significantly (128, 129).

As an insulin sensitizer, there are a few clinical studies evaluating
the safety and efficacy of rosiglitazone in LADA patients. Studies
have found that rosiglitazone combined with insulin or not was
beneficial for b cell function in patients with LADA (130, 131).
Rosiglitazone has been shown to inhibit the inflammatory pathways
mediated by nuclear factor of activated T cells (NF-AT) and NF-kB,
and promote the regulatory potency of CD4+CD25+ T cells, thereby
preventing immune destruction of b cells (131–133).

Dipeptidyl peptidase-IV (DPP-IV) is a serine exopeptidase. It is
widely expressed on the surface of immune cells such as DCs,
macrophages, T cells and activated B cells (134, 135). It is
significantly upregulated upon T cell activation (134). Animal
studies have shown that treatment with DPP-IV inhibitors can
reverse new-onset diabetes in NOD mice by reducing insulitis,
increasing CD4+CD25+FoxP3+ regulatory T cells, and stimulating
b cell regeneration (136). Sitagliptin has been shown to increase
the expression of IL-10 (an anti-inflammatory cytokine), and
reduce the expression of pro-inflammatory cytokines, and cell
adhesion molecules in patients with T2D (137, 138). Given the
anti-inflammatory/immunomodulatory properties of DPP-IV
inhibitors, it is possible that DPP-IV inhibitors exert multiple
protective effects on pancreatic b cells. Patients with LADA exhibit
higher DPP-IV activity compared with T1D and T2D, and DPP-
IV activity is significantly associated with GADA titers in LADA
(139). Previous studies have explored the role of DPP-IV
inhibitors as an adjunctive therapeutic strategy to preserve b cell
function in LADA patients. A double-blind, randomized,
controlled study found that treatment with linagliptin slowed
the rate of decline in C-peptide levels over a two-year disease
trajectory in LADA patients, by increasing endogenous glucagon-
like Peptide 1 (GLP-1) levels to protect b cells (140). Our
FIGURE 1 | Immunity activates latent autoimmune diabetes in adults (LADA) and immunomodulatory therapies. The pathogenesis of LADA is the result of the
interaction of innate immunity, adaptive immunity, and gut-associated immunity. Macrophages and CD8+ T cells are the most abundant immune cells infiltrating in the
insulitis of LADA patients. In addition, other immune cells such as NK cells, neutrophils, CD4+ T cells, and B cells were also found to be involved in the development
of LADA. A variety of corresponding immunomodulatory therapies have been developed.
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randomized controlled studies showed that b cell function was
preserved in LADA patients treated with sitagliptin plus insulin
compared with insulin alone. Sitagliptin treatment altered the
frequency of CD4+ T cell subsets reduced Th17 cells, elevated Th2
cells and downregulated the expression of pathological mRNAs,
including RORC and T-BET (141, 142). In addition, we also found
that saxagliptin was effective in lowering blood glucose levels and
was well tolerated in GADA-positive patients (143, 144). Recent
data suggested that supplement of 2000 IU/day of 1,25(OH)2D3
with saxagliptin could protect b cell function in LADA patients by
inducing immune modulation (145). Larger randomized studies
are necessary to demonstrate the role of DPP-IV inhibitors in
pancreatic b cell protection in LADA patients.

Islet autoantibodies are a hallmark of autoimmune diabetes
and are valuable tools to aid in the diagnosis of the disease. In a
phase II clinical trial, two subcutaneous injections of
recombinant human GAD65 formulated with aluminum
hydroxide (GAD-alum) at 4-week intervals were safe in
patients with LADA (146–148). Furthermore, therapy with
GAD in diabetes has been shown to elicit durable immune
responses (149). Compared with the placebo group, GAD65-
induced expression of FOXP3 and TGF-b were increased in
GAD-alum treated patients at 15 months, suggesting that Tregs
may be responsible for the therapeutic effects (149). However,
no significant effect has been observed in other clinical trials
such as Diapep277 (150). In the future, antigen-specific
treatment strategies should be individualized and more in line
with precision medicine.

3.2 Therapies Targeting Innate Immunity
Vitamin D is a class of fat-soluble steroids, and its biologically active
metabolite is 1 alpha, 25-dihydroxyvitamin D3 (1,25-(OH)2D3)
(151). Vitamin D receptors are expressed on almost all immune
cells, including neutrophils, T lymphocytes, and APCs such as DCs
and macrophages (152). A growing number of studies have shown
that 1,25-(OH)2D3 plays an important role in regulating innate and
adaptive immune responses, leading to the activation of anti-
inflammatory and immunomodulatory pathways and the
induction of immune tolerance. A previous study by our group
showed that 1,25-(OH)2D3 could regulate TLRs to downregulate
NF-kB-p65 phosphorylation and significantly reduce IL-1b and
TNF-a production (67). A Swedish-based case-control study found
that taking vitamin D-rich fatty fish (≥1 time per week) may reduce
the risk of LADA (153). Our prospective study demonstrated that 1-
a(OH)D3 combined with insulin therapy protected pancreatic b
cell function in LADA patient, and no serious side effects were
observed in the 1-a(OH)D3 therapy or insulin plus 1-a(OH)D3
therapy over a follow-up period of more than 1 year (154). More
prospective intervention studies are warranted to investigate the
effectiveness of 1-a(OH)D3 as adjunctive therapy in the future.

3.3 Therapies Targeting Gut-Associated
Immunity
Several environmental factors can trigger islet autoimmunity,
leading to b cell apoptosis and possibly promoting the
development of LADA (155). As an important environmental
factor, the relationship between gut microbiota and LADA
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remains unclear. A recent cross-sectional study found significant
differences in the gut microbiota between LADA patients and
healthy subjects, patients with classic T1D and T2D (22).
Moreover, there is a correlation between the gut microbiota and
clinical phenotypes of LADA patients, suggesting that the gut
microbiota is involved in the pathogenesis and progression of
LADA (22). More research is needed to confirm whether
interventions such as diet (probiotics, prebiotics dietary fiber
supplements, etc.) and fecal transplantation can prevent the
development of LADA by modulating the gut microbiota and
affecting intestinal permeability.
4 CONCLUDING REMARKS

In recent years, the incidence and prevalence patients with adult-
onset autoimmune diabetes have risen precipitously. LADA,
which accounts for the majority of adult-onset autoimmune
diabetes, has features of both T1D and T2D. Due to disease
heterogeneity, it is difficult to determine the optimal treatment
regimen for these diseases, and treatment should be
individualized according to the characteristics of each LADA
patient. The treatment of LADA mainly includes insulin therapy
or a combination of insulin and other types of hypoglycemic
drugs. Some patients with LADA experience a rapid decline in b
cell function or are more likely to suffer from diabetic
complications. The general goal of LADA treatment is
metabolic control and preservation of residual insulin secretion
function (3), and the development of new treatment methods is
urgently needed.

In previous studies, great efforts have been made in animal
experiments and clinical research to investigate the mechanism of
innate and adaptive immunity in pancreatic b cell autoimmunity. In
this review, we focus on the research progress related to innate
immunity, adaptive immunity and intestinal microbiota in the
context of LADA, and the current therapies targeting them.
Therapeutic drugs for the immunity system of T1D have proven
effective in animal experiments (96, 156, 157), and promising results
have been obtained in clinical trials (158); however, the long-term
side effects of the medications tested in these trials are unknown
(159). The current data on LADA immune interventions are very
limited and more extensive long-term and large-scale studies are
needed. Previous studies on immunity focused on T1D, and
mechanism studies were mainly done in animal models of T1D.
The dearth of research on this topic may be due to the previous lack
of an animal model for LADA; and the first animal model of LADA
has been successfully constructed only recently (33). Therefore, the
specific immunological mechanism in LADA may need to be
verified in the animal model of LADA and then in patients,
which will facilitate the design of immunity-related approaches to
prevent and treat LADA.
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