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Abstract 

Objective:  To evaluate the expression of a set of miRNAs to identify differentially expressed miRNAs that might be 
considered reliable biomarkers on Diabetic Retinopathy (DR) blood samples.

Results:  Expression levels of MiR-320a, MiR-342-3p, MiR-155, MiR-99a, MiR-29a and MiR-27b were analyzed in 60 
healthy controls, 48 Diabetes Melitus (DM) without DR patients and 62 DR patients by qRT-PCR. MiR-320a was shown 
to be downregulated in the plasma of DR patients compared with DM patients without DR and healthy subjects. 
Target genes were predicted using miRWalk3.0, miR targeting data and target gene interaction data were imported 
to Cytoscape to visualize and merge networks and top ranked predicted genes were run through Ontology Genes 
to perform enrichment analysis on gene sets and classification system to identify biological processes and reac-
tome pathways associated with DR. Highly scored target genes of miR-320a were categorized for various biological 
processes, including negative regulation of cell aging, negative regulation of cellular protein metabolic process and 
regulation of cellular response to stress that are critical to the development of DR. Our findings suggest that MiR-320a 
may have a role in the pathogenesis of DR and may represent novel biomarkers for this disease.
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Introduction
Diabetic retinopathy (DR), a leading cause of acquired 
vision impairment and blindness among working-age 
adults, is a frequent microvascular complication of dia-
betes melitus (DM) [1–4]. Traditional risk factors for 
DR include longer diabetes duration, dyslipidemia, high 
blood pressure and poor blood glucose control [5], but 
epidemiological data suggest that differential genetic sus-
ceptibility may be related to this chronic complication [6] 
and epigenetics mechanisms, such as non-coding RNAs, 

are supposed to mediate the interplay between genetic 
and environmental factors.

Predicting the clinical course of the disease is often dif-
ficult for many DM patients highlighting the necessity of 
development of sensitive, specific and widely available 
clinical laboratory-based monitoring testes for this con-
dition and the importance of improving our knowledge 
of the pathogenesis of DR [7]. A biomarker would allow 
potential early treatment of DM patients who are at high 
risk of developing DR, could help to predict the progres-
sion of DR to vision threatening DR or the identification 
of low risk people, but until date, no ideal biomarkers for 
identifying or predicting DR have been determined.

MicroRNAs are single stranded, short length (21 to 23 
nucleotides) non-coding RNA molecules that regulate 
post-transcriptional gene expression by binding to the 
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complementary sites of targets mRNA and have impor-
tant functions in gene regulatory networks [8–10]. In the 
past few years, scientists have found that miRNA can be 
rapidly released from tissues into the circulation with the 
development of a pathology and aberrant expression of 
circulating miRNAs has been detected in a wide range of 
pathological conditions including cancer [11, 12], diabe-
tes [13, 14], cardiovascular [15–18] and neurodegenera-
tive [19] diseases. They were recently demonstrated to be 
transported between cells as well as circulate in body flu-
ids [20, 21] and these findings have inspired a great using 
extracellular circulating miRNAs as non-invasive bio-
markers for molecular diagnostics, disease stratification 
and prognostics.

Recent studies have detected miRNAs in the blood or 
vitreous humor of DR patients, suggesting that miRNA 
may be involved in DR and that some miRNAs may be 
biomarkers for DR [22–26], but many of them focused 
on miRNAs expressed in cells or animal models, so the 
global miRNA pattern in the sera of plasma samples of 
DR patients has not been determined.

Herein, we investigated expression levels of miR-320a, 
miR-342-3p, miR-155, miR-99a, miR-29a and miR-27b in 
healthy people, DM without DR patients and DR patients 
by qRT-PCR aiming to find specific miRNAs that could 
serve as reliable and reproducible biomarkers for DR. 
This candidate microRNAs were selected from a review 
of previously published studies and were also chosen 
based on using prior related experiments. We also inte-
grated differentially expressed miRNAs to their target 
genes and categorized target genes for biological pro-
cesses involved in the pathogenesis of DR.

Main text
Study subjects
A total of 170 patients, divided in three groups (60 
healthy controls, 48 DM without DR patients and 62 DR 
patients) participated in this study and Additional file 1: 
Table  S1 shows some clinicopathological characteristics 
of the recruited subjects. Universidade Estadual de Santa 
Cruz, Ilhéus, Bahia, Brazil Ethics Commitee approved 
the written consent that was taken from all the partici-
pants. The subjects were identified and classified by cer-
tified ophthalmologist that conducted fundus fluorescein 
angiography at CENOE (Clinica Especializada de Olhos, 
Ilhéus, Bahia, Brazil).

According to the guidelines from Global Diabetic 
Retinopathy Project Group [27], DR was diagnosed 
after routine fundus examination and fundus fluores-
cence angiogryphy examination. Patients with DM suf-
fering from any form of hemangioma, small bleeding 
points, formation of new blood vessels, vitreous hemor-
rhage or secondary retinal detachment in the retina were 

classified as DR patients. Patients with diabetic ketosis, 
atherosclerotic disease and cardiac arrhythmias, trauma 
surgery, acute or chronic infection, hepatic disease and 
other endocrine metabolic diseases were excluded.

Blood samples, RNA isolation and cDNA synthesis
Venous blood samples (5 mL) were collected from each 
donor in BD vacutainers dipotassium EDTA anticoagu-
lant. Plasma fraction was separated by centrifugation. 
Plasma sample of 300 µL was mixed with 900 µL Tri-
zol LS (Invitrogen) and RNA isolation was performed 
according to the manufacturer’s instructions. A Nan-
oDrop 1000 (Thermo Scientific) was used to measure 
RNA concentration. Only RNA samples with a 260/280 
ratio of ≥ 1.8 were included. 500  ng of total RNA was 
reverse transcribed using miR-specific primers and 
Taqman miRNA Reverse Transcription Kit (Applied Bio-
system) in a scaled down volume of 15 µL RT reaction, 
according to the manufacturer’s instructions [28].

Quantitative real‑time PCR
Taqman MicroRNA assays (Applied Biosystems) and 
a QuantStudio3 Instrument (ThermoFisher Scientific) 
were used to measure expression levels of individual miR-
NAs by RT-qPCR. RT-qPCR amplification mixtures con-
tained 20 ƞg template cDNA, 10 µL Taqman master mix 
(Applied Biosystems) and probes for MiR-320a (Assay 
ID: 002277), MiR-342-3p (Assay ID: 002260), MiR-155 
(Assay ID: 002287), MiR-99a (Assay ID: 000435), MiR-
29a (Assay ID: 002112) and MiR-27b (Assay ID: 000409) 
in a final volume of 20 µL. The PCR conditions were: 
incubation for 10 min at 95 °C, followed by 40 cycles of 
10 s at 95  °C and 1 min at 60  °C. The Ct values for RT-
qPCR were determined using the QuantStudio™ Design 
& Analysis Software (Applied Biosystems) and the single-
threshold method. PCR reactions were performed in a 
duplicate and experiments with coefficients of variation 
greater than 5% or that displayed unusual amplification 
curves were excluded from further analysis. A no-tem-
plate control (NTC) and no reverse transcription controls 
(No-RT) were also included. The mean cycle threshold 
(Ct) values from duplicate measurements were used to 
calculate expression of target gene, with normalization 
to an internal control miR-328-3p (Assay ID: 000543), 
which might be considered steady internal reference gene 
in expression studies on DR plasma samples [28], using  
2 − ΔCt formula [29–31] and present as fold change.

Computational prediction of potential miRNA targets
Target genes were predicted using miRWalk3.0 (http://
mirwa​lk.umm.uni-heide​lberg​.de/). The miRWalk plat-
form is based on predicted mRNA targets and integrates 
the predicted targets from various prediction tools: 

http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
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miRDB, TargetScan and miRTarbase. We setted filter for 
this tool with minimum score of 0.85. The miR targeting 
data and target gene interaction data were imported to 
Cytoscape, which was used to visualize and merge net-
works. Top ranked predicted genes were run through 
Ontology Genes (http://geneo​ntolo​gy.org/) to perform 
enrichment analysis on gene sets and classification sys-
tem to identify biological processes and reactome path-
ways associated with DR.

Statistical analysis
Parametric data of all three groups were analyzed 
using one-way ANOVA with Tukey’s post hoc. All data 
were analyzed using the Prism 5.01 computer software 
(GraphPad, San Diego, CA, USA). Statistical differences 
were considered to be significant at p < 0.05.

Results
Demographic and clinical profile of study subjects
The clinical characteristics of the patients are shown 
in Additional file 1: Table S1. Briefly, there were no sig-
nificant differences in age and body mass index (BMI) 
between the three groups patients. Patients with DR were 
more often male and had a longer duration of diabetes 
compared to patients without DR. Moreover, daily insu-
lin use was more frequent among patients with DR than 
in those without this complication.

Comparison of miRNA levels between study groups
Expression levels of MiR-320a, MiR-342-3p, MiR-155, 
MiR-99a, MiR-29a and MiR-27b were analyzed and, as 
shown in Fig. 1a, qRT-PCR analysis showed that circulat-
ing plasma level of miR-320a was profoundly downregu-
lated in patients with DR compared to healthy subjects 
and DM patients (< 0.0001). Patients with DR had approx-
imately five-fold lower levels of miR-320a in comparison 
to healthy subjects and DM patients without DR, which 
are not significantly different between them. No signifi-
cant differences were observed for MiR-342-3p, MiR-155, 
MiR-99a, MiR-29a and MiR-27b expression (Fig. 1b–f).

Target gene prediction of miR‑320a
As the miR-320a presented low expression in DR 
patients, with significant difference compared to the 
control group, we performed the in silico prediction to 
identify target genes possibly modulated by this miRNA 
in patients with DR. Based on analysis using miRWalk 
(integrating the miRDB, TargetScan and MiRTarbase), 
we observe that 16 genes are modulated (Fig.  2a) and 
were organized according to the significance presented 
by score in miRWAlk (Fig.  2b). From the analysis of 
functional enrichment, 6 significant biological processes 
(Fig. 2c) and 4 Reactome pathways (Fig. 2d) were found, 

which may indicate this miRNA involvement in impor-
tant genes modulation in DR. The genes related to bio-
logical processes and reactome pathways are listed in 
Table 1. 

Discussion
Non-invasive and reliable biomarkers are needed to pre-
dict the risk of developing DM and its complications. 
Several researches have been focused on searching mole-
cules involved in the pathogenic mechanisms at the basis 
of the development of DR [32, 33]. Circulating miRNAs 
have been largely addressed and investigated as non-
invasive potential biomarkers in several diseases, includ-
ing metabolic disorders [34]. Our experiment initially 
discovered that the levels of miR-320a are significantly 
down-regulated in the DR group comparing with those in 
the DM without DR and healthy control group.

Some studies have focused on finding an association 
between altered expression of MiR-320a and DM and 
DR. MiR-320 was found to regulate IGF-1 and IGF1R69 
expression, playing a key role in developing insulin resist-
ance in adipose tissues and endothelial cells [35]. Ling 
et al. also found that miR-320 augments insulin sensitivity 
in adipocyte in the insulin resistant condition, targeting 
PI3-Kp85 during the development of insulin resistance in 
adipocytes [36]. However, a few studies have focused on 
analyzing circulating miR-320a expression and the role of 
this miRNA and its targets in DR remains still unknown.

In the current study, several MiR-320a target genes 
were identified and top-ranking genes were ARPP19, 
KITLG, TSC1, CPD, SYGNR2, PBX3, GTPBP2 and 
CDK6. Among these genes the TSC1 and CDK6 are 
reported in the literature as important in DM. The TSC1 
negatively regulates mammalian target of rapamycin 
complex 1 (mTORC). TSC–mTOR pathway may result 
in the development of metabolic diseases and DM com-
plications [37]. Curiously, the CDK6 gene was reported 
as an inductor of pancreatic β-cell replication and human 
islets proliferation by Fiaschi-taesch et al. [38] The CDK6 
is still suppressed indirectly by upregulation miRNAs in 
DM and complications of the disease [39, 40].

However, in this study a negative reduction in MiR-
320a was identified in patients with DR compared to 
the control group and the group with DM without DR, 
what could mean an increase in the CDK6 gene expres-
sion [41]. The low MiR-320a expression would lead to a 
high expression of CDK6, due to a dysregulation in the 
cell cycle mechanism, since this pathology would cause 
vascular and cellular changes [2].

Using Gene Ontology (GO) classification system, 
genes were categorized into several biological processes 
that are critical in the course of DR, including regula-
tion of cellular response to stress [42, 43], negative 

http://geneontology.org/
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regulation of cellular protein metabolism process [44], 
mitotic cell cycle phase transition [45, 46]. In conclu-
sion, we found a five-fold downregulation of miR-320a 
in the plasma of patients with DR. Integrated genes 
were identified for this miRNA and we divided top-
ranked genes into biological process that are critical for 
DR based on total target scores. Despite our results, our 
data has several limitations. Our experimental context 

does not allow to infer about the mechanism by which 
DM duration has a different effect on the circulating 
miRNAs expression profile in different groups, because 
we could investigate the expression of only some spe-
cific microRNAs. Besides this, we had a small sample 
size that could make more difficult for us to identify 
significant relationships from our data. Additionally, 
the analysis of a bigger number of miRNAs expression 

Fig. 1  Circulating levels of miR-320a (a), miR-342-3p (b), MiR-29a (c), MiR-99a (d), MiR-27b (e) and MiR-155 (f) in healthy control subjects, diabetic 
patients without DR and diabetic patients with DR, evaluated by Taqman real-time PCR (arbitrary units). Data are represented graphically as the 
mean ± SEM of 48 to 62 subjects/group. *< 0.0001
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could be much more informative about new candidates 
for DR biomarker use, but we were able to evaluate only 
six candidate microRNAs that were selected from previ-
ously published data and based on prior related experi-
ments. Our findings suggest that miR-320a may have a 
role in the pathogenesis of DR, but other future studies 
are needed to investigate if this circulating microRNA 
has clinical importance or if it would permit an accurate 
identification of risk factors or prevention of events.

Limitation of the study

•	 The study was conducted only in a single hospital.
•	 Despite computer-based prediction methods are valu-

able in preliminary identification of miRNA target 
genes, inherent limitations should be considered when 
applying the results of these searches to experimental 
validation.

Fig. 2  Target gene prediction with biology process and reactome pathways of miR-320a. a Interaction networks of miR-320 and target genes, 
based on analysis using miRWalk and b correlation between level significance by score. For this genes c Biological processes and d Reactome 
pathways with p-values were determined

Table 1  Biologic Process and reactome pathways for MiR-320a target prediction

Biology process Acession Genes

Negative regulation of cell size GO:0045792 PTEN, TSC1

Negative regulation of cell aging GO:0090344 PTEN, CDK6, FOXM1

Hippocampus development GO:0021766 YWHAE, PTEN, TSC1, CDK6

Mitotic cell cycle phase transition GO:0044772 YWHAE, CDK6, FOXM1, ARPP19

Regulation of cellular response to stress GO:0080135 YWHAE, PTEN, CDK6, FOXM1, YOD1, MAPK8IP3, TSC1

Negative regulation of cellular protein metabolic process GO:0032269 YWHAE, PTEN, ARPP19, YOD1, FOXM1, IGF2BP3, TSC1

Reactome pathways

 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex R-HSA-75035.4 YWHAE, YWHAZ

 Cell cycle R-HSA-1640170.3 YWHAE, CD6, ARPP19, FOXM1, YWHAZ

 Activation of BAD and translocation to mitochondria R-HSA-111447.2 YWHAE, YWHAZ

 Tp53 regulates metabolic genes R-HSA-5628897.4 YWHAE, YWHAZ, PTEN, TSC1
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