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Abstract 

Background:  Eukaryotes use distinct networks of biogenesis factors to synthesize, fold, monitor, traffic, and secrete 
proteins. During heterologous expression, saturation of any of these networks may bottleneck titer and yield. To 
understand the flux through various routes into the early secretory pathway, we quantified the global and mem-
brane-associated translatomes of Komagataella phaffii.

Results:  By coupling Ribo-seq with long-read mRNA sequencing, we generated a new annotation of protein-encod-
ing genes. By using Ribo-seq with subcellular fractionation, we quantified demands on co- and posttranslational 
translocation pathways. During exponential growth in rich media, protein components of the cell-wall represent the 
greatest number of nascent chains entering the ER. Transcripts encoding the transmembrane protein PMA1 sequester 
more ribosomes at the ER membrane than any others. Comparison to Saccharomyces cerevisiae reveals conservation 
in the resources allocated by gene ontology, but variation in the diversity of gene products entering the secretory 
pathway.

Conclusion:  A subset of host proteins, particularly cell-wall components, impose the greatest biosynthetic demands 
in the early secretory pathway. These proteins are potential targets in strain engineering aimed at alleviating bottle-
necks during heterologous protein production.
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As microbial cell factories, yeasts offer many advantages 
for recombinant protein production including their natu-
ral properties and potential in synthetic biology. Yeasts 
grow rapidly to high densities in inexpensive media and 
are resistant  to physical and chemical stress [1]. They 
also have an endomembrane system that is fundamen-
tally conserved with higher eukaryotes [2]. This oxida-
tive environment supports glycosylation and subsequent 
glycan modification, folding using ATP-driven molecular 
chaperones and protein disulfide isomerases, and protein 

quality control [3]. Compared to mammalian cells, yeasts 
have simpler genomes and can be more easily character-
ized and modified [4]. Combine these features with tools 
such as CRISPR/cas9, and the range of tractable species 
is expanding [5, 6]. Komagataella phaffii (one of two spe-
cies previously known as P. pastoris [7–9]) stands out 
as a host for recombinant protein expression due to its 
high secretion capacity, its ability to metabolize metha-
nol as its primary carbon source, its safety record as a 
source of biologics, and its extensive literature compared 
to other non-model yeasts [10, 11]. Thus, K. phaffii is an 
ideal chassis to rapidly implement changes designed to 
improve protein expression and secretion [4]. Indeed, 
recent work in K. phaffii has focused on systems-level 
analysis [12] and implementing design approaches of 

Open Access

Microbial Cell Factories

*Correspondence:  talva001@ucr.edu
1 Department of Bioengineering, University of California, Riverside 92521, 
United States of America
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1734-3424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12934-020-01489-9&domain=pdf


Page 2 of 17Alva et al. Microb Cell Fact           (2021) 20:19 

synthetic biology such as molecular parts lists and strain 
engineering [13, 14]. Such changes may accelerate prod-
uct development and allow cheap, local production of 
pharmaceuticals [15, 16].

Identifying and relieving protein biogenesis bottlenecks 
is one strategy to improve yields of high-value, recom-
binant proteins [1, 17]. For secreted proteins expressed 
in K. phaffii, an early bottleneck is the translocation of 
newly made proteins from the cytoplasm into the lumen 
of the endoplasmic reticulum (ER) [18, 19]. Yeasts have 
multiple pathways for translocation, which use partially 
overlapping sets of biogenesis factors (reviewed in [2]). 
In the major pathway into the ER, translocation occurs 
through a membrane-embedded protein complex called 
the sec translocon. At least three major translocons exist 
in yeasts (the Ssh1 complex; two Sec61 complexes with, 
and without, Sec62p, Sec63p, Sec66p and Sec71p), which 
can accept proteins as they are synthesized by ribosomes 
(cotranslationally) or after synthesis of the polypeptide 
chain is complete (posttranslationally). Besides trans-
locon architecture, co- and posttranslational pathways 
differ in their reliance on cytosolic molecular chaper-
ones [20, 21]. Translocons bind hydrophobic amino acid 
motifs, called signal peptides, found at the amino ter-
mini of secreted proteins [22]. Some signal peptides are 
dependent upon a cytosolic factor, the Signal Recognition 
Particle (SRP), and the ER-bound SRP receptor to engage 
a translocon [23]; these tend to be longer or more hydro-
phobic than SRP independent signals [24, 25]. Binding 
of a signal peptide to a translocon opens the channel 
and allows the rest of the protein to pass into the lumen. 
In addition to secreted proteins, the sec translocon is a 
major point of entry for integral membrane proteins of 
the endomembrane system [26]. Integral membrane pro-
teins that use a sec translocon require SRP for targeting 
to the ER over mitochondria [24].

For any production host, ribosomes, molecular chap-
erones, and sec translocons represent limited pools 
of resources that are distributed between heterolo-
gous proteins and the host proteome [27–29]. Unlike 
resources that are replenished enzymatically (like ami-
noacyl-tRNAs), ribosomes, translocons and chaper-
ones only act on a single nascent chain at a time. While 
in use, they are sequestered and unavailable for other 
tasks. Although computational models that approxi-
mate these effects exist for bacteria [30], the complex-
ity of eukaryotic translation is insufficiently understood 
to predict these allocations from transcriptomics alone. 
Accurate accounting of these resources could allow 
strains to be engineered in ways to relieve bottlenecks 
specific to a target. The secretome of K. phaffii has 
been characterized under several conditions [31], but 
the precise biosynthetic requirements of each protein 

remain unknown. Sequence features of secreted pro-
teins, like glycosylation motifs, allow approximation of 
their direct biosynthetic costs such as ATP, carbohy-
drates, disulfide bonds, or GPI-anchors [32]. Per mol-
ecule costs can be coupled with measurements of gene 
expression to identify most expensive host proteins. 
Deletion of these proteins improves yields of secreted 
heterologous proteins in mammalian systems [33, 34]. 
However, while these analyses account for demands 
on global resources, they are limited by insufficient 
experimental data which links gene products to spe-
cific biogenesis subnetworks. For instance, overload-
ing cotranslational translocons could limit secretory 
yields even if metabolic demands are met and post-
translational translocons are available. Quantification 
of global ribosome, cotranslational translocon and SRP 
use is available for S. cerevisiae. [24, 35, 36] However, 
these measurements are unavailable for other industri-
ally significant species, including K. phaffii.

Which host proteins sequester the most biogenesis 
machinery in the early secretory pathway of K. phaf-
fii? Which host genes produce the most nascent chains, 
competing  for chaperones and sorting factors within 
the endomembrane system? To answer these questions, 
we quantified active translation globally and at the sur-
face of the ER or mitochondria. Our analysis reveals 
the set of proteins that enter the secretory pathway 
cotranslationally and predicts the set that enter post-
translationally. In each set, we estimate demand for 
ribosomes and translocons. We distinguish between 
resources that act on a per nascent chain basis from 
machinery that is utilized based on elongation time.

Materials and methods
Strains and culture conditions
All experiments were performed using Komagataella 
phaffii GS115 (Invitrogen). For each Ribo-seq biologi-
cal replicate, 500 ml liquid cultures of YPD (1% yeast 
extract, 2% peptone and 2% glucose) were grown to an 
OD600 nm of 2 at 30◦C with shaking in baffled 2 l flasks. 
Cells were harvested by vacuum filtration through a 
0.8µm filter. Immediately after filtering, cells were 
scraped off the filter using a chilled scoopula and sub-
merged in a 50 ml conical tube containing liquid nitro-
gen. When indicated in order to match conditions of 
S. cerevisiae fractionated Ribo-seq data [35], cyclohex-
imide (CHX) was added to 100µgml−1 for 3 min prior 
to harvesting. CHX treatments longer than a few min-
utes can alter ribosome abundance near the start of 
transcripts [37]. Short incubations with CHX enhance 
targeting of translocation competent ribosome-nascent 
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chain complex while not perturbing non-secretory pol-
ysomes [36].

Lysis and subcellular fractionation
Cells were lysed in either soluble lysis buffer ( 50mM 
MOPS, 25mM potassium hydroxide, 100 mMolar potas-
sium acetate, 2mM magnesium acetate, 1mM dithio-
threitol and 100µgmL−1 CHX) or membrane lysis buffer 
(soluble lysis buffer with 1% Triton X-100). Lysis buffers 
for each sample were frozen by adding 2ml dropwise to 
a 50ml conical tube containing liquid nitrogen. For each 
biological replicate, 23 frozen cells were mixed with 2 ml 
frozen soluble lysis and the remaining 13 were mixed with 
2ml frozen membrane lysis buffer. Cell fractions were 
pulverized for 2min in a 50ml ball mill chamber with a 
single 2 cm steel ball (Retsch) and collected into 1.5ml 
conical tubes. After thawing, lysates were centrifuged at 
20,000×g for 10 min. Supernatants from samples lysed 
with membrane lysis buffer were collected and used as 
“total” fractions. Supernatants from samples lysed with 
soluble lysis buffer were collected and used as “soluble” 
fractions. The pellets from sample lysed with soluble lysis 
buffer were resuspended in 2ml membrane lysis buffer 
and centrifuged. The supernatants were collected and 
used as “membrane” fractions. Triton-X 100 was added 
to 1% in soluble fractions, so that all three fractions were 
in equivalent buffers.

Ribo‑Seq
Lysed samples were digested using 40 U of ribonuclease 
A (Ambion) for 1 h at room temperature. Digested sam-
ples were layered on a 10 to 50% sucrose gradient pre-
pared in 50mM Tris pH 7.5, 200mM sodium chloride, 
and 2mM magnesium acetate case using a Gradient Mas-
ter (Biocomp). Gradients were centrifuged at 39, 000 rpm 
for 2.5 h in a TH-641 rotor (Thermo). After centrifuga-
tion, gradients were fractionated using a Piston Gradi-
ent Fractionator (Biocomp) and monosome peaks were 
retained. Total RNA was extracted using a standard phe-
nol-chloroform method and alcohol precipitated. Ribo-
some protected footprints, corresponding to (18 nt to 34 
nt), were excised from a TBE urea gel. RNA was collected 
from excised gel fragments using RNA gel extraction 
buffer ( 300mM sodium acetate, 1mM EDTA, and 0.25% 
SDS), precipitated, and resuspended in water containing 
20U/ml SUPERase•In (Invitrogen).

Purified fragments were used to prepare sequencing 
libraries as described in [38] with some modification. 
Linker ligations were allowed to proceed for 4 h, and 
afterwards, samples were pooled and purified by TBE-
urea PAGE. The pooled library was depleted of riboso-
mal RNA using the Ribo-Zero Gold rRNA Removal Kit 

(Illumina), following manufacturer’s instructions. Reverse 
transcriptions were performed using SuperScript II (Inv-
itrogen). After circularization, PCR amplification and 
TBE PAGE purification, libraries were quantified using a 
Qubit 2.0 Fluorometer (Invitrogen) and sequenced using 
a HiSeq 4000 (Illumina.) Linker sequences were trimmed 
and libraries were demultiplexed using Cutadapt [39].

Long read RNA sequencing
Cells were grown in YPD at 30 °C with agitation to an 
OD600 nm of 2 and harvested by centrifugation. Total RNA 
was obtained using a Direct-Zol kit (Zymo Research). 
Cells were vortexed with glass beads for 2 min during 
incubation with TRI reagent. After purifying RNA, a 
library was prepared using a PCR-cDNA kit according 
to manufacturer’s instructions (SQK-PCS109, Oxford 
Nanopore Technologies) and sequenced using a minION 
R9.4.1 flow cell. Base calling was performed using Guppy 
(Oxford Nanopore Technologies).

Transcript assembly
A novel transcriptome was assembled using data derived 
from Ribo-Seq, long-read RNA-Seq, and a prior genome 
sequence of strain GS115 [40]. A flowchart of the anno-
tation pipeline is provided in Figure S2c. Ribo-seq reads 
and long reads were aligned to the reference genome 
using HISAT2 [41] and Minimap2 [42] respectively. 
Stringtie version 1.3.6 was used to assemble transcripts 
from Ribo-seq data, with reads mapping to each strand 
processed separately [43]. Pinfish was used to assemble 
transcripts from long reads (Oxford Nanopore Tech-
nologies). After transcript assembly, PASA [44] was 
used to combine the Stringtie and Pinfish models into 
a single transcriptome. Transdecoder [45] was then run 
twice: first, to identify candidate coding regions with 
PASA model with a lower limit of 100 amino acids, and 
second, to identify coding regions in just the Stringtie 
model with a lower limit of 40 amino acids. The latter 
run has a reduced risk of misannotating start codons in 
the 5′-UTR. Transdecoder annotated transcripts from 
TransdecoderPASA were used to train GlimmerHMM 
[46] and CodingQuarry [47], which were used to pro-
vide de novo predictions in the genome. EVidenceMod-
eler [48] was used to incorporate predictions from PASA, 
TransdecoderStringtie , TransdecoderPASA , GlimmerHMM 
and CodingQuarry. File processing, UTRs, and tRNAs 
annotations were provide by the update utility in the 
Funannotate package [49].

Mapping of ribosome protected reads to codons 
and masking
Ribo-seq reads were mapped to the genome of Koma-
gataella pastoris GS115 [40] using HISAT2 [41, 50]. 
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Alignments were converted from SAM to sorted and 
indexed BAM files using Samtools and only included 
reads with mapping quality threshold of 60 [51]. Mapped 
reads were loaded into R using the GenomicAlignments 
package from Bioconductor[52] and converted to their 
3′ end positions before determining p-site offsets. P-site 
offsets were determined using the RiboProfiling pack-
age in Bioconductor [53]. Each read was mapped to a 
single codon. Masking files were created by first parsing 
the coding sequence (CDS) annotation file associated 
with the reference genome into a fasta file simulating 
every possible 28 nt combination (approximate length 
of a ribosome protected mRNA fragment). This fasta file 
was then aligned to reference genome twice, once to only 
include reads with mapping quality greater than or equal 
to 60 (unambiguously assigned), and another to include 
all reads (ambiguously assigned). Both alignment files 
were used to generate reads per codon per gene (RPCPG) 
data tables. The unambiguously assigned reads were sub-
tracted from ambiguously assigned reads and codons 
with a nonzero difference were included in mask. The 
first and last five codons in genes’ open reading frames 
(ORFs) were masked to correct for variable read quality 
at the beginning and ending of transcripts inherent to 
Ribo-Seq [54].

Metagene correction and quantification of metabolic 
demand
Read counts were normalized at the codon level using a 
metagene analysis that provides a global profile for each 
data set. First, for each ORF, reads at each codon position 
were scaled by the average reads per codon mapped ORF. 
Then, for codon position, either a mean or median value 
was calculated from all ORFs using the following scheme: 
for positions 1 to 100, a rolling mean with a window of 10 
codons; for positions 100 to 1000, a rolling mean with a 
window of 100; for positions 1000 and onward, a rolling 
median with a window of 1000. In calculating corrected 
transcripts per million (cTPM), codon read counts were 
scaled by dividing the metagene-derived value at that 
position and normalized by their pseudo gene lengths 
(theoretical gene length minus number of masked 
codons) and a per million scaling factor unique to each 
data set. In calculating ribosomes per million (cRPM), 
a ribosome scaling factor was created for each gene by 
dividing the sum of the metagene-derived values at all 
codon positions by the sum of smoothed reads per codon 
with the mask applied (a gene with zero masked codons 
will have a ribosome scaling factor equal to one, while a 
gene that contains masked codons will have a scaling fac-
tor greater than one). The ribosome scaling factor is mul-
tiplied by unmasked gene read counts and normalized 

by a per million scaling factor unique to each data set to 
give RPM. Membrane enrichment is quantified for each 
gene as the log2 ratio of membrane cTPM scores or total 
cTPM scores to soluble cTPM scores.

Classification and annotation of ORFs
Gene names were hierarchically assigned to novel K. 
phaffii transcripts through homology. Firstly, transcripts 
were assigned names inherited from S. cerevisiae using 
BlastP [55] with an expected value less than 1e−5. For 
genes that were not predicted to be homologous, gene 
names were assigned common names using EggNOG 
4.5 [56] using a taxonomic scope limited to ascomycetes. 
Genes that did not share homology with S. cerevisiae or 
known ascomycetes were assigned names inherited from 
K. phaffii GS115 [40] using BlastP with expected val-
ues less than 1e−5. Novel genes that were not assigned 
names using methods above were named after the moni-
ker given during transcript assembly.

ORFs were classified by function, cellular location, 
and sequence features using various prediction software. 
Functions were assigned ontologically using clusters of 
orthologous groups (COG) and were prepared using 
EggNOG 4.5 [56]. Vironoi tessellations were created to 
quantitatively map the biosynthetic composition of these 
functions using COGs and expression metrics derived 
from Ribo-Seq cTPM [57]. DeepLoc was used to predict 
the subcellular localization associated with ORF prod-
ucts [58]. Sequence features such as signal sequences, 
transmembrane domains (TMD), and GPI anchors were 
identified using SignalP 5.0 [59], TOPCONS [60], and 
predGPI [61] respectively.

S. cerevisiae analysis
Ribo-seq data for total protein synthesis were taken 
from [62], and data obtained from soluble or membrane-
bound ribosome fractions were obtained from [35]. All 
data were processed in the same way as K. phaffi using 
the S288C reference genome R64-2-1 [63].

Results
Ribo‑seq and long‑read RNA‑seq improve open reading 
frames annotations
We sought to globally quantify several aspects of pro-
tein synthesis in K. phaffii GS115. We asked which 
genes were responsible for sequestering limited bio-
synthetic resources, such as ribosomes and ER trans-
locons. We also asked which genes were responsible 
for producing the most nascent chains, which is criti-
cal for predicting amino acid usage, as well as modifi-
cations that act on a per chain basis (i.e., N-terminal 
acetylation, GPI anchoring, vesicular sorting). Ribo-seq 
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provides a snapshot of protein translation, allowing 
us to answer both of these questions [64]. It is a high 
throughput sequencing technique used to infer ribo-
some abundance at each codon of each transcript. In 
Ribo-seq, a non-specific ribonuclease generates 20 to 
22 nt or 28 nt to 30 nt “footprints” of ribosome-pro-
tected mRNA depending on the translational confor-
mation of the ribosome [65], which are then sequenced. 
We performed a series of Ribo-seq experiments to cap-
ture global translation and translation on the surface 
of organelles (Fig. 1). Our data sets captured footprint 
lengths from 15 to 42 nt (Additional file 1: Figure S1a). 
Nearly all (99%) footprints mapped within open reading 
frames (ORFs). Our profiling data also indicate active 
translation through the appearance of three nucleotide 
periodicity in read depth that is preserved across the 
transcriptome (Additional file 1: Figure S1b).

We noticed that ribosome-protected read patterns 
were often inconsistent with prior annotations of open 
reading frames (Additional file  2: Figure  S2a). At many 
loci, Ribo-seq appeared to indicate that translation 
began at an alternate start codon. Inaccuracies in ORF 
structure are problematic, since the length of a reading 
frame is a critical parameter used for quantifying trans-
lation and the position of the start site is used in cor-
rection using global profiles (see below). We therefore 
sought to improve the GS115 annotation using Ribo-seq. 
Several methods that rely solely on Ribo-seq to anno-
tate structure rely on the three nucleotide periodicity of 
reads to define reading frames [66]. They require sub-
stantial coverage for each gene; however, sparse Ribo-
seq coverage could still support re-annotation if it were 
treated like stranded RNA-seq data. Moreover,  de novo 
open reading frame predictors can be trained using veri-
fied translational start sites, and so improving the accu-
racy of annotations for a subset of the transcriptome 
was expected to improve overall prediction accuracy. 

We therefore adapted consensus methods used in gene 
prediction and annotation with standard RNA-seq data, 
with optimizations for fungi [48, 49]. Our approach uses 
Ribo-seq to construct transcript models, which are then 
used to train several de novo annotators.

Like other yeasts, K. phaffii has short intergenic 
sequences, leading to overlapping untranslated regions 
(UTRs), even on transcripts encoded on the same DNA 
strand. As a result, methods that construct transcripts 
from short-read sequencing merge data from adjacent 
genes into a single transcript. We therefore collected 
long-read data using Oxford Nanopore PCR-cDNA 
sequencing and developed a pipeline to integrate Ribo-
seq, long-read RNA-seq, and de novo gene prediction 
(Additional file 2: Figure S2b, c). Our annotation is pro-
vided as Additional file  3. ORFs that were fully covered 
by Ribo-seq data were allowed to be as short as 40 amino 
acids, increasing the number of annotated genes com-
pared to other annotations of K. phaffii (Table 1) [40, 67, 
68]. Homologs between our annotation and prior anno-
tations are provided as Additional file  4. Our annota-
tion adjusted the translational start site of about 10% of 
ORFs compared to each previous model. Overall, Ribo-
seq reads were mapped to 5303 genes in K. phaffii in the 
assembly presented here. We have named genes based 
on homology to prior annotations, to S. cerevisiae and to 
other ascomycetes.

Translational landscape of K. phaffii
Each read in Ribo-seq originates from a translat-
ing ribosome. Thus, by comparing the distribution of 
reads, we can answer our first question and identify 
which transcripts sequester ribosomes and ribosome-
associated factors, like the sec translocon. As a method 
to predict the abundance of polypeptide chains, Ribo-
seq has greater sensitivity than mass spectrometry, 
and more closely matches measurements of protein 

Fig. 1  Overview of Ribo-seq and subcellular fractionation. Ribosomes (grey) bound to a translocon (red) are only solubilized in the presence of 
detergent. The total sample has footprints originating from both membrane-bound and free-floating ribosomes. The soluble fraction is enriched in 
footprints from free-floating ribosomes. The membrane fraction is enriched in footprints from membrane-bound ribosomes
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abundance than RNA-seq [69]. To answer our second 
question, the number of nascent polypeptide chains 
produced per unit time can be approximated using 
a modified form of the transcripts per million (TPM) 
metric used in RNA-seq. TPM has advantages over 
other metrics (RPKM or FPKM) for its intuitive inter-
pretation during differential analysis and for its congru-
ence with proteomics [70, 71]. In RNA-seq, reads are 
generally long enough to be unambiguously mapped to 
the transcriptome, and they can be assumed to equally 
cover a transcript. In Ribo-seq, however, these assump-
tions do not hold, and biases due to ambiguous map-
ping and unequal coverage must be corrected.

Ribosome protected fragments are small, 22 nt to 30 
nt, and may map to multiple mRNA sequences when 
the transcriptome contains homologous stretches. 
Ambiguously mapped reads can be handled in one of 
several ways, often with shortcomings. Discarding multi-
mapped reads [72–75] depreciates read counts for highly 
expressed genes. Randomly assigning reads to ORFs with 
equivalent percentage of alignment [64, 76, 77] overes-
timates read counts for lowly expressed genes. Here, we 
adapt the method of Taggart et al. [62], who used com-
putational masks to exclude homologous segments of the 
predicted transcriptome. We calculated a mask over the 
K. phaffii transcriptome accounting for all possible 28 
nt reads, excluding 3% of codon positions available. To 
estimate gene expression via TPM, reads must be scaled 

by ORF length. Unlike discarding or randomly assigning 
reads, masking adjusts the gene length to reflect mRNA 
positions available for analysis. However, masking alone 
is insufficient because ribosome protected reads are not 
evenly distributed across transcripts.

Ribosome-protected reads are more abundant near the 
5′ end of ORFs [64, 78]. This effect may be due slower 
elongation rates at the beginning of translation [79] or 
abortive translation [62]. Regardless of the mechanism, 
the positional bias is observed in nearly every transcript 
and results in a global read profile that is conserved 
across the translatome (Fig.  2a). As a result, estimates 
of the expression of short ORFs will appear inflated 
(and long ORFs deflated), since only the ribosome-rich 
region of the global profile is sampled. We again adapt 
the method of Taggart el al. [62], where the positional 
bias is removed by scaling reads at each codon by the 
empirical global profile. (Fig. 2b). We use corrected TPM 
(cTPM), with masking and scaling, as a measure of the 
rate at which nascent chains are produced. For example, 
transcripts of RPL5 and YEF3 display similar numbers 
of ribosomes at the start of their ORFs (Fig. 2c), suggest-
ing similar initiation rates. However, because YEF3 is a 
longer ORF, its standard TPM is smaller than the TPM 
of RPL5. Here, we assume that if RPL5 were as long as 
YEF3, then its translational profile will be similar to the 
global profile, resulting in similar cTPM scores.
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While cTPM estimates the number of nascent poly-
peptide chains, it does not answer our question regard-
ing ribosome sequestration. Longer transcripts sequester 
a greater number of ribosomes in order to produce the 
same number of nascent chains as a shorter transcript. 
If ribosomes accumulate near the start codon in  vivo, 
then it is important to include this effect while measur-
ing allocation. cTPM, therefore, is an inappropriate met-
ric. If ribosome-protected reads could be unambiguously 
mapped to the transcriptome, then simple read counts 
estimate ribosome usage per gene. However, when mask-
ing is applied, the position of the mask becomes impor-
tant (Fig. 2a, b). Two masks of the same length, applied 
at different positions, will hide different amounts of ribo-
somes based on the global profile. To correct for this, 
we introduce a ribosome scaling factor that accounts for 
masking of each gene. The factor represents the fraction 
of ribosomes expected to be observed when the gene-
specific mask is applied to the global translational profile. 
We generate a new metric for each gene, corrected ribo-
somes per million (cRPM), which is practically equivalent 
to reads per million (RPM) in standard RNA-seq. In our 
example in Fig. 2c, cRPM and RPM are almost identical, 
as expected since there are no masks applied to RPL5 or 

YEF3. Read counts, cTPM and cRPM for each gene in 
each dataset are provided as Additional file 5.

After applying corrections, we find that the majority of 
nascent chains synthesized in K. phaffii are from genes 
involved in translation, ribosomal structure and biogen-
esis (see Table 2 and Fig. 3a), as expected for log-phase 
growth. The majority of nascent chains encoded by genes 
of unknown function are predicted to be extracellular, 
where they are likely components of the cell wall. We con-
sider endomembrane lumenal and secreted proteins to 
be those with (i) predicted N-terminal signal sequences, 
(ii) are not predicted to be localized to the mitochondria, 
and (iii) contain less than or equal to one transmembrane 
domain, as these are frequently GPI anchors. Some sin-
gle-pass, type I transmembrane proteins will be misanno-
tated by this definition. The number of genes containing 
these predictive features and the relative percentage of 
nascent chains they produce are summarized in Table 2. 
A majority of nascent chains for genes containing a signal 
sequence also contain GPI anchors, suggesting that this 
structural class represents the majority of products that 
will be processed by the secretory pathway.

Fig. 3  Protein expression and trafficking in K. phaffi. Tessellations are calculated using cTPM from the total fraction of a CHX treated culture and 
represent relative quantities of nascent chains produced from each gene. a Nascent chains produced by all ribosomes. b Nascent chains from 
genes showing twofold membrane enrichment. This includes mitochondrial and ER destined proteins. c Nascent chains from genes showing 
twofold membrane enrichment that are not predicted to be mitochondrial. d Nascent chains from genes showing less than twofold membrane 
enrichment but with a predicted ER signal sequence
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Biogenesis demands in the early secretory pathway
We next investigated the global demands for machin-
ery needed for translocation into the ER. Subcellular 
fractionation was used to separate membrane-bound 
ribosomes from free floating, soluble ribosomes. Mem-
brane-bound ribosomes were detergent solubilized, 
and then samples from both soluble and membrane 
fractions were subject to Ribo-Seq (Fig. 1). As in S. cer-
evisiae, libraries derived from the membrane fractions 
are enriched in ribosome-protected footprints origi-
nating from transcripts that encode proteins destined 
for the ER or mitochondria [35] (Fig.  4). Membrane 
enrichment scores were calculated as the log2 ratio of 
cTPM for membrane and soluble fractions and were 
reproducible (Additional file  6: Figure  S3a and pro-
vided in Additional file 5). The magnitude of membrane 
enrichment scores depends on the efficiency of frac-
tionation, and if a gene falls below the diagonal line in 
Fig. 4, it will have a negative enrichment score. As in S. 
cerevisae, membrane enrichment scores are limited by 
the length of the ORF when transcripts encode signal-
sequence bearing proteins [35, 36] (Fig.  5). This effect 
is due to a kinetic competition between trafficking rate 
and translation elongation rate. Fig. 5 also reveals that 
a membrane enrichment score of 2 effectively separates 
two populations, and so we define genes with scores 

greater than 2 as cotranslationally translocated into 
either the ER or mitochondria. The set of cotranslation-
ally translocated nascent polypeptides is enriched for 
those involved in energy production and conversion, 
cell wall and membrane biogenesis, and various trans-
porters (Fig. 3b). To assess entry into the ER, we filtered 
out transcripts encoding proteins predicted to localize 

Fig. 4  Comparison of translation from samples of membrane-bound and soluble fraction. Values are calculated using fractions obtained after 
incubation with CHX
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Fig. 5  Nascent peptide length and membrane enrichment for 
secreted, lumenal, or GPI-anchored proteins. Proteins have a 
predicted N-terminal signal sequence. GPI anchors are included. The 
shaded box is drawn over genes with less than twofold membrane 
enrichment, which are considered posttranslationally targeted
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in the mitochondria by DeepLoc (Fig.  3c). Finally, we 
define proteins that enter the ER through a posttransla-
tional sec translocon as those having a predicted N-ter-
minal signal sequence and less than twofold membrane 
enrichment (Fig.  3d). Posttranslationally trafficked 
membrane proteins rely on other mechanisms, such as 
the GET pathway [22].

A more diverse group of proteins enter the ER through 
cotranslational translocons than those that enter post-
translationally (Fig. 3c,d and Table 3). While the diversity 
of functions for proteins that enter the ER posttransla-
tionally is relatively small (mostly unknown function and 
then cell wall and membrane biogenesis), we find that 
posttranslational translocation handles a majority of total 
nascent chains entering the ER. These genes encode pri-
marily small proteins such as SCV12161.1p or cell wall 
proteins processed with GPI-anchors, such as Spi1p. 
Although its function is unknown, Spi1p is also predicted 
to be GPI-anchored, and both SPI1 and SCV12161.1 
produce among most nascent proteins within the cell 
under conditions tested here (Fig.  3a). We then classi-
fied the genes of unknown function that entered the ER 
by their predicted final location. The majority of these 
gene products, approximately four fifths, are predicted 

to be localized extracellularly and have an unusual dis-
crepancy between their relative ribosomal usage, nascent 
chains produced, and average gene length compared to 
unknown genes predicted to localize elsewhere (Addi-
tional file 7: Table S1).

Comparing the translational landscape between K. phaffii 
and S. cerevisiae
Of the 5329 K. phaffii genes annotated here, 73% have a 
homolog in S. cerevisiae. Unlike K. phaffii, S. cerevisiae is 
thought to have undergone a whole-genome duplication, 
and so many S. cerevisiae genes have paralogs [80]. The 
influence of paralogy is evident in how these two spe-
cies allocate translational throughput. We calculated of 
cTPM and cRPM in S. cerevisiae (Additional file 8) using 
prior data acquired under similar growth conditions 
[35, 62]. The overall distribution of cTPM by ontologi-
cal category is similar between species (Additional file 9: 
Figure  S4). Under the conditions tested here (glucose-
containing rich media), TEF1, encoding translational 
elongation factor 1 alpha, is the most translated protein 
in K. phaffii. The TEF1 promoter is used to drive consti-
tutive expression in K. phaffi [81], and our results sug-
gest that the native TEF1 ORF is translated more than 
the ORFs linked to other promoters used for expression 
in glucose, such GAP (here, TDH3) and PGK1 [11]. S. 
cerevisiae generates a similar amount of nascent chains 
to the same function, but it does so using a combination 
of its paralogous genes TEF1 and TEF2. Unsurprisingly, 
Crabtree-positive S. cerevisiae generates three times 
more polypeptides involved in glycolysis and fermenta-
tion than K. phaffii (e.g., ENO1/2, GPM1, FBA1, TDH2/3, 
TPI1, PGK1, PDC1, ADH1).

Indeed, these two species also show divergence in 
energy production with regards to cotranslational mito-
chondrial import (Fig.  6). Our subcellular fractionation 

Table 1  Comparison of ORF annotations

a  NCBI bioproject numbers located in parenthesis
b  BlastP matches from current study to prior study
c  Number of homologs with different predicted lengths

Annotationa Total ORFs Homologsb Length 
differencesc

Current study 5329

GS115 (PRJNA304976) 5064 5035 514

GS115 (PRJEA37871) 5040 5100 697

CBS7435 (PRJEA62483) 5291 5198 604

Pearson's r = 0.39
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Fig. 6  Correlation of membrane enrichment scores between species. Scores are deteremined using the membrane-bound and soluble fractions of 
ribosomes from cultures treated with CHX. a Enrichment scores restricted to signal sequence bearing proteins. Contrast dots represent genes found 
in Table 2. b Enrichment scores restricted to non-mitochondrial transmembrane proteins. c Enrichment scores restricted to mitochondrial proteins. 
d Enrichment scores restricted to cytosolic proteins
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assay recovers all membrane-bound ribosomes, includ-
ing those attached to the mitochondria. A greater num-
ber of nuclear-encoded mitochondrial proteins undergo 
membrane-localized translation in K. phaffii. Recovery of 
membrane associated mRNA strongly depends on active 
translation [35]. Therefore, less active translation of 
mitochondrially destined proteins may become reflected 
in lower membrane-enrichment scores.

We next asked whether ER translocation pathways are 
conserved between the two species. Between homologs, 
membrane enrichment scores correlated with a Pearson’s 
r of 0.85 (Additional file 6: Figure S3b). Genes encoding 
transmembrane proteins or cytosolic proteins which lack 
ER or mitochondrial targeting sequences had the highest 
correlation. Signal-sequence bearing proteins, including 
GPI-anchored proteins, however, had lower correlation 
(Fig.  6a). There were several genes which only showed 
cotranslational membrane enrichment in one species, 
and in some cases this was due to loss of a signal pep-
tide in one of the homologs. The ten genes that showed 
the greatest difference in magnitude, while still show-
ing evidence for membrane enrichment in both species, 
are reported in Table 4. Notably, this list includes PDI1, 

encoding an ER lumenal protein-disulfide isomerase that 
is essential for ER homeostasis. Mitochondrially localized 
proteins have greater membrane enrichment in K. phaffii, 
which may be related to the greater use of aerobic respi-
ration compared to S. cerevisiae (Fig. 6c).

Finally, we explored the relationship between the 
burden imposed by production of polypeptide chains 
(cTPM), ribosome demand (cRPM) and translocation 
pathway (membrane enrichment score) for ER destined 
proteins within the two species (Fig.  7). In S. cerevi-
siae, most of these chains originate from a single gene, 
CCW12, while in K. phaffii, there are a wider variety 
of genes, with SCV12161.1 being the most dominant. 
Strikingly, posttranslational targeting is used for about 
two-thirds of lumenal, secreted or GPI-anchored nas-
cent chains in both species. K. phaffii, however, is dis-
tinguished by at least one major cell wall protein, Pst1p, 
which enters the ER cotranslationally. In both species, 
Pma1p is the dominant membrane protein passing into 
the ER. In terms of ribosome sequestration, the trend 
reverses; cotranslational translocation is responsible for 
sequestering two thirds of ribosomes used to produce 
secreted or GPI-anchored proteins. While PST1 yields 
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slightly more nascent chains than PMA1, PMA1 is more 
than twice as long as PST1 and sequesters 1.36 times 
more ribosomes. Thus, PMA1 represents a significant 
burden to the secretory systems of both S. cerevisiae and 
K. phaffii as it is predicted to sequester more ribosomes, 
cotranslational translocons, and lumenal chaperones to 
synthesize and transport nascent chains into the ER.

Discussion
The yields of engineered, recombinant proteins are 
restricted by bottlenecks in biogenesis [1]. Certain bot-
tlenecks are metabolic, including insufficient ATP or 
other high-energy compounds, nucleotides for mRNA 
synthesis, amino acids, carbohydrates for glycosylation, 
and reducing equivalents. A promising systems-level 
approach to remove bottlenecks is to identify and delete 
host proteins with the greatest demand for metabolic 
resources. Indeed, the Lewis lab has elegantly demon-
strated in CHO cells that deleting expensive proteins (in 
terms of ATP equivalents) increases the yield of heter-
ologous secreted proteins [33, 34, 82]. Similar modeling 
of metabolic demand has been performed by the Nielsen 
lab for the secretome of S. cerevisiae [32]. Other bottle-
necks are due to insufficient cellular protein biosynthetic 
machinery, such as polymerases, ribosomes, translo-
cons, and molecular chaperones. Focusing on metabolic 
demand will likely relieve pressure on machinery with 
tightly coupled–and therefore accurately predicted–
energetic requirements (e.g., cycles of translation elon-
gation by the ribosome). However, it only approximates 
demand for chaperones and translocons, which gate 
entry into the ER. Compared to tightly coupled com-
plexes, chaperones and translocons are ambiguous in 
their energetic demand. Chaperones perform cycles of 
binding and rebinding that depend on the folding path-
ways of client proteins [83]. Translocation into the ER is 
driven by ATP-hydrolyzing chaperones, translation elon-
gation, or a combination of the two in a client depend-
ent manner [84, 85]. Engineering of the early secretory 
pathway, such as the optimization of signal sequences 
for protein targeting [86] and reducing the effect of the 
ERAD system [19], provides varying degrees of success. 
These approaches are contingent on the complexity of 
the protein product and must be empirically optimized 
[87, 88]. Our data and analysis may augment these efforts 
by accounting for capacity of translation, co- and post-
translational translocation.

Despite the ability of Ribo-seq to accurately quan-
tify gene expression, our study has several caveats that 
limit interpretation. First, we have only considered yeast 
undergoing log phase growth in liter scale, aerated shak-
ing cultures using rich media. This design enabled com-
parison to several published data sets using S. cerevisiae 

that were collected under identical conditions [35, 62]. 
We chose strain GS115, a commonly used commercially 
available strain that is a histidine auxotroph (his4). Even 
under rich media with abundant extracellular histidine, 
this auxotrophy may influence gene expression compared 
to strains which supply HIS4. Future work involves quan-
tifying demands at industrial scale in stirred bioreac-
tors under induction of a heterologous protein. Second, 
we assume that elongation rates are relatively constant 
across genes. However, if the elongation rate is altered 
for a transcript, it may result in greater or fewer ribo-
some protected reads. We argue that on the whole, our 
assumption is valid, given that Ribo-seq accurately pre-
dicts mature protein stoichiometry [62, 89]. Third, Ribo-
seq does not account for protein degradation; indeed, 
some proteins are cotranslationally ubiquitinated [90]. 
Our results should therefore not be interpreted as reveal-
ing steady-state protein levels in K. phaffii. However, our 
goal was to quantify the costs of protein synthesis, and 
so we argue that Ribo-seq is a more appropriate tool 
than mass spectrometry. Despite these limitations, our 
approach allowed us to interrogate protein translocation 
into the ER.

Most secreted proteins, including high-value targets 
like antibodies, will enter the ER via a sec translocon [2]. 
The translocon subunits Sec62p, Sec63p, Sec66p and 
Sec72p are required for the translocation of certain pro-
teins, particularly those with shorter or less hydrophobic 
signal peptides [21, 25, 36]. Molecular chaperones are 
also implicated in protein translocation, through bind-
ing of proteins in the cytoplasm (Ssa1p) [20] or the ER 
lumen (Kar2p) [84]. However, many gene products are 
able to associate with more than one class of translocon 
[25, 36]. In addition, while recent structural work sug-
gests that the heptameric Sec61 complex cannot directly 
bind a ribosome [91, 92], there is a preponderance of 
evidence demonstrating that the proteins dependent on 
this complex are translated at the ER membrane [24, 35, 
36, 93, 94]. Further, even if a protein does not strictly 
require particular machinery, like SRP, it may nonethe-
less sequester it in vivo, reducing availability for proteins 
that do require these factors [35, 93]. Because of these 
complexities, it is unsurprising that it has remained dif-
ficult to precisely tune a translocon for a specific engi-
neered protein. Rather, optimization will likely require 
understanding the needs of the target, what the target 
will sequester, and how this will relate to the balance of 
resources in the host.

Our calculations for nascent chains produced, ribo-
somes used, and predicted translocation pathways sug-
gest that each gene presents a unique combination of 
challenges to the cellular biosynthetic capacity. For 
instance, long, cotranslationally translocated proteins 
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will impart little demand on cytoplasmic chaperones, but 
will sequester ribosomes, translocons, and lumenal chap-
erones for extended periods of time (Fig.  8a). However, 

because of sustained translation on the surface of the ER, 
fewer instances of SRP targeting are required. A shorter 
cotranslational protein will require fewer ribosomes, 

Fig. 8  Demands imposed by different translocation pathways. a Cotranslational translocation of long protein and short proteins. b Translocation of 
short proteins which require both co- and posttranslational translocons c Posttranslational translocation

Table 2  Nascent chains produced in K. phaffii 

a  Nascent chains are percentage of the total cTPM represented by each category
b  Total number of genes with an N-terminal signal sequence and may include a GPI anchor
c  Percentage of nascent chains containing signal sequences that also contain a predicted GPI anchor
d  Transmembrane proteins either have no signal sequence but one transmembrane domain (TMD), or two or more TMDs

Nascent chains (%)a Genes (n)

Ontological  functions

 Translation, rbosomal structure and biogenesis 44.0 366

 Function unknown 11.0 1602

 Post-translational modification, protein turnover and chaperones 9.0 409

 Energy production and conversion 8.0 207

 Intracellular trafficking, secretion and vesicular transport 4.0 382

 Carbohydrate transport and metabolism 3.0 218

 Cell wall/membrane/envelope biogenesis 3.0 85

 Amino acid transport and metabolism 3.0 191

 Transcription 2.0 355

 RNA processing and modification 2.0 242

Predicted features of ER destined  proteins

 Lumenal and secreted proteinsb 8 266

 GPI Anchors 79c 117

 Transmembrane proteinsd 7 960
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translocons, and lumenal chaperones to produce the 
same number of polypeptide chains. However, if the gene 
is short enough to fail to sustain translation at the mem-
brane (Figs.  5,  8b), then it may require multiple rounds 
of SRP targetting to get there. If sufficient nascent chains 
are exposed to the cytosol, the gene may also require 
cytosolic chaperones. If translation terminates prior to 
membrane attachment, then posttranslational trans-
locons may be needed as well. Long, posttranslation-
ally translocated proteins will also sequester ribosomes, 
but will require both lumenal and cytosolic chaperones 
(Fig. 8c). There are few genes in K. phaffii in this category 
(Fig.  5). Finally, short, posttranslationally translocated 
proteins will sequester few ribosomes, no cotranslational 
translocons, and some cytosolic and lumenal chaperones. 

Our experimental approach cannot measure transit time 
through posttranslational translocons; we speculate that 
it will be correlated to polypeptide length.

Some resources used in biogenesis of ER proteins are 
dependent on chain number, rather than elongation time. 
For instance, GPI-anchored proteins each receive a sin-
gle lipid anchor [95], retrograde transport is mediated by 
the K/HDEL recognition [96], and protein sorting in the 
secretory pathway involves interactions between cargo 
and receptors, such as Sec24p [97]. In optimizing these 
systems, cTPM may be the appropriate metric to con-
sider, and strain engineering efforts could focus on delet-
ing or downregulating highly expressed host proteins. In 
yeasts, GPI-anchored cell wall proteins present the great-
est burden by cTPM. Other aspects are dependent on 

Table 3  Comparison of translocon demands by ontological function

a  Calculated as percent of total cTPM for all proteins predicted to be ER destined
b  Calculated as percent of total cRPM for all proteins predicted to be ER destined
c  Proteins with greater than twofold membrane enrichment and not predicted to be mitochondrial
d  Proteins with less than twofold membrane enrichment and not predicted to be mitochondrial and contained a predicted signal sequence

Genes (n) Nascenta (%) Ribosomesb (%)

Cotranslationally translocatedc

 Function unknown 261 8.00 11.0

 Cell wall/membrane/envelope Biogenesis 41 7.00 12.0

 Post-translational modification, protein turnover and chaperones 89 7.00 12.0

 Carbohydrate transport and metabolism 114 7.00 9.0

 Intracellular trafficking, secretion and vesicular transport 95 6.00 7.0

 Inorganic Ion transport and metabolism 82 5.00 10.0

 Lipid transport and metabolism 72 4.00 5.0

Posttranslationally translocatedd

 Function unknown 30 36 11.0

 Cell wall/membrane/envelope Biogenesis 10 15 10.0

 Post-translational modification, protein turnover and chaperones 5 0 0.0

Table 4  Membrane enrichment for secreted, lumenal and GPI-anchored proteins in K. phaffii and S. cerevisiae 

Gene Product K. phaffii S. cerevisiae

Increased  enrichment

 FLO9 Lectin-like protein, flocculin (isoform 2) 5.32 1.06

 ZPS1 Putative GPI-anchored protein 5.80 2.54

 SGA1 Sporulation-specific glucoamylase 4.49 1.32

 BIG1 Cell wall beta-1,6-glucan level regulator 4.51 1.99

 GDA1 Guanosine-diphosphatase 4.99 2.50

 FLO9 Lectin-like protein, flocculin (isoform 1) 2.99 1.06

Decreased  enrichment

 YKL077W Uncharacterized protein 1.39 3.49

 PDI1 Protein disulfide isomerase 2.21 4.35

 MNL1 Uncharacterized protein 1.53 3.81

 KRE5 Beta-1,6-glucan biosynthesis protein (isoform 2) 2.84 5.47
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total polypeptide length, such as the potential ratcheting 
mechanism provided by Kar2p during translocation [84]. 
Although not considered here, cTPM scaled by protein 
length may be the appropriate metric used in engineer-
ing. A third aspect is the availability of resources such as 
ribosomes or translocons, which are sequestered while in 
operation. cRPM is an appropriate metric to understand 
ribosome sequestration. For cotranslational transloca-
tion, we propose that cRPM could be used as a proxy, as 
one ribosome binds one translocon during import. In S. 
cerevisiae and K. phaffii, expression of PMA1 appears to 
be a major ribosome sink, and therefore also a translocon 
sink. In K. phaffii, PST1 is a second major sink for ribo-
somes and translocons.

Although fungi are genetically and physiologically 
diverse, most mechanistic knowledge about secretion 
is derived from studies in S. cerevisiae [2]. Based on a 
recent molecular dating using 332 genomes [98], K. phaf-
fii and S. cerevisiae diverged roughly 230 million years 
ago, whereas the S. cerevisiae whole-genome duplication 
occurred roughly 90 million years ago. Thus, sequence 
variation is found in nearly all of the proteins conserved 
in the two species, and due to the paralogy in S. cerevi-
siae, additional differences exist in the regulation of gene 
expression. Our comparison of K. phaffii and S. cerevi-
siae suggests that the path a conserved protein takes to 
the ER is not necessarily the same between species, even 
for essential genes critical to health of the secretory path-
way, like PDI1. However, we find that even though the 
number and diversity of genes differ between the species, 
categorically there is conservation in the biosynthetic 
demand. For instance, our data suggest that K. phaffii can 
provide more nuanced engineering of the cell wall, as it 
is composed by a greater number of genes. Optimizing 
fungal species separately may increase protein secretion 
yields in ways not predicted through analysis of model 
organisms alone. These results call for a more thorough 
understanding of industrially used fungal secretion sys-
tems for rationally engineering cellular factories during 
bioproduction.

Conclusions
Protein biogenesis is a complex phenomena that not only 
requires raw materials (energy and amino acids), but also 
access to specialized cellular machinery. Our analysis in 
K. phaffii reveals several principles about these pathways 
that will be useful in strain engineering. First, we find that 
a small number of host genes are responsible for most 
of the protein entering the secretory pathway. Second, 
GPI-anchored protein components of the cell wall rep-
resent the greatest number of nascent chains within the 
secretory pathway. Third, cotranslational translocation 

pathways must accommodate a wider set of proteins than 
posttranslational pathways. Fourth, orthologs may enter 
the endoplasmic reticulum through different transloca-
tion pathways. Fifth, despite differences in the number 
of genes associated with biological function, the amount 
of nascent chains entering the ER are similar between K. 
phaffii and S. cerevisiae. Finally, we provide an updated 
genome annotation based on both Ribo-seq and long-
read RNA-seq.
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