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Factor analysis is a first-line approach for the analysis of 
high-throughput sequencing data1–4, and is increasingly 
applied in the context of multi-omics datasets5–8. Given the 

popularity and broad applicability of factor analysis, this model class 
has undergone an evolution, from principal component analysis to 
sparse generalizations4, including non-negativity constraints2,3,9. 
Most recently, factor analysis has been extended to model struc-
tured datasets that consist of multiple data modalities or sample 
groups7,8. At the same time, the complexity of multi-omics designs is 
constantly increasing and, in particular, strategies for assaying mul-
tiple omics layers across temporal or spatial trajectories are gaining 
relevance. However, existing factor analysis methods do not account 
for the spatio-temporal dependencies between samples that result 
from such designs. Prominent domains in which spatio-temporal 
profiling is used include developmental biology10, longitudinal 
profiling in personalized medicine11 or spatially resolved omics12. 
Such designs and datasets pose new analytical challenges and 
opportunities, including the need to account for spatio-temporal 
dependencies across samples that are no longer invariant to permu-
tations; deal with imperfect alignment between samples from dif-
ferent data modalities, and missing data; identify inter-individual 
heterogeneities of the underlying temporal and/or spatial func-
tional modules; and distinguish spatio-temporal variation from 
non-smooth patterns of variations. In addition, spatio-temporally 
informed dimensionality reduction could enable more accurate 
and interpretable recovery of the underlying patterns by leverag-
ing known spatio-temporal dependencies rather than by solely rely-
ing on feature correlations. To this end, we propose MEFISTO, a 
flexible and versatile method for addressing these challenges while 
maintaining the benefits of previous factor analysis models for  
multimodal data.

Results
MEFISTO takes as input a dataset that contains measurements from 
one or more feature sets (for example, different omics), referred to 
as “views” in the following, as well as one or multiple sets of sam-
ples (for example, from different experimental conditions, species 
or individuals), referred to as “groups” in the following. In addi-
tion to these high-dimensional data, each sample is further char-
acterized by a continuous covariate such as a one-dimensional 
temporal or two-dimensional spatial coordinate. MEFISTO factor-
izes the input data into latent factors, similar to conventional factor 
analysis, thereby recovering a joint embedding of the samples in a 
low-dimensional latent space. At the same time, the model yields 
a sparse linear and therefore interpretable mapping between the 
latent factors and the observed features in terms of view-specific 
weights. Formulated within a probabilistic framework, MEFISTO 
naturally accounts for missing values for arbitrary combinations of 
views, groups and covariate values.

Unlike existing factor analysis methods for multimodal data, 
MEFISTO incorporates the continuous covariate to account for 
spatio-temporal dependencies between samples, which allows 
for the identification of both spatio-temporally smooth factors as 
well as non-smooth factors that are independent of the continu-
ous covariate (Fig. 1a,b). Technically, MEFISTO combines factor 
analysis with the flexible non-parametric framework of Gaussian 
processes13 to model spatio-temporal dependencies in the latent 
space, where each factor is governed by a continuous latent process 
with a variable degree of smoothness (Supplementary Information). 
Gaussian processes have previously been used in biomedical appli-
cations to encode temporal or spatial proximity14–18, however, so far 
they have been used primarily for univariate data (see Methods for 
an overview on existing use cases).
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For experimental designs with repeated spatio-temporal mea-
surements, for example, longitudinal studies that involve multiple 
individuals, species or experimental conditions, MEFISTO models  

and accounts for heterogeneity across these groups of samples, 
thereby inferring the extent to which spatio-temporal patterns are 
shared across groups (referred to as “sharedness”, Fig. 1b). To cope 
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Fig. 1 | Overview of MEFISTO. a, Illustration of MEFISTO for time-resolved data: MEFISTO decomposes a high-dimensional dataset with measurements 
from multiple views (for example, omics, tissues, genomic regions), sample groups (for example, individuals, biological conditions, species) and time 
points into a small number of factors in a time-aware manner. The inferred factors can explain temporally smooth variation that is shared across sample 
groups, smooth variation that is specific to sample groups or non-smooth variation. The boxes below illustrate additional features of MEFISTO, including 
data-driven alignment between misaligned sample groups, interpolation and imputation of missing data, clustering and outlier identification and 
enrichment analysis to annotate factors. b, Comparison of MEFISTO with conventional factor analysis that is not aware of time (MOFA) using simulated 
data. Shown are results from the application of both models to a simulated dataset with one non-smooth factor (Factor 1), one smooth, non-shared factor 
(Factor 2) and one smooth, shared factor (Factor 3). c,d, Recovery of the latent factors (Pearson R2) (c) and the imputation performance on missing 
values (mean squared error (MSE)) (d) for varying number of time points, groups and levels of missingness in the comparison of MEFISTO and MOFA 
on simulated data. Shown are the mean and standard error of the mean estimated across 10 independent repeat experiments. The dashed vertical line 
denotes the base parameter value kept constant when varying other parameters (Methods).
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with imperfect alignment across groups, MEFISTO comes with 
an integrated data-driven alignment step of the temporal covari-
ate by combining the inference of the latent space with dynamic 
time warping19. In brief, MEFISTO learns a non-linear monotonic 
warping function based on the major sources of variation across all 
views as captured in the latent space (Supplementary Information), 
and thereby provides a correspondence between time points across 
sample groups.

To enable efficient inference in large datasets, MEFISTO lever-
ages sparse Gaussian process approximations20, as well as efficient 
Kronecker decompositions if a common spatio-temporal sampling 
is present across groups21 (Supplementary Information). Once fit-
ted, the model allows for different downstream analyses (Fig. 1a), 
including imputation as well as interpolation and extrapolation 
along the spatio-temporal axis. It also allows for identification of 
molecular signatures that underlie the latent factors, as well as clus-
tering and outlier identification at the level of samples (for example, 
the measurement at a single time point), as well as groups of sam-
ples (for example, an individual with distinct temporal trajectories).

Validation using simulated data. Initially, we considered simulated 
time course data drawn from the generative model of MEFISTO 
with multiple views and sample groups to validate the model 
(Methods). We assessed MEFISTO in terms of recovery of the true 
latent factors, imputation of missing values in the input data, as 
well as estimation of the smoothness and sharedness of each fac-
tor. For comparison we also considered MOFA7,8, a multimodal fac-
tor analysis model that does not take the temporal covariate into 
account. Over a range of simulated settings, MEFISTO yielded 
improved recovery of the latent space and offered more accurate 
imputation of missing data (Fig. 1c,d). Moreover, MEFISTO cor-
rectly estimated the smoothness and sharedness of individual fac-
tors, thereby enabling temporal variation to be distinguished from 
non-temporal variation (Extended Data Fig. 1a) and identification 
of the extent to which temporal patterns were shared across groups 
(Extended Data Fig. 1b). Additionally, MEFISTO was robust to 
misaligned time points across groups, correctly recovering the true 
sample alignment (Supplementary Figs. 1–3). We also compared the 
imputation and interpolation performance of MEFISTO to univari-
ate Gaussian process regression (Methods), finding that MEFISTO 
is complementary to such strategies and in particular allows for the 
sharing of evidence across views (Extended Data Fig. 1c,d). Finally, 
we assessed the computational complexity of MEFISTO, finding 
that the sparse Gaussian process approximations used enable appli-
cations to larger datasets (Supplementary Fig. 4).

Application to a gene expression atlas of development. Next, we 
applied MEFISTO to an evolutionary atlas of mammalian organ 
development10 (Fig. 2a), consisting of gene expression of five spe-
cies (that is, groups) profiled across five organs (that is, views) 
along a developmental time course from early organogenesis to 
adulthood (14–23 time points per species). MEFISTO identi-
fied five latent factors that were robust to down-sampling of time 
points (Supplementary Fig. 5) and which collectively explained 
35–85% of the transcriptome variation for different organs (Fig. 2b).  

Despite a substantial fraction of missing time points for several 
combinations of organs and species (Supplementary Fig. 6), the 
temporal alignment of MEFISTO (Fig. 2c and Extended Data Fig. 2)  
yielded meaningful correspondence of the developmental stages 
between species (Supplementary Fig. 7). All five factors were char-
acterized by a high degree of smoothness (Fig. 2d), which is con-
sistent with developmental programs driving most of the variation. 
Notably, the sharedness across species varied considerably between  
factors (Fig. 2d).

The first three factors had similar temporal profiles across spe-
cies, indicating that they captured conserved developmental pro-
grams. Factor 1 explained variation in all organs (Fig. 2b), capturing 
gradual expression changes along developmental time (Fig. 2d). To 
further characterize the underlying molecular process, we investi-
gated the genes with high weights on the factor. Across all organs 
this showed gene sets linked to broad developmental processes and 
proliferation, including pathways related to the cell cycle (Extended 
Data Fig. 3a), but also individual genes encoding hallmark develop-
mental modulators such as IGF2BP1, SOX11 or KLF922–24 (Extended 
Data Fig. 3b,c). At the same time, the weights of Factor 1 also indi-
cated organ-specific signatures that varied in line with the major 
functions of the respective organ, for example, upregulation of 
GFAP expression along Factor 1 in brain tissues (Extended Data 
Fig. 4)25. Similarly, Factor 2 explained variation in multiple organs 
(Fig. 2b) and captured developmental programs with onset in inter-
mediate development (Fig. 2d), as for example characterized by a 
transient upregulation of HEMGN expression during development 
in the liver along Factor 2 (Extended Data Fig. 5). Factor 3 captured 
gene expression signatures specific to testis development, with a 
sharp transition in gene expression with the onset of male meiosis  
(Fig. 2b,d). As visible from the factor weights, these signatures are 
characterised by expression changes in genes encoding testis-specific 
proteins, for example, ODF1 or UBQLN3, which are upregulated in 
testis at late developmental stages (Extended Data Fig. 6a,b), and in 
gene sets linked to reproduction (Extended Data Fig. 6c).

In addition to these shared factors, MEFISTO identified varia-
tion specific to the evolutionarily more distant species human 
(Factor 4) and opossum (Factor 5), with distinct temporal pat-
terns (Fig. 2d,e). Interestingly, these two factors affect gene expres-
sion programs in all organs (Fig. 2b and Extended Data Figs. 7,8). 
To identify individual genes that have undergone changes to the 
expression trajectory along evolution, we inspected the factor 
weights for each organ. Several of the genes with high weights were 
previously associated with differences in expression trajectory that 
have evolved on branches separating opossum and human from 
the other species10 (Extended Data Fig. 7c and Extended Data Fig. 
8c). Most of these genes had a high factor weight only in one of 
the organs (Supplementary Fig. 8a,b), which is in line with previous 
findings that the majority of trajectory changes are restricted to one 
organ10. These changes are probably caused by regulatory mutations 
or changes in cell type composition that occurred in this organ10. 
For example, evolutionary changes in primates have been reported 
for TRPM826, which was assigned the highest weight in the liver on 
the human-specific Factor 4 (Extended Data Fig. 7a,b). Moreover, 
neutrophil markers27 were enriched in genes with high weights for 

Fig. 2 | Application of MEFISTO to an evolutionary gene expression atlas across development. a, Illustration of the input data covering gene expression 
measurements for 7,696 orthologous genes from five species (groups) and five organs (views) across 14–23 developmental stages. Correspondences of 
stages between species are not given and are learnt by the model. b, Percentage of variance (var.) explained by MEFISTO in the gene expression data for 
each species and organ. The barplot (top) shows the percentage of variance explained by all of the factors, and the heatmap (bottom) shows the values 
for individual factors. c, Scatterplot showing the embedding of the samples given by the first two factors. Samples are colored by the inferred common 
developmental time. d, Learnt factor values as a function of the inferred developmental time. Points correspond to individual factor values, and the lines 
and shaded zones correspond to the mean and variance, respectively, of the underlying latent process that generates the factor values. The bars at the top 
indicate the estimated smoothness along development and the sharedness across species of the factor. e, Learnt correlation structure across species for 
each latent factor in d.
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the opossum-specific Factor 5 (Supplementary Fig. 8c), indicating 
cell type composition changes in line with previously observed dif-
ferences in the developmental timing of neutrophils in marsupials28.

Finally, we considered this dataset to further assess the per-
formance of MEFISTO in settings with pronounced missingness 
by masking data for random species–time point combinations.  
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MEFISTO yielded accurate imputations, and in particular was 
able to interpolate time points with completely missing data 
(Supplementary Fig. 9), while leveraging both temporal information 
and correlations between features for imputation (Supplementary 
Fig. 10).

Application to sparse longitudinal microbiome data. As a second 
use case, we applied MEFISTO to longitudinal samples of the micro-
biome of infants after birth29,30 using month of life as the temporal 
covariate and infants as the groups in the model. As common in 
microbiome data and longitudinal studies, this dataset is extremely 
sparse, with 91.4–98.0% of the dataset consisting of zeros and up 
to 23 missing time points per infant (out of 24 time points; 9 time 
points missing on average). MEFISTO identified distinct temporal 
trajectories depending on the birth mode (Factor 1, Fig. 3a) and, 
to a lesser extent, the diet of the infants (Factor 2, Fig. 3a). Unlike 
methods that do not account for the temporal covariate, MEFISTO 
yielded robust estimates of factor values when masking randomly 
selected subsets of the samples (Supplementary Fig. 11). Taken 
together, these two factors explained between 6% and 61% of the 
total microbiome variation in each infant, and had a clustering that 
primarily captured temporal effects at the level of samples (Fig. 3b) 
and delivery mode at the level of infants (Factor 1, Supplementary 
Fig. 12). To identify specific changes in the microbiome that under-
lie the temporal patterns captured by the factors, we investigated 
the weights of the microbial features (that is, sub-operational taxo-
nomic units (sOTUs)) in the model. For Factor 1, the genera with 
the largest weights were Faecalibacterium and Bacteroides, which 
were negatively associated with factor activity (Fig. 3c). In line 
with the temporal pattern of Factor 1 (Fig. 3a), these genera play an 
important role in the maturation of the human gut microbiome and 
become increasingly abundant over the course of the first year of life, 

reaching stable abundance levels in the second year29,31. Moreover, 
the higher values of Factor 1 over the first year of life indicate that 
microbiome maturation is slower in infants born by cesarean sec-
tion (Fig. 3a), in whom colonization towards an adult microbiome is 
known to be delayed compared with vaginally delivered infants29,31. 
For example, Bacteroides, as captured by negative factor weights 
(Fig. 3c), is more abundant in vaginally delivered infants in the early 
months after birth29,31. In contrast, Clostridium, enriched in positive 
factor weights (Fig. 3c), is predominantly observed in infants deliv-
ered by cesarean section (Supplementary Fig. 13a,b) and decreases 
in abundance over the course of the first 1.5 years during the devel-
opment of a mature gut microbiome29,31. sOTUs with high weights 
on Factor 2 were associated with the diet of infants (Supplementary 
Fig. 13a,c), including an enrichment of Clostridiales for the for-
mula diet, which might reflect a more adult-like diet and lack of 
oligosaccharides from human breast milk. At the same time Factor 
2 captured microbes with sharp changes in abundance in the first 
months after delivery, such as the decline in abundance of Proteus 
on the positive weights (Fig. 3c) and an increase in abundance of 
Bifidobacterium on the negative weights (Fig. 3c). We also compared 
MEFISTO with a recently proposed method for temporal analysis of 
microbiome data (CTF)30, which yielded factors that were notably 
less concordant with the expected axes of microbiome variation in 
these data (Supplementary Fig. 13a), and had no clear taxonomic 
enrichment in the factor weights (Supplementary Fig. 13d).

Applications to multi-dimensional and spatial omics. Finally, 
we considered MEFISTO for the analysis of datasets with a 
multi-dimensional covariate. We applied MEFISTO to a single-cell 
multi-omics study32 consisting of 1,518 cells collected across early 
mouse development that were profiled using combined nucleo-
some, methylation and transcriptome sequencing (scNMT-seq33) or 
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transcriptome sequencing. The sparsity and missing data of the epi-
genetic readouts is a major challenge in this dataset, with only 33% 
of the cells having measurements from the epigenetic modalities. 
To identify coordinated variation between the transcriptome and  

epigenome along development, we characterized developmental 
transitions using two-dimensional reference coordinates derived 
from the RNA expression (Fig. 4a, UMAP34) and used these as 
covariates in MEFISTO (Methods). Applied to all three omics  
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Fig. 4 | Application to a single-cell multi-omics dataset from early mouse development. a, Scatterplots of UMAP (uniform manifold approximation  
and projection for dimension reduction) coordinates obtained from the RNA expression data that were used as covariates for MEFISTO. Each dot 
corresponds to a cell, colored by lineage assignments derived from the Argelaguet el al. study32. b, Percentage of variance explained by each factor in 
each data modality. c, Scatterplot of UMAP coordinates as in a, colored by factor values. The bars at the top indicate the estimated smoothness of the 
respective factor. d, Scatterplot of DNA methylation weights versus chromatin accessibility weights for Factor 1 (relative values). Each dot corresponds  
to a transcription factor motif, error bands indicate the 95% confidence interval of the linear regression. Highlighted are the transcription factor motifs 
with the largest absolute values. Shown in the corner is Pearson R. The P value is based on a two-sided correlation test on the Pearson’s product moment 
correlation coefficient. e, Molecular variation of MSGN1 along the trajectory. Left: RNA expression level. Middle: DNA methylation (top) and chromatin 
accessibility (bottom) raw data values (~33% of cells covered). Right: DNA methylation (top) and chromatin accessibility estimates (bottom) using 
imputed values obtained from MEFISTO. f, Scatterplots of UMAP coordinates, as in a. Each cell is colored by cell cycle state, inferred using cyclone37.  
g, Gene set enrichment analysis (GSEA) applied to the RNA weights of Factor 4. Shown is the false discovery rate-adjusted P value for the top significant 
pathways from the Molecular Signatures Database38.
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layers, and considering DNA methylation and chromatin accessi-
bility quantified at transcription factor motifs as input (Methods), 
MEFISTO identified seven factors that jointly explained 29%, 35% 
and 39% of the variance in RNA expression, DNA methylation and 
chromatin accessibility, respectively (Fig. 4b). Factors 1 and 3 cap-
tured smooth patterns of variation across all data modalities, associ-
ated with the emergence of the two primary germ layers, mesoderm 
(Factor 1) and endoderm (Factor 3) (Fig. 4c). The weights of the 
transcription factor motifs on these factors reflected the known neg-
ative relationship of DNA methylation and chromatin accessibility35 
and identified key transcription factors associated with this pro-
cess, including GATA4, TBX6 and MSGN1 for the mesoderm fate  
(Fig. 4d) and FOXA2 and HNF1 for the endoderm fate (Supplementary 
Fig. 14a). Notably, MEFISTO inferred additional non-smooth factors 
that captured biological sources of covariation not associated with 
the developmental trajectory. The most prominent example is Factor 
4, which captured differences in cell cycle state (Fig. 4c,f, Methods), 
with an enrichment of weights in the RNA view for gene sets related 
to the cell cycle (Fig. 4g). Finally, we used the underlying Gaussian 
processes inferred by MEFISTO to denoise transcription factor 
activities and impute accessibility and methylation values of tran-
scription factor motifs in cells for which only RNA expression mea-
surements were available (Fig. 4e and Supplementary Figs. 14b,15).  
This analysis illustrates the ability of MEFISTO to impute entire 
molecular layers along multi-dimensional trajectories, which is par-
ticularly valuable for the analysis of very sparse data types such as 
single-cell multi-omics technologies. In conclusion, this application 
shows how MEFISTO can be applied to noisy and complex single-cell 
multi-omics datasets to identify coordinated transcriptomic and epi-
genetic signatures in multi-dimensional trajectories.

Similarly, MEFISTO can be used to identify spatial patterns. To 
illustrate this, we applied MEFISTO to a 10x Visium spatial tran-
scriptomics dataset of the anterior part of the mouse brain36 using 
the spatial coordinates as the covariate in the model. MEFISTO 
identified major anatomical regions in the brain (Extended 
Data Fig. 9a) and their associated marker genes (Extended Data  
Fig. 9b,c), such as Ttr as a marker of the choroid plexus (Factor 4), 
without the need of single-cell reference data. Enrichment analysis 
of the weights based on known marker genes (Methods) showed 
cell types enriched for each of the patterns, including Schwann cells 
on Factor 1, neuroendocrine cells on Factor 2, Purkinje neurons 
on Factor 3 and choroid plexus cells on Factor 4 (Supplementary  
Fig. 16). MEFISTO provides an integrated measure of the smooth-
ness of each pattern across space (Extended Data Fig. 9a). This 
application also illustrates the utility of the sparse inference scheme 
in MEFISTO, which greatly reduces time and memory require-
ments while retaining accurate inference of the spatial patterns as 
well as interpolation to missing spots (Supplementary Fig. 17).

Discussion
Here, we present MEFISTO, a computational framework that opens 
up the application of multimodal factor analysis to temporal or spa-
tially resolved datasets. We found that the ability to explicitly account 
for spatial or temporal dependencies is especially helpful in datasets 
with a larger number of missing values, or when high-dimensional 
measurements are sampled irregularly across different sample 
groups or views. Additionally, MEFISTO adds substantial value in 
cases in which extra- or interpolation of temporal or spatial trajec-
tories is required and/or when the temporal covariate and the asso-
ciated measures are imperfectly aligned across datasets. We focused 
on applications of MEFISTO to temporal and longitudinal studies, 
such as developmental time courses. These studies are rapidly gain-
ing relevance both in basic biology and biomedicine. However, the 
model is also readily applicable to two-dimensional covariates, as 
illustrated in the application to multimodal single-cell data and the 
application to Visium gene expression arrays.

Future developments could focus on extensions to enable spatial 
alignment across datasets, as well as the deployment of specific noise 
models. These could, for example, be tailored for single-molecule 
data, directly account for over-dispersion in sequencing data with-
out the need for preprocessing, or help to distinguish biological and 
technical zeros in the measurements by incorporating an explicit 
model of zero-inflation. Furthermore, although MEFISTO is based 
on a probabilistic factor analysis framework, the concept of explic-
itly modeling spatial and temporal covariates could also be incor-
porated into other classes of latent variable models. This includes, 
for example, non-negative matrix factorization, which has been 
successfully applied to recover additive non-negative signatures, 
or autoencoders, which are increasingly used to infer a non-linear 
decomposition of the data. Finally, we note that beyond time or 
space, other side-information could be considered to inform the 
factorization, including clinical markers or known dependencies 
between molecular features.
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Methods
MEFISTO model. MEFISTO is a probabilistic model for factor analysis that 
accounts for continuous side-information during inference of the latent space. To 
achieve this, MEFISTO combines multimodal sparse factor analysis frameworks7,8 
with a functional view on the latent factors based on Gaussian processes, and 
additionally provides alignment functionalities and an explicit model of intergroup 
heterogeneity. As input MEFISTO expects a collection of matrices, where each 
matrix Ym,g  corresponds to a group g =1,…,G and view m =1,…,M with Ng 
samples in rows and Dm features in columns. Each sample is further characterized 
by a covariate Cg

∈ R
C×Ng that represents, for example, temporal or spatial 

coordinates. The matrices are jointly decomposed as

Ym,g
= ZgWmT

+ ε
m,g m = 1,…,M, g = 1,…,G,

where Zg
∈ R

Ng×K contains the K latent factors and Wm
∈ R

Dm×K contains their 
weights. A feature- and view-wise sparsity prior is used for Wm as in previous 
multimodal factor analysis models7,8. Unlike existing factor models, however, the 
model additionally accounts for the covariate Cg . Each factor value zgnk is modeled 
as a realization of a Gaussian process

zgnk = fk
(

cgn
)

+ η
g
nk with fk ∼ GP (0, κk) ,

where the covariance function κk models the relationship between groups as well as 
along the covariate, that is,

κk

(

cgn, c
h
l

)

= κ
G
k (g, h) κ

C
k (cn, cl) .

The first term in this covariance function captures the covariance of the discrete 
sample groups g, h, while the second term describes the covariance along values 
of the covariate, which provide a continuous characterization of each sample, for 
example, its temporal or spatial location. We choose a low-rank covariance function 
for 𝜅G and a squared exponential covariance function for 𝜅C, that is,

KG
k =

(

κ
G
k (g, h)

)

g,h
= xkxTk + σ

2
kI xk ∈ R

G×R

κ
C
k (cn, cl) = sk exp

(

−
||cn − cl||22

2l2k

)

η
g
nk ∼ N (0, 1 − sk) .

The hyperparameters xk, σk lk, sk determine the group–group covariance 
structure (xk, σk) as well as the smoothness of the latent factors along the covariate 
(lk, sk). The scale parameter sk determines the relative smooth versus non-smooth 
variation per factor, and the lengthscale parameter lk determines the distance over 
which correlation decays along the covariate, for example, in time or space. Details 
on the model specification, illustrations of the resulting covariance structures and a 
plate diagram are provided in Supplementary Information Section 2.

Inference. To infer the unobserved model components as well as the 
hyperparameters of the Gaussian process, MEFISTO makes use of variational 
inference combined with optimization of the evidence lower bound in terms of the 
hyperparameters of the Gaussian processes. Details on the inference are described 
in Supplementary Information Section 3, where the specific updates of the 
inference algorithm are described. For large sample sizes, inference of the covariate 
kernel can be based on a subset of the original covariates chosen on a regular grid 
to reduce computational complexity (Supplementary Information Section 4). 
In addition, if the covariance matrix of the latent processes can be decomposed 
in terms of a Kronecker product, that is, as KG

⊗ KC , MEFISTO leverages this 
structure for accelerated inference based on spectral decomposition of the group 
and covariate covariance (Supplementary Information Section 3).

Alignment. If the temporal correspondence between different groups is imperfect, 
a non-linear alignment between sample groups is learnt based on dynamic time 
warping19 in the latent space. To reduce noise prior to the alignment, MEFISTO 
simultaneously decomposes the input data and aligns the covariate. This is 
implemented by interleaving the updates of the model components with an 
optimization step, in which a warping curve is found that minimizes the distance 
of each group to a reference group in the current latent space. The alignment 
can be partial, that is, it can have different end or start points between groups. 
Furthermore, instead of learning an alignment between individual groups, the 
alignment step can also be used at higher levels, such as between distinct classes of 
groups based on known class annotations or hierarchies of the groups. Details on 
the alignment step are described in Supplementary Information Section 5 and we 
provide practical guidelines on the use of the alignment option in Supplementary 
Information Section 8.3.

Data preprocessing and model set-up. For each view a different likelihood model 
can be used in the matrix decomposition analogously to previous multimodal 

factor models (Supplementary Information Section 8.1). Nevertheless, for most 
data types, preprocessing of the data prior to MEFISTO is recommended to take 
characteristics of the data into account such as over-dispersion or differences 
in library size in sequencing count data. We provide a detailed discussion and 
guidelines in Supplementary Information Section 8.1. In addition, MEFISTO can 
be used with tailored choices of the groups and views in the model (Supplementary 
Information Section 8.2).

Downstream analyses. Once the model is trained, the Gaussian process 
framework enables interpolation or extrapolation of the latent factors to 
unseen samples, groups or views as well as providing measures of uncertainty. 
Given a set of new covariate values c∗, MEFISTO can make predictions of the 
corresponding latent factor values z∗ based on the predictive distribution p(z∗|Y) 
(Supplementary Information Section 6). Missing values of the considered features 
are then imputed from the model equation as in previous models7,8. Furthermore, 
the hyperparameters of the model give insights into the smoothness of a factor (sk, 
between 0 (non-smooth) and 1 (smooth)) and the group relationships specific to 
a latent factor (KG) that can be used to cluster the groups or identify outliers. An 
overall sharedness score per factor is calculated by the mean absolute distance to 
the identity covariance matrix in the off-diagonal elements.

Related methods. MEFISTO is related to previous matrix factorization and tensor 
decomposition methods, which, however, mostly ignore temporal information1–8, 
use it only for preprocessing39, or interpret it post-hoc30. Those models that 
incorporate such information do not allow multiple views (for example, 
omics)40–42 or are restricted to the same features in each view43. In addition, 
sparsity constraints, which enhance interpretability and identifiability, are not 
used in these models. Besides linear methods, non-linear approaches have made 
use of continuous side-information, for example, in the context of variational 
autoencoders44,45 or recurrent neural networks46. In particular, all of the above 
methods are incapable of handling non-aligned time courses across datasets (apart 
from the Duncker and Sahani method43) and cannot capture heterogeneity across 
sample groups in the latent factors. For a detailed overview on related methods 
we refer to Supplementary Information Section 7.1. More generally, Gaussian 
process models have been widely applied to account for sample dependencies at 
the feature level. Prior applications to biomedical data include univariate regression 
models for spatial expression data14–16,47 or time course experiments17,48, as well as 
models aimed at clustering of time series 18,49,50. These differ in their objective to 
that of MEFISTO, which uses Gaussian processes at the level of inferred factors in 
the latent space. For a more detailed discussion see Supplementary Information 
Section 7.2.

Simulations. Data were simulated from the generative model by varying the 
number of time points per group in a [0,1] interval, the noise levels, the number 
of groups and the fraction of missing values. Ten independent datasets were 
simulated for each setting from the generative model with three latent processes, 
having scale parameters of 1, 0.6, 0 and lengthscales of 0.2, 0.1, 0. For the first 
two (smooth and partially smooth) factors, one was randomly selected to be 
shared across all groups, while for the other factor a correlation matrix between 
groups of rank 1 was simulated randomly based on a uniformly distributed vector. 
MEFISTO was compared with MOFA7,8 in terms of factor recovery, given by the 
correlation of the inferred and simulated factor values, as well as in terms of the 
mean squared error between imputed and ground-truth values for the masked 
values in the high-dimensional input data. The base settings for all non-varied 
parameters are 20 time points per group, five groups, four views with 500 features 
each, and a noise variance of 1. A total of 20% of randomly selected time points 
were masked per group and view, of which 50% were missing in all views. To 
assess the alignment capabilities of the model, data were simulated with the same 
set-up for three groups and the covariates were transformed before training by a 
linear mapping (h(t) = 0.4t + 0.3), a non-linear mapping (h(t) = exp(t)), and the 
identity in each group, respectively. These transformed covariates were passed to 
the model and the learnt alignment was compared with the ground-truth warping 
functions. To test the alignment in the presence of non-temporal patterns of 
variation, we restricted the simulation to a single smooth factor and either varied 
the number of non-smooth factors or restricted the smooth factor to a single view 
with 100 features, and varied the number of features in a second view generated by 
a non-smooth factor. To assess the scalability in the number of time points using 
sparse Gaussian processes, data were simulated from one group and with the same 
base parameters as above. For the comparison with univariate Gaussian processes, 
we fitted Gaussian process models to all observed time points of each individual 
feature using the ExactGP model as implemented in GPyTorch v1.4.0 (ref. 51) with 
a squared exponential covariance function, and the parameters were optimized 
using Adam optimizer. Feature values at missing time points were predicted from 
the resulting posterior. Data were simulated as above with only the two smooth 
factors (given that univariate Gaussian processes are restricted to modeling 
temporal patterns in the data), as well as a single group and 100 features per view.

Evo-devo data. Count data were obtained from Cardoso-Moreira et al.10, 
corrected for library size, normalized using a variance stabilizing transformation 
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provided by DESeq2 v1.26.0 (ref. 52) and the orthologous genes selected as 
given in the Cardoso-Moreira et al. study10. Following the trajectory analysis of 
the original publication, we focused on five species, namely human, opossum, 
mouse, rat and rabbit, and five organs, namely brain, cerebellum, heart, liver 
and testis. In total this resulted in a dataset of five groups (species) and five 
views (organs) with 7,696 features each. The number of time points for each 
species varied between 14 and 23. Given that developmental correspondences 
were unclear, we used a numeric ordering within each species ranging from 1 
to the maximal number of time points in this species as input for MEFISTO 
and let the model infer the correspondences of time points between species. 
Stability analysis of the latent factors was performed by re-training the model 
on a down-sampled dataset, in which random selections of 1–5 time points were 
repeatedly masked in each organ–species combination. Gene set enrichment 
analysis was performed based on the reactome gene sets53, the Molecular 
Signatures Database38 and cell type markers downloaded from https://panglaodb.
se/markers.html (ref. 27). To assess the imputation performance, gene expression 
data in 2–20 randomly selected species–time combinations (out of a total of 82) 
were masked in three, four or all organs and the model was retrained on these 
data as described above. The experiment was repeated ten times and the mean 
squared error was calculated on all masked values. For the comparison with 
univariate Gaussian processes we restricted the experiment to 1,000 randomly 
selected genes of mouse brain and masked a varying fraction of these features at 
randomly sampled time points (out of 14).

Microbiome. Data were obtained from the Code Ocean capsule: https://doi.
org/10.24433/CO.5938114.v1, which contains the data used in the Bokulich et al. 
study29. The processed data contained microbial features provided at the level 
of sub-operational taxonomic units (sOTUs) and a phylogenetic tree as detailed 
in the Martino et al. study30. All samples from infants of type Stool_Stabilizer 
in months 0–24 of life were included, and maternal samples were excluded. 
Data were processed using a robust-centered log ratio following Martino et al.30, 
which treats zero values as missing, and features that were observed in less 
than five samples were excluded. This resulted in a total of 43 infants (groups) 
with up to 24 time points (months) and 969 features that were provided as 
input to MEFISTO using month of life as the covariate. To calculate taxonomic 
enrichments of the factor weights, we used a one-sided Wilcoxon test, separately 
comparing positive and negative weights for each genus against the appropriate 
background (all positive or negative weights, respectively). Mean factor weights 
per genus were visualized on a taxonomic tree using iTOL v6 (ref. 54). For the 
stability analysis, we randomly masked a varying number of samples (out of 650 
observed samples) and trained MOFA7,8, MEFISTO and CTF (gemelli v0.0.5)30 
on the masked data. For each method, factor stability was evaluated using the 
Pearson correlation of the factors on the masked data to the corresponding 
factor on the full data. To compare the factor weights of MEFISTO to 
associations with known covariates we trained a linear mixed-effect (LME) 
model for each sOTU with time point and the covariate of interest as fixed 
effects and infant as the random effect. We subsequently extracted the LME 
model coefficient as effect size estimates and compared them to the factor 
weights of MEFISTO.

Single-cell multi-omics of mouse development. Data were obtained from 
the Argelaguet et al.32 study, in which details on quality control and data 
preprocessing can be found. In brief, gene expression counts were quantified 
over protein-coding genes using the Ensembl gene annotation 87 (ref. 55). The 
read counts were log-transformed, size-factor adjusted, the top ~1,000 most 
variable genes selected and the number of expressed genes per cell regressed 
out prior to fitting the model. The UMAP algorithm34 was applied to the RNA 
expression data to infer the two-dimensional developmental coordinates used as 
covariates in MEFISTO. DNA methylation and chromatin accessibility data were 
quantified over transcription factor motifs across the genome. A position-specific 
weight matrix was extracted for each motif using the JASPAR database56 and 
motif occurrences in the genome were found using the Bioconductor package 
motifmatchr v1.12 with default options. For each cell and transcription factor 
motif CpG methylation and GpC accessibility counts were aggregated across 
all motif instances. A CpG methylation or GpC accessibility rate for each 
transcription factor motif and cell was calculated by maximum likelihood 
under a binomial model and subsequently transformed to M-values. As input to 
MEFISTO we selected the top 500 most variable transcription factor motifs for 
each data modality. Cell cycle states for each cell were inferred using cyclone37 (as 
implemented in scran v1.18). To evaluate the imputation accuracy, random sets 
of cells of varying size (N = 100, 150, 200, 250) were selected and their epigenetic 
data were masked. Methods were trained on the masked data and evaluated in 
terms of their imputation performance using the mean absolute error to the 
masked measurements.

Spatial transcriptomics. Data were obtained from the SeuratData R package 
as stxBrain.anterior1, normalized, and the 2,000 most variable features selected 
using the NormalizeData and FindVariableFeatures functions provided by 
Seurat36. Normalized expression values at all 2,696 spots were provided to 

MEFISTO with tissue coordinates as the two-dimensional covariate. For training 
of MEFISTO, 1,000 inducing points were selected on a regular grid in space. For 
comparison a model with 500 inducing points and a model with all spots were 
trained and compared in terms of their inferred factors as well as in terms of their 
interpolation accuracy. For the latter, 250 randomly selected spots were masked in 
ten independent experiments and the mean squared error between predicted and 
true expression values of these spots was calculated for MEFISTO (trained with 
different numbers of inducing points) as well as for MOFA7,8. Cell type markers 
were downloaded from https://panglaodb.se/markers.html (ref. 27), and markers 
annotated for mouse brain were used for the enrichment analysis.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The evo-devo data were obtained from Cardoso-Moreira et al.10 and can be accessed 
from ArrayExpress with codes E-MTAB-6782 (rabbit), E-MTAB-6798 (mouse), 
E-MTAB-6811 (rat), E-MTAB-6814 (human) and E-MTAB-6833 (opossum) 
(https://www.ebi.ac.uk/arrayexpress/). The microbiome data are based on Bokulich 
et al.29 and can be found on Qiita (http://qiita.microbio.me), and the processed 
data were obtained from the ‘Code Ocean’ capsule: https://doi.org/10.24433/
CO.5938114.v1 provided by Martino et al.30. The scNMT-seq data were obtained 
from Argelaguet et al.32 and the spatial transcriptomics dataset from the SeuratData 
package under the name “stxBrain.anterior1”. Processed data and trained models 
for all applications are available at https://doi.org/10.6084/m9.figshare.13233860.v1 
as used in the tutorials at https://biofam.github.io/MOFA2/MEFISTO. Enrichment 
analyses were based on gene and marker sets available from the Bioconductor 
package MOFAdata v1.6.0 (including the Molecular Signatures Database38 and 
Reactome53 gene sets) and from PanglaoDB (https://panglaodb.se/); transcription 
factor motifs were extracted from the JASPAR database56.

Code availability
MEFISTO is implemented as part of the MOFA framework7,8, which is available as 
Bioconductor package MOFA2 (version 1.3.3)57 and at https://github.com/ 
bioFAM/MOFA2. Installation instructions and tutorials can be found at https://
biofam.github.io/MOFA2/MEFISTO. MEFISTO can also be accessed via the  
Python framework muon58. Code to reproduce all figures is available at https://
github.com/bioFAM/MEFISTO_analyses. In addition, we provide vignettes on the 
main applications as part of the MEFISTO tutorials on https://biofam.github.io/
MOFA2/MEFISTO.
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Extended Data Fig. 1 | Additional results from evaluating MEFISTO on simulated data. (a, b) Assessing the inference of factor smoothness (a) and 
sharedness (b, as defined based on the covariance of a factor across groups, Methods) on simulated data for varying simulation parameters (panels, 
Methods). Solid lines and dots show the average scores inferred by MEFISTO, intervals indicate the standard error of the mean across ten independent 
trials and dashed lines the values used in the simulation per factor (colors). (c,d) Comparison of interpolation performance to univariate Gaussian 
processes in terms of mean squared error of imputation (c) and memory and time requirements (d) for varying simulation parameters (panels, Methods). 
Dots indicate mean, intervals indicate standard error of the mean across ten independent trials.
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Extended Data Fig. 2 | Inferred alignment of developmental stages in the evo-devo application. Factor values as a function of time before (a) and after 
(b) alignment. (a) shows the factor values (y-axis) against the developmental stages without alignment across species (x-axis), (b) shows the factor 
values (y-axis) against the developmental stages with alignment across species (x-axis). (c,d,e) show a latent embedding given by the factor values for 
each species- time point combination for Factor 1 (x-axis) and Factor 2 (y-axis) colored by unaligned times (c), aligned times (d) and species (e).
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Extended Data Fig. 3 | Pan-organ developmental programs on Factor 1 in the evo-devo application. (a) Gene sets at a false discovery rate of 5% that are 
enriched in the weights of Factor 1 in at least 4 organs. Dots are colored by organ and indicate the significance of a gene set (x-axis) based on a parametric 
t-test with multiple testing correction using Benjamini-Hochberg procedure as implemented in MOFA2. Gray bars indicate the number of organs with 
significant enrichment. (b) Top 10 genes (y-axis) with highest absolute mean weight across organs. Dots indicate the absolute weight per organ (colors), 
gray bars show the mean across organs. Symbols on the right indicate the sign of the weights. (c) Gene expression along the inferred developmental time 
in all organs (columns) for the top 3 genes of panel (b).
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Extended Data Fig. 4 | Organ-wise weights of Factor 1 in the evo-devo application. (a) Genes with highest absolute weight (x-axis) for the three organs 
with highest variance explained by Factor 1. Symbols on the right in each panel indicate the sign of the weight. (b) Gene expression trajectories along the 
inferred developmental time for the top 3 genes of the corresponding panel in (a).
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Extended Data Fig. 5 | Organ-wise weights of Factor 2 in the evo-devo application. (a) Genes with highest absolute weight (x-axis) for the three organs 
with highest variance explained by Factor 2. Symbols on the right in each panel indicate the sign of the weight. (b) Gene expression trajectories along the 
inferred developmental time for the top 3 genes of the corresponding panel in (a).
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Extended Data Fig. 6 | Testis weights of Factor 3 in the evo-devo application. (a) Genes with highest absolute weight (x-axis) in Testis on Factor 3. 
Symbols on the right indicate the sign of the weight. (b) Gene expression trajectories along the inferred developmental time for the top 3 genes in 
(a). (c) Top ten enriched gene set of the Molecular Signatures Database (MSigDB) in the weights of Factor 3. Colors indicate the negative logarithm 
of the adjusted p-values (per organ and factor) based on a parametric t-test with multiple testing correction using Benjamini-Hochberg procedure as 
implemented in MOFA2.
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Extended Data Fig. 7 | Organ-wise weights of Factor 4 in the evo-devo application. (a) Genes with highest absolute weight (x-axis) for the three organs 
with highest variance explained by Factor 4. Symbols on the right in each panel indicate the sign of the weight. (b) Gene expression trajectories along the 
inferred developmental time for the top 3 genes of the corresponding panel in (a). (c) Weights of Factor 4 split by the classification in Cardoso-Moreira 
et al10. Shown are violin plots of the weights (n = 7,696) in the model for each organ (panels) separated by whether they have previously been identified as 
having changed developmental trajectories for human compared to rodents or rabbit (x-axis). Inner boxplots show the median, the first and third quartiles 
(box), the largest and smallest value within the 1.5 interquartile ranges from the hinges (end of whiskers) and outliers (dots).
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Extended Data Fig. 8 | Organ-wise weights of Factor 5 in the evo-devo application. (a) Genes with highest absolute weight (x-axis) for the three organs 
with highest variance explained by Factor 5. Symbols on the right in each panel indicate the sign of the weight. (b) Gene expression trajectories along the 
inferred developmental time for the top 3 genes of the corresponding panel in (a). (c) Weights of Factor 5 split by the classification in Cardoso-Moreira 
et al10. Shown are violin plots of the weights (n = 7,696) in the model for each organ (panels) separated by whether they have previously been identified 
as having changed developmental trajectories for opossum compared to the other mammals (x-axis). Inner boxplots show the median, the first and third 
quartiles (box), the largest and smallest value within the 1.5 interquartile ranges from the hinges (end of whiskers) and outliers (dots).
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Extended Data Fig. 9 | Application to spatial transcriptomics data. (a) Recovered factor values across space. The x- and y-axis denote the spatial 
coordinates, the colors indicate the inferred factor values. Bars below show the inferred smoothness scores for each factor. (b) Genes with highest 
absolute weight for the corresponding factor in (a). Symbols on the right of each panel indicate the sign of the weight. (c) Normalized gene expression 
values (colors) across space for the gene with the highest absolute weight on the corresponding factor in (a).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis MEFISTO is implemented as part of the MOFA framework, which is available as Bioconductor package MOFA2 and at https://github.com/
bioFAM/MOFA2. Code to reproduce all figures is available at https://github.com/bioFAM/MEFISTO_analyses. In addition, we provide vignettes 
on the main applications as part of the MEFISTO tutorials on https://biofam.github.io/MOFA2/MEFISTO.  
 
For data analysis the following Python (python=3.8.8) packages were used:  argparse==1.4.0, cycler==0.10.0, dtw-python==1.1.6, 
gpytorch==1.4.0, h5py==3.1.0, joblib==1.0.1, kiwisolver==1.3.1, matplotlib==3.3.4, numpy==1.20.1, pandas==1.2.3, pillow==8.1.1, 
pyparsing==2.4.7, python-dateutil==2.8.1, pytz==2021.1, scikit-learn==0.24.1, scipy==1.6.1, seaborn==0.11.1, six==1.15.0, 
threadpoolctl==2.1.0, torch==1.7.1+cpu, torchaudio==0.7.2, torchvision==0.8.2+cpu, typing-extensions==3.7.4.3, gemelli==0.0.5 
 
The following R (R 4.0.0 and R 4.1.0) packages were used: motifmatchr_1.12, scran_1.18, magrittr_2.0.1, cowplot_1.0.1, forcats_0.5.0, 
stringr_1.4.0, dplyr_1.0.0, purrr_0.3.4, readr_1.3.1, reshape2_1.4.4, tidyr_1.1.0, tibble_3.0.2, ggplot2_3.3.2, tidyverse_1.3.0, 
BiocStyle_2.16.0, SeuratObject_4.0.0, Seurat_4.0.0, lmerTest_3.1.3, SeuratData_0.2.1, Seurat_3.2.3, MOFAdata_1.6.0, ggrepel_0.9.1, 
ggpubr_0.4.0, data.table_1.13.6,  DESeq2_1.26.0 
 
For microbiome analysis additionally qiime2-2020.8 and iTOL v6 was used. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The evodevo data was obtained from Cardoso-Moreira et al (10) and can be accessed from ArrayExpress with codes E-MTAB-6782 (rabbit), E-MTAB-6798 (mouse), 
E-MTAB-6811 (rat), E-MTAB-6814 (human) and E-MTAB-6833 (opossum) (https://www.ebi.ac.uk/arrayexpress/). The microbiome data is based on Bokulich et al 
(25) and can be found on Qiita (http://qiita.microbio.me), the processed data was obtained from the ‘Code Ocean’ capsule: https://doi.org/10.24433/
CO.5938114.v1 provided by Martino et al (26). The scNMT-seq data was obtained from Argelaguet et al (29) and the spatial transcriptomics data set from the 
SeuratData package under the name stxBrain.anterior1.  
 
Processed data and trained models for all applications are available at https://doi.org/10.6084/m9.figshare.13233860.v1 as used in the tutorials at https://
biofam.github.io/MOFA2/MEFISTO.  
 
Enrichment analyses were based on gene and marker sets available from the Bioconductor package MOFAdata v1.6.0 (including MSigDB (33) and Reactome (53) 
gene  sets) and from PanglaoDB (https://panglaodb.se/), TF motifs were extracted from the JASPAR database (57).
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Sample size No pre-determination of sample size was required, as no data was generated for this study and no hypothesis-based experiment performed. 
Sample size was used as available from original studies and set in simulations to numbers that reflect dimensions seen in existing data sets.

Data exclusions No data was generated for this study. During data preprocessing filters were applied as detailed in Methods section.

Replication No data was generated for this study. For computational analysis, we provide all code as open-source ressource to ensure reproducibility and, 
where relevant, multiple random seeds where used for computational analyses and performance assessment. 

Randomization No sample randomization was required, as no data was generated for this study. For computational analyses and method evaluations, 
samples and features were randomly selected, generated or masked as detailed in Methods.

Blinding No data was generated for this study and blinding is not applicable, as this study illustrates different applications and does not test a specific 
hypothesis.
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