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Abstract

Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry.
But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly
electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the
length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between
a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes
with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when
evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with
the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them
better, i.e. stronger, H-bond donors.
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Introduction

Specific non-covalent interactions of low-mass ligands with

proteins drive properties of the enzymatic machinery in a living

cell. According to (induced) key-lock theory (see [1] for review) a

low-mass ligand should fit to a dedicated binding site that is

accessible on the protein surface. This steric compatibility, known

as van der Waals interactions, dominates ligand-protein selectivity,

simply excluding the majority of putative ligands and favoring

these that fit to the protein binding site. Other types of interactions

modulate the stability of ligand-protein complexes. The strongest

ones are electrostatic interactions between charged groups (known

as salt-bridges, formally zero momentum in multipole expansion of

electrostatic interactions), which energy frequently exceeds

10 kcal/mol.

Hydrogen bonding is the next type of interactions proven to

contribute significantly to stabilization of protein structure and to

the organization of intermolecular complexes (ca. 3 to 5 kcal/mol).

The energy of a single hydrogen bond (H-bond) in ligand-protein

complexes depends both on the type of hydrogen bond donor (D)

and acceptor (A) and on the overall geometry of the D-HNNNA
system. The shortest H-bonds are observed for oxygen acting as a

donor, OHNNNO (2.70Å) and OHNNNN (2.88Å), respectively. When

nitrogen is an H-bond donor, its distance to an acceptor is longer:

NHNNNO (3.04Å) and NHNNNN (3.10Å), respectively [2]. Subse-

quently, numerous non-canonical weak H-bonds have been

identified by statistical analyses of protein structures, and

previously identified in crystals of low-mass compounds. This

includes, amongst others, a p electron system acting as an H-bond

acceptor [3–5], and an aliphatic carbon acting as an H-bond

donor [4,6,7].

During the last decade, halogen bonding (X-bond, see [8] for

review) has been recognized to play a similar role as H-bonding in

protein-ligand complexes. Halogen bonds have been identified in

many crystal structures of low-mass compounds and their

supramolecular ensembles [8–17], as well as in complexes of

biomolecules with halogenated ligands [18–20]. Bearing in mind

that numerous natural drugs, and an increasing number of

synthetic drug candidates, are halogenated [21–23]; understand-

ing the nature and thermodynamics of halogen bonding should

contribute to rational drug design. Currently, halogenated

compounds are widely used in screening libraries, and comprise

almost 20% of low-mass protein ligands listed in the Protein Data

Bank (PDB). The role of halogenated ligands in biological systems

has been widely reviewed, amongst others, by Auffinger et al. [18],

Parisini et al. [24], Rendine et al., Voth & Ho [25], Voth et al. [26],

Wilcken et al. [27] and Poznański & Shugar [28].

However, there is some controversy about the energy of a

halogen bond. In aqueous medium estimates of intra- or

intermolecular halogen bonds vary from 0.2 [29] up to 5–

8 kcal/mol [25], suggesting that, in biological systems, halogen-

and hydrogen bonds may be of similar strength. However, the
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apparently largest values for an X-bond were obtained ab initio for

CF3-XNNNNH3 systems: 2.3, 4.7 and 6.4 kcal/mol for X = Cl, Br

and I, respectively [30]. These values agree with energies

estimated by IR spectroscopy, for CF3-XNNNN(CH3)3 in liquid

noble gases, which are the best models for a non-polar solvent that

does not interfere with solute-solute interactions: 2.1, 4.4 and

6.8 kcal/mol for X-bonds involving Cl, Br and I, respectively [31–

33]. These halogen bonds can compete with hydrogen bonding, as

well documented for numerous low-mass complexes in silico

[34,35], in solution [36,37], and in the solid state [17,38,39].

Due to this revived interest in halogen bonding, the observed

effect of a halogen atom on structural stability [25,40], or ligand

binding [41,42], has been attributed to a direct effect of halogen

bonding only. However, the strong electronegative and hydro-

phobic character of halogen atoms may also contribute to intra-

and intermolecular interactions. For example we have recently

shown that inhibitory activities (IC50) against protein kinase CK2a
observed for a series of benzotriazoles brominated on the benzene

ring can be explained by a balance of hydrophobic and

electrostatic interactions [43].

Halogenation modulates electron density on proximal donors

and acceptors of hydrogen bonds [44], as well as changes in

protonation equilibria of proximal dissociable groups [45,46].

Well-known examples include the decrease in pKa of fluorinated

alcohols [47]: ethanol vs. 2,29,20-trifluoroethanol (pKa decrease by

3.45) and phenol vs. pentafluorophenol (pKa decrease by 4.4).

Likewise, halogenation of uracil was shown to reduce the

hydrogen-bond-accepting, and to increase the hydrogen-bond-

donating, capabilities of halogenated DNA bases [48–50]. Other

illustrative examples of the direct effect of a halogen atom on

strengthening of proximal hydrogen bonds are brominated natural

[51,52] and synthetic [53–55] DNA, which were found to be

much more stable than the corresponding non-brominated

analogues.

A further example of the foregoing is the report of Xu et al. [42]

on a series of closely related halogenated inhibitors of phospho-

diesterase 5 (PDE5). There are five PDB structures of PDE5 with

bound inhibitors that differ only by substitution of a hydrogen

atom by F, Cl, Br or I, respectively (see PDB entries 3TSE, 3SHY,

3SHZ, 3SIE, 3TSF). Location of these closely related ligands in

the binding pocket was judged to be stabilized, besides two

hydrogen bonds and numerous vdW interactions, by intermolec-

ular interaction between the halogen atom (X) and the hydroxyl

oxygen of Tyr612. However, there are also two intermolecular

hydrogen bonds between the side-chain of Gln817, and ligands

Od and Ns, respectively, both proximal to the halogen atom (3

chemical bonds distance). Changes in the lengths of these, upon

variation of the halogen substituent, reflects eventual strengthening

of these H-bonds, not taken into account by the authors [42].

To our knowledge, no high-throughput analyses addressing the

effect of a halogen atom on proximal hydrogen bond(s) have yet

been reported for ligand-protein systems [13,19,24,25,56–61]. We

herein analyze the effect of the halogen atom of a halogenated

ligand on the lengths of hydrogen bonds (both proximal and

distal), identified in two families of proteins: protein kinases (EC

2.7) and acyltransferases (EC 2.3).

Results and Discussion

1 PDB Screening
To avoid the eventual effect of protein-specific ligand binding

modes, two protein families were analyzed. Protein kinases (EC

2.7) and acyltransferases (EC 2.3) are the proteins for which the

largest number of structures with halogenated ligands was

identified in the PDB. All complexes of ligands with proteins of

these two families were analyzed. A total of 3852 PDB entries was

found, 3187 with non-halogenated ligands, LH, 505 with

fluorinated ones, LF, and 408 containing halogenated (not

fluorinated) ligands, LX, contributing together to 1228 records

of acyltransferases and 2624 records of protein kinases. After

exclusion of protein sulfur as either hydrogen bond acceptor or

donor, a total number of 24470 hydrogen bonds was identified,

1930 with fluorinated, 1390 with halogenated ligands, and 21150

with non-halogenated ligands, respectively. In addition, 41

intermolecular H-bonds to protein sulfur (Met or Cys) were

excluded from further analyses (see Table 1 for the short statistics).

2 Distribution of Hydrogen Bond Lengths as a Function
of H-bond Topology

Hydrogen bonds were grouped according to eight possible

topologies of hydrogen bond donor-acceptor pairs, i.e. N-

HligNNNOprot (NHNNNO), NligNNNH-Oprot (NNNNHO), O-HligNNNOprot

(OHNNNO), OligNNNH-Oprot (ONNNHO), N-HligNNNNprot (NHNNNN),

NligNNNH-Nprot (NNNNHN), O-HligNNNNprot (OHNNNN), and OligNNNH-

Nprot (ONNNHN). The distributions obtained for non-halogenated

ligands are presented in Figure 1. For ligands acting as H-bond

donors, two left shifted distributions identify the topologies of the

shortest H-bonds types (i.e. OHNNNN and OHNNNO), medians of

which are the lowest (Figure 1A). The intermediate distribution

(NHNNNO) is also characterized by a higher median. The last one

(NHNNNN) is much more shifted to the right, and its median is the

highest. The order of distributions strictly correlates with the

average strength of H-bonds: the shorter is donor-to-acceptor

distance, the stronger is the H-bond. This agrees with a common

order of an average enthalpy of formation of various types of

hydrogen bonds in biomolecules: OHNNNN, 6.9 kcal/mol; OHNNNO,

5.0 kcal/mol; NHNNNN, 3.1 kcal/mol, and NHNNNO, 1.9 kcal/mol,

respectively [62].

Inspection of cumulative distributions for non-halogenated

ligands acting as H-bond acceptors (see Figure 1B) clearly

demonstrated that hydrogen bonds involving two oxygen atoms

are statistically the shortest, as evidenced by the left-shift of the

cumulative distribution function towards shorter distances (and

also smaller medians). H-bonds between two nitrogen atoms are

the longest, and the two remaining types of hydrogen bonds of

mixed topology, NNNNHO and ONNNHN are intermediate in their

lengths.

Formal statistical analysis clearly demonstrated that most

topologies of an H-bond differ significantly according to the H-

bond donor-to-acceptor distance distribution. Interestingly, these

differences are observed even between pairs in which the proton is

swapped between the ligand and the protein. Hence, the

distribution of OHNNNO (OHligNNNOprot) differs from that of an

ONNNHO (OligNNNHOprot), p,1022. Similarly OHNNNN differs from

ONNNHN (p,?10210) and NHNNNO differs from NNNNHO (p = 0.05).

This significant asymmetry may be a consequence of overrepre-

sentation of several types of H-bond donors and acceptors in

proteins. Namely, oxygen acceptors are dominated by backbone

carbonyls, oxygen donors are Ser, Thr and Tyr hydroxyl groups,

nitrogen donors are mainly backbone amides, and nitrogen donors

are solely the imidazole of His, which are rare in proteins. In

consequence, the protein nitrogen H-bond acceptors are strongly

underrepresented (see column ‘n’ in Table 2).

The foregoing is valid for all types of ligands acting as either

acceptor or donor of an H-bond (see Figure S1 and Table S1). The

statistical significance of the observed differences in donor-

acceptor distance distributions was evaluated, separately for the

three types of ligands, with the aid of the non-parametric Kruskal-
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Wallis test (p,1029). Since these differences were found globally

significant, the post-hoc approach was used to identify those pairs

that significantly differ. Estimated p-values, together with the

number of identified H-bonds, and mean rank of donor-acceptor

distances, are presented in Table 2 and Table S1.

The majority of the analyzed pairs of distributions for non-

halogenated ligands (LH) differ significantly (23 out of 28,

assuming a significance level of 0.05). In the case of fluorinated

(LF) and other halogenated ligands (LX), the small number of

identified hydrogen bonds of the type NNNNHO (NligNNNH-Oprot with

n = 4 or 2 H-bonds found for LH and LX ligands, respectively)

and NHNNNN (NHligNNNNprot with n = 1 and 0, respectively),

precluded analysis of these two types of hydrogen bonds. For the

remaining groups, distributions for 11 out of 14 possible pairs

differ significantly both for fluorinated (LF) and otherwise

halogenated (LX) ligands (Table S1). In this context, the hydrogen

bond lengths to halogenated or non-halogenated ligands must be

compared separately for eight groups representing all possible

topologies of hydrogen bonding in ligand-protein complexes.

Otherwise, the differences in representation of various types of

T
a

b
le

1
.

O
cc

u
rr

e
n

ce
o

f
va

ri
o

u
s

ty
p

e
s

o
f

h
yd

ro
g

e
n

b
o

n
d

s
id

e
n

ti
fi

e
d

in
tw

o
g

ro
u

p
s

o
f

p
ro

te
in

s
(E

n
zy

m
e

C
la

ss
if

ic
at

io
n

,
EC

,
2

.3
o

r
2

.7
)

fo
r

th
re

e
ty

p
e

s
o

f
lig

an
d

s.

L
ig

a
n

d
co

n
tr

ib
u

ti
o

n
to

H
-b

o
n

d
L

ig
a

n
d

ty
p

e

N
o

n
-h

a
lo

g
e

n
a

te
d

(L
H

)
F

lu
o

ri
n

a
te

d
(L

F
)

H
a

lo
g

e
n

a
te

d
b

u
t

n
o

t
fl

u
o

ri
n

a
te

d
(L

X
)

E
C

T
o

ta
l

E
C

T
o

ta
l

E
C

T
o

ta
l

2
.3

2
.7

2
.3

2
.7

2
.3

2
.7

N
-

ac
ce

p
to

r
8

7
1

7
6

4
1

8
5

1
2

3
3

3
9

3
6

2
6

2
9

4
3

0
0

N
-

d
o

n
o

r
2

7
3

7
2

9
3

9
5

6
7

6
3

5
5

4
9

0
8

4
5

2
3

7
4

2
4

6
6

1

O
-

ac
ce

p
to

r
3

3
2

9
6

7
0

8
1

0
0

3
7

2
6

6
3

4
4

6
1

0
1

2
4

2
1

8
3

4
2

O
-

d
o

n
o

r
1

1
1

2
2

5
1

0
3

6
2

2
8

2
3

4
1

1
6

3
6

5
3

8
9

T
o

ta
l

7
2

6
5

1
3

9
2

1
2

1
1

8
6

7
2

6
1

2
0

7
1

9
3

3
4

0
3

9
8

9
1

3
9

2

T
h

e
se

d
at

a
in

cl
u

d
e

4
1

h
yd

ro
g

e
n

b
o

n
d

s
to

p
ro

te
in

su
lf

u
r,

w
h

ic
h

w
e

re
e

xc
lu

d
e

d
fr

o
m

fu
rt

h
e

r
an

al
ys

e
s.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

9
9

8
4

.t
0

0
1

Figure 1. Cumulative distributions of donor-acceptor distances
determined for various types of intermolecular hydrogen bond
donor-acceptor pairs identified in complexes of proteins with
non-halogenated ligands, in which the ligand is either a
hydrogen bond donor (A) or acceptor (B).
doi:10.1371/journal.pone.0099984.g001
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hydrogen bonds would contribute in an uncontrolled manner to

the observed distance distributions.

The most common types of ligand-protein intermolecular

hydrogen bonds in the PDB, NHNNNO and ONNNHN, display almost

identical distributions for non-halogenated ligands (LH, see

Figure 2A), but become visibly different for fluorinated (LF) or

otherwise halogenated (LX) ligands (see Figure 2B, C). In both

latter cases the distributions of the NHNNNO hydrogen bond lengths

are shifted left relative to those of the ONNNHN. However, for

fluorinated ligands the medians are, by chance, almost equal. The

observed differences are statistically significant only for haloge-

nated ligands (p = 0.03), but they are also probable for fluorinated

ligands (p = 0.09) (see Table 2). It should be stressed that the

observed differences in medians for fluorinated (LF) and haloge-

nated (LX) ligands (0.01 and 0.03 Å respectively, see Table 3)

exceed the precision of PDB records. Overall, this clearly shows

that ligand substitution with electronegative atoms (F, Cl, Br, I)

results in variation of the lengths of intermolecular hydrogen

bonds. Moreover, this effect strongly depends on the type of

hydrogen bond (Table S1).

3 Hydrogen Bonding to Halogenated or Fluorinated vs.
Non-halogenated Ligands

The effect of a halogen atom on the distribution of hydrogen

bond lengths was analyzed separately for the four most abundant

types of hydrogen bonds: OHNNNO, NHNNNO, NNNNHN and ONNNHN

(i.e. a protein oxygen being a hydrogen bond acceptor and a

protein nitrogen being a hydrogen bond donor, see Table 3 for

numbers). Cumulative distributions of hydrogen bond lengths

estimated for fluorinated (LF) and otherwise halogenated (LX)

ligands are, for some of the H-bond topologies, shifted towards

shorter distances in comparison to non-halogenated ligands (LH).

It is shown in Figure 3, and also confirmed by lower mean ranks

collected in Table 3. Substitution with halogen atom mostly affects

the lengths of OHNNNO hydrogen bonds (Figure 3C). Smaller, but

still visible, changes are observed for NHNNNO (Figure 3A) and

NNNNHN (Figure 3B), while almost no variations are observed for

ONNNHN hydrogen bonds (Figure 3D). This is fully confirmed by

the Mann-Whitney U test (see Table 3, and Table S2 for all H-

bond topologies). Amongst them, hydrogen bonds to fluorinated

ligands (LF) are significantly shorter for five out of seven tested

pairs of distributions, while halogenated ligands (LX) differ

significantly from non-halogenated ones (LH) only for the NHNNNO
type. It should be stressed that the medians for H-bond length with

halogenated ligands (either LF or LX) are generally lower than

those for non-halogenated ones (LH). This can also be easily

checked via mean ranks (LX,LH and LF,LH).

In general the effect of fluorine vs. other halogens atoms follows

the electronegativity scale. Fluorine changes properties of nitrogen

both as acceptor and donor of hydrogen, and oxygen as donor of a

hydrogen bond, whereas chlorine, bromine and iodine affect only

hydrogen bond donors (both oxygen and nitrogen). The latter

effect is clearly detectable for medians (decrease by 0.06 and 0.03

Å for OHNNNO and NHNNNO, respectively) and is statistically

significant (p = 0.02 and p,1025, see Table 3 for details). No

variations are observed for halogenated ligands (LX) acting as H-

bond acceptor. It is worth noting that the observed differences

agree with ab initio simulations of base pairing of halogenated

uracil with adenine [48].
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4 Validation of the Differences Observed for Distributions
of H-bond Donor-acceptor Distance

Proteins form H-bonds via various types of donors and

acceptors. In view of the adopted approach, all types of hydrogen

bonds should be analyzed separately, but the number of actually

identified interactions with halogenated ligands makes results of

such detailed analysis statistically insignificant. However, the large

subset of H-bonds between ligands and protein backbone (i.e.

carbonyl oxygen and amide nitrogen) enables analysis of much

more homogenous subsets of protein-ligand interactions. The

results generally agree with those obtained for all protein H-bond

acceptors and donors (see Figure S2), confirming again the

statistical significance of the effect of a halogen atom on lengths of

intermolecular hydrogen bonds between a halogenated ligand and

a protein.

A key point of the presented analysis is the significance of the

results presented in the context of the quality of PDB structures. In

fact, there are only a very limited number of X-ray structures of

closely related halogenated ligands bound to the same protein that

can be compared directly (e.g. PDE5 mentioned in the Introduc-

tion). Moreover, the resolution of X-ray structures precludes any

direct interpretation of distances that differ by an order of 0.01 Å.

All donor-acceptor distances must be regarded biased, but

differences between observed distributions, as presented in

Figures 1–3, may be considered as significant, since there is no

factor explaining any systematic differences in biases for haloge-

nated and non-halogenated ligands. However, to assess an

eventual effect of quality of structures on the significance of

observed differences in distance distributions, the analyses were

repeated for two subsets of high-resolution X-ray structures,

resolutions of which were better than 2.0 and 1.5 Å, respectively,

and the general tendency to strengthening of H-bonds between

protein and halogenated ligands (both LF and LX) acting as

hydrogen bond donor was preserved (see Table S3).

Materials and Methods

Structural Data
The Protein Data Bank (PDB, [63]) was searched to identify all

entries of protein kinases (EC 2.7) and acyltransferases (EC 2.3).

Those containing ligands with at least one oxygen/nitrogen bound

to a carbon atom were subjected to further analysis.

Structural Analysis
All analyses were performed with the aid of the Yasara Model

package [64]. For each class of protein, all intermolecular ligand-

protein hydrogen bonds were identified, using 3.5 Å as a threshold

for the distance between putative hydrogen bond donor and

acceptor. The distributions of donor-acceptor distances were

determined separately for three classes of ligands: non-halogenated

(LH), fluorinated (LF) and others that are halogenated, but not

fluorinated (LX). These data were then assigned to one of eight

groups, according to the topology of the hydrogen bond. The

latter was defined according to the ligand atom (oxygen or

nitrogen) being either donor or acceptor of a hydrogen bond with

protein nitrogen or oxygen. Since fluorinated ligands (LF) are the

internal reference for the effect of other halogen atoms that may

contribute in halogen bonding (LX), all heterogenic ligands, which

were simultaneously fluorinated and modified with chlorine/

bromine/iodine, were excluded from the analysis.

The most abundant types of hydrogen bonds (i.e. NHligNNNOprot,

OHligNNNOprot, OligNNNHNprot, and NligNNNHNprot) were additionally

analyzed according to homogenous substitutions with only

Fluorine; Chlorine, Bromine or Iodine. All heterogeneously

Figure 2. Cumulative distributions of NHNNNO (blue) and ONNNHN
(red) intermolecular hydrogen bonds identified in protein
complexes with non-halogenated (A, LH), fluorinated (B, LF)
and otherwise halogenated ligands (C, LX). See Table 2 for details.
doi:10.1371/journal.pone.0099984.g002
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substituted ligands (e.g. bromo-fluoro or chloro-iodo) were

excluded from this analysis.

Multiple protein molecules in the crystal cell, as well as objects

displaying partially occupied forms (i.e. side-chain rotamers or

ligand locations) were analyzed separately. Hydrogen bonds with

water molecules were not analyzed.

Statistical Analysis
To circumvent the eventual requirement of categorization, all

distributions are presented in a cumulative manner as a CDF

(cumulative distribution function), which is the integral of a

distribution function. This form of presentation helps in visual

comparison of various distributions, overcoming the problem of

balancing the resolution (i.e. the number of beans in a histogram)

and statistical noise (i.e. numbers of counts in beans). In all figures

the curve most shifted to the left identifies the dataset character-

ized by the shortest donor-acceptor distances.

Since, according to the Anderson-Darling test [65], most

distributions of hydrogen bond donor-acceptor distances were

found not Gaussian (data not shown), the statistical significance of

observed differences was estimated according to nonparametric

tests. For comparison of two distributions the Mann-Whitney U

test [66] was used. The Kruskal-Wallis test [67], which is a

generalization of the U-test, was applied for 3 or more groups.

The Mann-Whitney U-test is a first choice alternative to

Student’s t-test, when applied to two data-sets that are not

necessarily normally distributed. Formally, it detects differences in

shape of tested distributions: each group is characterized by its

mean rank, i.e. the average position of its components in the list

created by sorting both datasets. For each pair of distributions, the

smaller value of the mean rank (Ri) identifies the group that is

characterized by a shorter distance (see Tables 2, 3). The value of

Ui is the corresponding test statistics, (Ui = ni*[Ri2(ni+1)/2]; ni is

the size of dataset i), and ZU is the associated value of the standard

Gaussian distribution. Positive ZU value (equivalently higher mean

rank for LH) indicates that distances for halogenated ligands are

shorter, and the corresponding p-value estimates the statistical

significance of observed differences. The medians were also

Figure 3. Effect of a halogen atom on cumulative distributions determined for the four most abundant types of hydrogen bond
donor-acceptor pairs: NHNNNO (A), OHNNNO (B), NNNNHN (C), and ONNNHN (D), respectively. The distributions estimated for non-halogenated (LH),
fluorinated (LF) and other halogenated ligands (LX) are presented in black, blue and green, respectively. See Table 3 for details.
doi:10.1371/journal.pone.0099984.g003
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compared for selected pairs of distributions according to the

appropriate median test [68].

All analyses were performed using the Statistica 10 [69]. Null

hypotheses that given distributions do not differ one from the other

were tested at a significance level, a= 0.05, and those with p-

values below 0.05 were rejected, and distributions regarded as

different.

Conclusions

Hydrogen bond length distributions in protein-ligand com-

plexes are significantly different for non-halogenated ligands

(LH) compared to halogenated ones (LF, LX). The H-bond

donor-acceptor distances are significantly shorter for a haloge-

nated ligand acting as a hydrogen bond donor (at significance

level 0.05). However H-bond lengths seem irrelevant for

halogenations, when the ligand oxygen is a hydrogen bond

acceptor. All these observations are consistent with the idea that

halogenation increases the acidity of proximal amino/imino/

hydroxyl groups and thus makes them better, i.e. stronger, H-

bond donors.

Supporting Information

Figure S1 Cumulative distributions of donor-acceptor distanc-

es determined for various types of intermolecular hydrogen

bond donor-acceptor pairs identified In complexes of proteins

with non-halogenated ligands, in which the ligand is either a

hydrogen bond donor (A, C, E) or acceptor (B, D, F);

determined for non-halogenated, LH, (A, B), fluorinated, LF,

(C, D), and otherwise halogenated (i.e. not fluorinated), LX,

ligands (E, F).

(TIF)

Figure S2 Effect of a halogen atom on cumulative distributions

determined for the donor-acceptor pairs determined for hydrogen

bonds between ligand and protein backbone (carbonyl oxygen:

A, C or amide nitrogen’’ B, D). The distributions estimated for

non-halogenated, fluorinated and otherwise halogenated ligands

are presented in black, blue and red, respectively.

(TIF)

Table S1 Results of the Kruskal-Wallis (K-W) test in the analysis

of the topology-dependent length of a hydrogen bond: for each

pair of hydrogen bond acceptor/donor pair the p-value for the

null hypothesis that both distributions are identical was estimated

according to the two-tailed multiple comparison. The values

marked in bold denote the pairs of distributions that differ one

from the other, with a= 0.05. Additionally, the identified number

of each type of hydrogen bond, n, and mean rank test are

presented.

(DOC)

Table S2 Comparison of distributions of hydrogen bond lengths,

calculated separately for halogenated but not fluorinated (LX),

fluorinated (LF), and non-halogenated ligands (LH), for eight

possible topologies of protein-ligand hydrogen bonds. Those for

which hydrogen bonds to LX/LF ligands are, according to the

Mann-Whitney U test, significantly shorter (assuming a= 0.05) are

highlighted. Note that for each pair of H-bond distributions, a

smaller mean rank indicates statistically shorter donor-acceptor

distances, or, equivalently, positive values of ZU statistics indicate

these types of H-bonds, which are longer to nonhalogenated

ligands. The corresponding medians, and their differences with

statistical significances (p), are also presented.

(DOC)

Table S3 Comparison of distributions of hydrogen bond lengths,

calculated separately for ligands fluorinated (LF), otherwise

halogenated (LX), and non-halogenated (LH), for hydrogen bonds

between ligand and protein that were identified in high-resolution

X-ray structures.

(DOC)
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