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ABSTRACT
Advances in the application of electron microscopy (EM) to

serial imaging are opening doors to new ways of analyzing

cellular structure. New and improved algorithms and work-

flows for manual and semiautomated segmentation allow us

to observe the spatial arrangement of the smallest cellular

features with unprecedented detail in full three-dimensions.

From larger samples, higher complexity models can be gen-

erated; however, they pose new challenges to data manage-

ment and analysis. Here we review some currently available

solutions and present our approach in detail. We use the

fully immersive virtual reality (VR) environment CAVE (cave

automatic virtual environment), a room in which we are able

to project a cellular reconstruction and visualize in 3D, to

step into a world created with Blender, a free, fully customiz-

able 3D modeling software with NeuroMorph plug-ins for

visualization and analysis of EM preparations of brain tissue.

Our workflow allows for full and fast reconstructions of vol-

umes of brain neuropil using ilastik, a software tool for semi-

automated segmentation of EM stacks. With this

visualization environment, we can walk into the model con-

taining neuronal and astrocytic processes to study the spa-

tial distribution of glycogen granules, a major energy source

that is selectively stored in astrocytes. The use of CAVE was

key to the observation of a nonrandom distribution of glyco-

gen, and led us to develop tools to quantitatively analyze

glycogen clustering and proximity to other subcellular fea-

tures. J. Comp. Neurol. 524:23–38, 2016.
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Over a century ago, neurohistologists such as

Camillo Golgi and Santiago Ram�on y Cajal formulated

hypotheses about brain physiology based on detailed

structural observations. Today, direct observations

powered by high-resolution imaging techniques remain

an important tool to identify and analyze cellular and

subcellular elements; however, recent advances in

automated serial imaging are facilitating analyses of

entire volumes of tissue samples with unprecedented

detail (Hell and Wichmann, 1994; Denk and Horst-

mann, 2004; Hess et al., 2006; Rust et al., 2006;

Knott et al., 2008; Briggman and Bock, 2012). These

3D imaging methods can produce precisely aligned

image stacks that can be segmented to show subcel-

lular features with high resolution (Jorstad et al.,

2015).

Electron microscopy (EM) is the best technique to

observe subcellular details of the nervous system:
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synaptic contacts, synaptic vesicles, endoplasmic reticu-

lum, and mitochondria. Single-plane transmission electron

microscopy (TEM) images provides the best spatial resolu-

tion (to about 1 nm per pixel size), making it the technology

of choice for studying brain ultrastructure. It has been a

challenge to produce accurate 3D images that represent

the complexity and level of detail at this resolution without

it being a tedious and time-consuming process.

Denk and Horstmann (2004) created the first commer-

cial serial block-face electron microscopy (SBEM) based on

a concept proposed by Leighton (1981) that automatically

cuts thin (<15-nm) serial sections and creates images

using backscatter detectors. The quality of the images

matched that of TEM images, but they also aligned with

each other, were nearly isotropic, and covered a broad field

of view. Together with SBEM, focused ion beam scanning

electron microscopy (FIB-SEM) (Knott et al., 2008) was

used as an alternative sectioning approach allowing thinner

sectioning (down to 5 nm) in a more reliable manner, with a

narrower field of view (around 15 mm). The two approaches

are complementary, the first being more suitable for study-

ing large field of view in detail (i.e., tracing long-distance

connections; Lichtman et al., 2014), and the second more

suitable for looking at regional cellular features.

With the challenge of image production simplified,

the focus moved to improving the management of large

datasets and the segmentation of complex structures.

3D reconstruction and visualization of all elements

included in the imaged volumes of tissues is pursued

by all large-scale brain projects such as the Human

Brain Project (https://www.humanbrainproject.eu/),

the BRAIN initiative (http://braininitiative.nih.gov/), and

the Human Connectome project (http://www.

humanconnectomeproject.org) (Kandel et al., 2013). In

the past few years, this had led to an increased effort

to develop engineering software suited for this task.

Small image stacks containing a limited number of

objects can be reliably reconstructed manually, as long

as the user correctly identifies the objects. However,

whereas increasing image size requires only moderate

additional access to computer resources, manually seg-

menting structures is considerably more difficult. The

most common manual segmentation tools TrakEM2

(http://fiji.sc/TrakEM2, RRID:nlx_151924; Cardona

et al., 2012) and reconstruct (http://synapses.clm.

utexas.edu/tools/reconstruct/reconstruct.stm, RRID:nif-

0000-23420; Fiala, 2005) can be very time-consuming. In

an effort to engage more manpower to share the load of

manual segmentation work, scientists have developed

collaborative annotation tools, mostly in the context of

connectomics projects. Catmaid (www.catmaid.org;

RRID:nlx_151922; Saalfeld et al., 2009) allows expert

users to create a skeleton segmentation, but is not well

suited for proofreading. Another tool, RhoANA, allows fully

automated segmentation, scalable for very large datasets,

that can then be proofread using Mojo, which is a stand-

alone software, or Dojo, which is a web-based application

allowing a collaborative proofreading framework (Kaynig

et al., 2013; Knowles-Barley et al., 2014, http://www.

rhoana.org/dojo/). The Seung lab realized an interesting

pipeline by turning the task into an online game (www.

eyewire.org, RRID:nlx_144421), in which players are chal-

lenged to recognize and extend branches of neurons.

Although the task may be somewhat repetitive, gamifica-

tion encourages participation through rewards and com-

petition between users (Helmstaedter et al., 2013).

Here, we took advantage of the semiautomated tool

ilastik 0.5 (www.ilastik.org; Sommmer et al., 2011). The

user initially identifies a structure’s profile, which the

program can use to follow the structure across an

image stack to create a 3D reconstruction for proof-

reading. Here we describe our pipeline involving both

TrakEM2 and the semiautomatic tool.

The recent technical solutions to 3D reconstructions

that are making extremely detailed brain-cell imaging

available pave the way to quantitative analysis in 3D.

The choice of tools that allow 3D analysis is very lim-

ited; for instance, Avizo or Imaris can produce measure-

ments and annotations in 3D models. Here we

have used the package NeuroMorph (www.cvlab.ch/

NeuroMorph, RRID:SciRes_000156; Jorstad et al., 2015),

which is freely available for measuring meshes in

Blender (www.blender.org, RRID:nif-0000-31943), a 3D

modeling software that offers the advantage of being

customizable using a Python programming environment.

In particular, we used these tools to analyze the spa-

tial relationship between glycogen granules contained in

astrocytic processes and synaptic elements such as

axonal boutons and dendritic spines. Blood-derived glu-

cose is stored in astrocytes as glycogen; the break-

down of glycogen (glycogenolysis) results in the

production of lactate, a molecule that can be shuttled

to neurons through a process known as the astrocyte–

neuron lactate shuttle (Magistretti and Allaman, 2015).

Recent studies show that glycogen-derived lactate is

necessary for synaptic plasticity (Yang et al., 2014) and

memory formation in the hippocampus (Newman et al.,

2011; Suzuki et al., 2011), but the predominant subcel-

lular target, pre- and postsynaptic profiles, of lactate

remains unknown. Understanding the polarization of gly-

cogen toward different synaptic components could help

identify which synaptic element is likely to be preferen-

tially targeted by lactate.

The considerable detail involved in such a complex 3D

model can make it difficult to turn observations into

coherent hypotheses. For this reason, we took advantage
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of a cave automatic virtual environment (CAVE): a fully

immersive virtual reality (VR) environment whose unique

image projection allows the viewer to literally step inside

and navigate within the reconstructed 3D model. The pos-

sibility of visualizing 3D cellular and subcellular data from

such a perspective makes it a unique tool for explorative

analysis of an apparently random and irregularly shaped

environment like the brain. We propose that the use of

VR is a crucial step in formulating appropriate questions

and provides the means to address them.

Here we show how to conveniently observe and inter-

actively analyze a highly complex dataset in a 3D virtual

reality environment. In addition, we show that the

approach is generally applicable for detailed studies of

subcellular features (Fig. 10).

MATERIALS AND METHODS

Sample preparation and imaging
The EM stack was kindly provided by Graham Knott

(BioEM imaging facility, EPFL, Lausanne) (Fig. 1), using

the same method as described previously (Maco et al.,

2014). Briefly, one adult (P90) Sprague–Dawley rat was

deeply anesthetized by isoflurane inhalation and trans-

cardially perfused using a fixative (2% paraformaldehyde

[PFA], 2.5% glutaraldehyde [GA], EMS in PB 0.1 M 200

ml). The brain was removed 2 hours after perfusion,

and 100-lm coronal slices were cut by using a Leica

VT1000 vibratome. Sections were collected in phos-

phate buffer (PB) 0.1 M, and those including the dorsal

hippocampus were selected for staining and embedding

in Durcupan (Fluka, Buchs, Switzerland) This procedure

was in accordance with the Swiss Federal Laws on Ani-

mal Experimentation administered by the V�eterinaire

Cantonale Lausanne.

Tissue preparation
Sections were washed in cacodylate buffer (0.1 M,

pH 7.4) and then postfixed and stained first in a

reduced osmium solution (1.5% potassium ferrocyanide

with 1% osmium tetroxide in cacodylate buffer) and

Figure 1. High-resolution image stack from adult rat hippocampus. Note that orthogonal projections along the z-axis are indistinguishable

from the imaging plane (xy).
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then with 1% osmium tetroxide in cacodylate buffer

alone for 40 minutes. Finally, sections were left in 1%

aqueous uranyl acetate for 40 minutes and then briefly

washed prior to dehydration.

Embedding in Durcupan
After membrane staining, tissues were embedded in

Durcupan (Fluka/Sigma-Aldrich, St. Louis, MO). Sec-

tions were dehydrated in aqueous solutions containing

increasing concentrations of ethanol (50%, 70%, 96%,

and 100%) prior to placing them into a 50% Durcupan–

ethanol mix. The mix was then replaced with increasing

concentrations of Durcupan until they reached a pure

resin form. The tissues were then left overnight. The

next morning, the sections were embedded in a thin

layer of fresh resin in an aluminum weigh boat and

placed in a 608C oven for about 24 hours.

FIB-SEM imaging
We used the following procedure to mount speci-

mens with minimal specimen charging. Regions of the

hippocampus were first dissected under a stereoscopic

microscope using a razor blade. Next, samples were

mounted onto a flat, blank resin slab and trimmed with

a glass knife using an ultramicrotome in preparation for

the electron microscope. The block containing hippo-

campal CA1 stratum radiatum was imaged inside an

NVision 40 FIB-SEM (Carl Zeiss) using an acceleration

voltage of 1.5 kV, a current of 350 pA, and a dwell

time of 10 ls/pixel. With the repeated use of a FIB,

directed parallel to a block face to remove (or mill) a

thin layer of embedded tissue, serial images were col-

lected at a magnification of 6 nm/pixel. The milling

depth between images was 5 nm, resulting in perfectly

isotropic voxels. Each exposed surface was imaged

using backscattered electrons.

3D Reconstruction, rendering, and analysis
Serial micrographs were registered using MultiStack-

Reg (Th�evenaz et al., 1998), a freely available plugin for

Fiji software. To annotate and measure features of

interest we took advantage of a combination of pro-

grams: TrakEM2 (http://fiji.sc/wiki/index.php/Fiji), a

free plugin available from Fiji image processing platform

(http://fiji.sc/TrakEM2, RRID:SciRes_000137; Cardona

et al., 2012); ilastik (www.ilastik.org; Sommer et al.,

2011) for segmentation and generation of the 3D mod-

els; and Blender (www.blender.org) for visualization and

rendering with the NeuroMorph package (www.cvlab.ch/

NeuroMorph; Jorstad et al., 2015).

We then expanded NeuroMorph by coding and embed-

ding new add-ons in Blender (see Fig. 6). The Blender/

Python API enabled us to incorporate individual scripts

into a single graphical interface within Blender (a so-

called add-on), which is a Python module that provides a

stable workflow of data analysis operations. The Glyco-

gen Analysis plugin starts by calculating the centroids of

the objects of interest (in our case glycogen granules or

their clusters, spines, and boutons), calculates their dis-

tances, and identifies the closest spine or bouton from

each glycogen granule or glycogen cluster. The results

can be exported on a tab-limited text file that contains

the name of each measured couple of object and their

distance, for further analysis. The Glycogen Analysis add-

on is freely available at https://github.com/daniJb/

glyco-analysis. It uses the following algorithms:

1. Nearest neighbor calculations were based on the KD

Tree algorithm. It is a fast tree-based data structure

algorithm that indexes a k-dimensional array of

points that can be queried for nearest neighbors of

any point (Bentley, 1975). Both algorithms are imple-

mented in the scikit-learn Python library (http://scikit-

learn.org/stable/modules/neighbors.html#k-d-tree).

2. Cluster analyses were based on the DBSCAN algo-

rithm (Ester et al., 1996), an automated method to

determine clusters from a set of points. This algo-

rithm is well suited for noisy datasets because it

assumes nothing about number or shape of clusters,

but instead uses minimum distance between mini-

mum number of members to determine clusters.

These two parameters (minimum distance between

members and minimum number of members) were

optimized by using the silhouette coefficient (Rous-

seeuw, 1987), which gives a metric on the fraction

of points included in all clusters. For a minimum

number of members, the add-on can look for the

maximum silhouette coefficient within a range of

minimum distances. For visual inspection, we colored

the granules belonging to each cluster and enclosed

them with similarly colored ellipsoids.

ilastik scaling
We tested the ilastik 0.5 carving workflow on a 1.7-

GB dataset and four progressively scaled-down samples

to quantify ilastik’s performance on a 40-core Intel

Xeon CPU E5–2680 v2 @ 2.80 GHz with 64 GB RAM,

using Scientific Linux 6.5. The results were extrapolated

to a hypothetical stack of 26 GB with 4,096 3 4,096 3

1,500 pixels, �1.75 pixels/cell boundary, and covering

�1003 lm to represent a minimum resolution for cap-

turing all details of an entire astrocyte.

CAVE and zSpace
CAVE is a fully immersive virtual reality system that

allows for the convenient and interactive visualization of

C. Cal�ı et al.
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3D models. Our CAVE space is a cubic room with 3-m

sides that are each projected with two 8-megapixel

streams. With this setup, several people are able to

simultaneously stand inside our 3D model, where

details are 1 million-fold larger (l to m).

We also took advantage of zSpace (http://zspace.

com/), a monitor with enhanced 3D capabilities, using

a head-tracking system to project a holographic-like

stereo image. Although the field of view of the image

was limited, it was small and portable, able to be con-

veniently placed on any workspace desk for interactive

segmentation proofreading.

The 3D model was projected directly from the 3D

modeling Blender window interface by using TechViz

software (www.TechViz.net). The user is then able to

manipulate the model inside the room, or within the

zSpace, with a controller (see Supplementary Material).

A head-tracking system can modify the prospective of

the object based on the position of the user, who is

able to move freely in the room and observe the model

from different points by keeping the model still and

moving around it.

RESULTS

Image stack
Isotropic EM stack (Fig. 1) was acquired through hip-

pocampal CA1 stratum radiatum. This allowed us to

image a 220 lm3 volume (7.07 lm 3 6.75 lm 3 4.75

lm) at a voxel resolution of 6 nm.

Figure 2. TrakEM2 interface. One synapse (red) and glycogen granules (yellow spheres, arrowhead) have been segmented in one plane.

Scale bar 5 500 nm.
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3D Reconstruction, rendering, and analysis
The imaged volume contained portions of axons, den-

drites, a large blood vessel surrounded by endothelium

and pericytes, astrocytic processes with intracellular

glycogen granules, and synapses (Figs. 2, 3). To mea-

sure the distribution of granules compared with the

other components in the EM stack, we segmented and

reconstructed each element of interest in 3D (Supple-

mentary video 1). Axons and dendrites have a well-

known morphology. Axons appear as relatively straight,

tubular structures, with a narrow diameter, swelling at

sites where spheroidal vesicles accumulate (axonal bou-

tons) (Shepherd and Harris, 1998). Dendrites appear as

tubular structures, with a larger and regular diameter

compared with axons, often showing protrusions where

typically synaptic contacts occur, called dendritic

spines (Stuart and H€ausser, 2007). Glial processes

were identified by their strategic localization among

neurites, the presence of glycogen granules, and the

relatively clear cytosol (Witcher et al., 2007, 2010). Por-

tions of endothelial cells were covering the lumen of

the blood vessel, and processes of pericytes were at

the interface between the brain parenchyma and the

endothelial cells (Hamilton et al., 2010) (Fig. 4). Serial

sections were useful to clarify doubts about the nature

of the different structures, which were annotated in the

resulting 3D model (Fig. 5) using terms from public

ontologies (Gene Ontology Consortium et al., 2013;

Meehan et al., 2011) (see Supplementary Material).

Glycogen and synapse segmentation
We used TrakEM2 to segment synaptic densities and

glycogen granules (Fig. 2).

Synaptic densities appear as a dark (i.e., electro-

dense) membrane thickening between axonal boutons

and postsynaptic spines or shafts (Figs. 2, red, 3A,D,

red arrows). Synapses were classified based on their

appearance and the shape and size of the vesicles in

the presynaptic terminals (excitatory ones have a thick

asymmetric postsynaptic density and presynaptic termi-

nals with round clear vesicles, whereas inhibitory ones

have thin symmetric postsynaptic density with flattened

vesicles at the presynaptic site; Fig. 3B,C). Out of 93

synapses in this sample, 58 were on spines and 35

were on shafts. The majority (79) were presumed exci-

tatory, 35 of which were on shafts, whereas 12 were

inhibitory, 9 of which were on shafts. Only two synap-

ses were unidentifiable based on these morphological

features, with pleiomorphic vesicles at a presynaptic

site, and we classified them as “unknown.” Each synap-

tic density was manually marked in each serial image.

Glycogen granules appear inside astrocytic processes

as small, dark spheres with diameters ranging from 10

to 60 nm (Figs. 2, yellow sphere, 3D, yellow arrows).

Even though the resolution of the microscope was

6 nm/voxel, a feature that makes this technique less

appropriate for analysis of intracellular organelles, the

size distribution was appropriate for imaging glycogen

granules using FIB-SEM. We used the ball tool in

Figure 3. Identification of synapses and glycogen granules. Exam-

ples of synapses (A,D; red arrows), glycogen granules (D, yellow

arrows), axons (A), boutons (B), dendrites (D), spines (s), and

astrocytic processes (Ast) on EM micrographs. E: The lumen of

the blood vessel is surrounded by one endothelial cell interfacing

with a pericytic process. Excitatory asymmetric synapses (B) or

inhibitory symmetric synapses (C) can be discriminated by the

thickness of the synaptic density, as well as the shape and size

of synaptic vesicles. Scale bar 5 500 nm in A,D,E; 300 nm in B,C.
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TrakEM2 to render individual granules as spheres. We

identified a total of 1,007 granules in this stack.

Cellular segmentation
All other elements (axons, dendrites, blood vessels,

and astrocytic endothelial and pericytic processes)

were reconstructed by using the carving tool from ilas-

tik version 0.5 (Fig. 4). The underlying algorithm is

described in detail in Straehle et al. (2011). The stack

contained 11 dendrites with a total of 56 spines, 161

axons whose classification is based on previous

assumption (68 excitatory, 9 inhibitory, 67 unknown,

and 17 showing no varicosities), and 94 boutons (73

excitatory, 10 inhibitory, and 12 unknown). Out of the

12 unknown axonal profiles with identifiable varicos-

ities, only two were associated with a synaptic density.

The remaining ones were en passant terminals, with

small, pleiomorphic flattened vesicles, with or without

dense-core granules, not associated with any synaptic

density, whose morphology is consistent with that of

monoaminergic terminals (Gaugler et al., 2012). Non-

neuronal processes included one astrocytic process, an

epithelial cell enclosing a blood vessel, and two peri-

cytic processes interfacing the epithelium and the

neuropil.

Glycogen distribution
Analysis of glycogen granule distribution showed that

glycogen is more frequently found around axonal bou-

tons (total count 523) than dendritic spines (158). The

vast majority of granules were nearest to excitatory

boutons (347), followed by unknown boutons (97), and

inhibitory boutons (79) (Fig. 8B). The remaining granules

were closest to the perivascular cells (115 to pericytes

and 211 to endothelial cells; Fig. 8A). We then counted

the number of granules closest to each individual spine

and bouton: spines had the lowest number of granules,

with an average of 5.9 6 1.4, followed by excitatory

Figure 4. ilastik 0.5 Interface. The down-sampled stack has been loaded and one dendrite (green) and one axon (yellow) have been seg-

mented over all the serial images and then rendered in 3D.
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boutons (7.9 6 1.1) and inhibitory boutons (8.8 6 2.3).

The highest number of granules colocalized was with

unknown varicosities (19.4 6 6.8).

The parameters of the clustering algorithm DBSCAN

(Ester et al., 1996) (0.31 lm maximum distance for

adjacent granules in a cluster and a minimum cluster

size of 7; Fig. 6) were optimized with the silhouette

coefficient (Rousseeuw, 1987) for the maximum fraction

of granules within clusters. Of the 24 resulting clusters,

14 (52% of the total) were associated with axonal bou-

tons, for a total of 571 granules; the remaining 10 (con-

taining 319 granules) were associated with dendritic

spines (Fig. 8C,D). The preference toward presynaptic

terminals confirms previous observations.

DISCUSSION

We have described a workflow that is suitable for

analyzing the distribution of neural profiles in 3D space.

The high resolution of the imaging procedures allowed

us to identify and precisely locate axons, dendrites,

astrocytic processes, and synaptic connections, as well

as minute subcellular features such as glycogen gran-

ules. We performed an initial study on the distribution

of this energy source in relation to specific cellular

compartments.

Analysis of glycogen in a 3D volume
Although the creation of 3D models is becoming

increasingly common, limited tools are available for

detailed morphometric 3D analyses. The NeuroMorph

package (Jorstad et al., 2015) for Blender analyzes

lengths, surfaces, and volumes of meshes representing

3D objects. We expanded this analytic capability with

our own plugin: Glycogen Analysis. Our plugin calcu-

lates distances either between points in space and

meshes or between points and centroids of several

objects, while identifying the nearest neighbor. With

this approach, it is possible to analyze glycogen distri-

bution by calculating 1) the distance between single

granules and their closest individual element; or 2) the

distance between the center of the cluster and the

centroid of each synaptic element at granule clusters.

Figure 5. 3D model from a fully reconstructed volume of rat brain created from the image stack. All elements (axons, white; dendrites,

blue; astrocyte, green; capillary, red; synaptic densities, red) were combined and rendered using Blender.
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Imaging a volume of tissue using FIB-SEM
EM is the gold standard microscopy technology to

identify cellular and subcellular features with nanometer

resolution. Single-planar images originating from tissue

slices that have been cut in series can be registered

and aligned for further processing to reconstruct 3D

volumes. The classic approach to the successful

acquisition of large sets of serial section electron

micrographs (SSEMs) consists of manually cutting tis-

sues from a resin bloc and imaging them under a TEM

microscope. However, SSEM is challenging and time

consuming even for experienced microscopists. Here,

we took advantage of FIB-SEM microscopy, an imaging

technique that automatically produces serial electron

Figure 6. Visualization of glycogen clusters. Single glycogen granules (rendered as spheres) appeared as nonrandomly clustered when

observed inside CAVE. Clusters have been generated using custom-made tools embedded with Blender (left). Each cluster has a different

color. Right, top; example of one dendrite (blue) and one axon (white) associated with two clusters; right, bottom; only granules and clus-

ters are visible.
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micrographs at near-isotropic resolution. Compared

with classic TEM, FIB-SEM takes advantage of backscat-

tered electrons to generate the image. Resin-embedded

sample block face is sequentially scanned using a

low-voltage electron beam. Although sample preparation

and image acquisition and registration in FIB-SEM

requires considerably less time than in SEM, the num-

ber of images and hence volume are considerably

Figure 7. NeuroMorph add-ons. The import add-on sets the right scale for models (top image, bottom inset). The superimposition add-on

shows the selected EM source image together with the model (bottom image). The measure add-on does spatial measurements (lengths,

surfaces, and volumes) on user-selected objects (bottom image).
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larger, making image processing the most demanding

step in the process.

Caveats of FIB-SEM for intracellular
organelles

Before taking into consideration the use of this tech-

nique for imaging subcellular organelles, a few caveats

must be considered. First, the spatial resolution of

block-face EM does not reach TEM resolution; therefore

imaging of nanometer-scale organelles is a problem.

More importantly, block-face SEM fails to image sev-

eral nonmembranous subcellular compartments or

organelles. One example is provided by ribosomes,

which are simply not visible using block-face SEM.

Intracellular filaments, such as actin bundles, have also

been reported to be hard to distinguish using block-

face SEM. The reason might be the higher detected

electron density of the cytosolic compartments; to over-

come this issue, special techniques are required to

enhance the contrast of these compartments (Tanaka

and Mitsushima, 1984; Tanaka et al., 1986). Neverthe-

less, the convenience of this imaging technique is driv-

ing researchers, mostly in the field of cell biology, to

find solutions that allow the use of this approach for

intracellular studies; one solution for instance is pro-

vided by comparative SEM–TEM studies (Puhka et al.,

2012; Watanabe et al., 2012; Ichimura et al., 2015).

In our specific case, the size of the glycogen gran-

ules (about 10 nm minimum) and the pixel magnifica-

tion we used (6 nm) allowed us to reliably detect even

the smallest granules. TEM has been successfully used

on glycogen detection by others (Marchand et al.,

2002; Obel et al., 2012).

Because the stack is not stained for any particular

structure, cellular features need to be recognized by

their morphology, meaning that reconstruction work

requires supervision by an expert who must proofread

the results. Although pre-embedding immunohistochem-

istry using diaminobenzidine (DAB) or gold particles to

reveal primary antibodies has been reported (Sonomura

et al., 2013), permeabilization of tissue might impair

Figure 8. Distribution of glycogen granules around synaptic features. A,B: Analysis on single granules. C,D: Analysis on clusters.
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the fine structural preservation of the specimen. In our

sample, the portion of the astrocytic process surround-

ing the capillary is filled with granules, a site where gly-

cogen is known to accumulate (Broadwell et al., 1983;

Cataldo and Broadwell, 1986). Our analysis confirmed

that a significant portion of the total number of gran-

ules is associated with the blood vessel wall, suggesting

that the granules formed following uptake of glucose

from the bloodstream (Fig. 8). A recent article (Takado

et al., 2015) reports the accumulation of 13C-labeled

glucose into glycogen granules that could be imaged

either by NanoSIMS imaging and EM, revealing that
13C-labeled glucose accumulates in particles that have

the morphology of glycogen granules. Taken together,

these data indicate that the particles characterized

here are to be considered as glycogen granules, without

any staining, and can be identified solely by the mor-

phological features discussed above.

Manual versus semiautomated segmentation
Our primary challenge was to reduce the time-

consuming process (Kreshuk et al., 2011) of generating

a large-scale 3D model that includes all elements

potentially interacting with glycogen granules. Fully

automated approaches have not delivered reliable

results, even for common structures like axons and

dendrites (Chklovskii et al., 2010; Mishchenko et al.,

2010). Semiautomated segmentation tools are a rea-

sonable compromise between speed and reliability. The

user is only required to identify the inside and outside

of the structures of interest in a few sections for the

software to automatically follow membrane boundaries

along the z-axis to create a draft of the segmentation.

TrakEM2 is currently the most widely used tool for

the segmentation of EM stacks. Because it is entirely

manually operated, each segmentation step can imme-

diately be validated. Provided that the datasets are

small, the carving module of ilastik can be an excellent

time-saving tool for image segmentation.

Compared with traditional manual approaches that

require manual drawing of thousands of serial images

to achieve segmentation, ilastik only requires a few

labeling clicks on the structure of interest to segment

it. The work involving segmentation of a few hundred

objects over hundreds of serial images—a task that

might take many months using TrakEM2—can instead

be done by a single user in less than a week using

ilastik.

The ilastik scaling issue
Two primary factors determine the minimum EM-

image stack size: the resolution of the boundary

features (which must be >1 pixel, but more is better)

and the total volume in pixels.

Boundary feature resolution is important because it

controls the accuracy of the seeded watershed algo-

rithm and determines the number of training labels

needed. More distinct, and, up to a point, larger boun-

daries are better. Artifacts from the original staining

and imaging process also affect the results. For exam-

ple, if the cell boundaries are not completely continu-

ous, the segmentation bleeds through the gaps; this

can only be repaired by manual intervention.

Computing time increases linearly with the volume of

the image stack (i.e., cubically with stack dimensions;

Fig. 9). A good practice is to down-sample the stack,

toreach the optimal balance among image resolution,

preprocessing time, and segmentation accuracy. After

down-sampling our high-resolution stack (1,178 3

1,125 pixels, 789 serial images) by 2.5 times, the sub-

cellular details were still identifiable, and the stack pre-

processing time was reduced to a reasonable 10

minutes using a laptop. Segmentation work created

Figure 9. ilastik performance as function of size, memory usage

(A), and processing time (B). Run on a 40-core (Intel Xeon E5–

2680 v2 @2.80GHz) workstation 64 GB RAM under Scientific

Linux 6.5.
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160 axons, 10 dendrites, 1 astrocytic process, 2 endo-

thelial processes, and 1 pericytic process. The semiau-

tomated approach with ilastik enabled one person to

finish the work in 4 days.

Applications of ilastik version 0.5 are limited by its

memory and computational requirements. The seeded

watershed algorithm uses a complete graph of all con-

nected supervoxels in an image stack, and its current

Figure 10. Visual schematics of the analysis pipeline. After the 3D model is extracted from serial electron micrographs, models can be

loaded and visualized in CAVE at all times for multiple purposes (i.e., reconstruction proofreading, explorative analysis of the dataset).

Quantifications can be done by means of custom-made tools embedded in blender software. See text for a detailed description of how we

observed a nonrandom distribution of the glycogen granules, and used a DBSCAN algorithm to infer the clustering of such cloud of points.
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implementation requires that the entire image and

supervoxel data be kept in memory. Because image

stack size increases cubically when the sides of the

captured stack grow, the need for memory and CPU

power quickly exceeds any existing workstation-class

hardware (see Materials and Methods). By extrapolating

performance from a downscaled stack, it appears that

to capture all the details of an entire astrocytic cell

would require a 26-GB stack, which would call for

�1,000 GB to preprocess, �700 GB to segment,

another �24 hours to preprocess, and �15 minutes for

interactive label segmentation. When analyzing our sam-

ple, we bypassed this problem by down-sampling the

stack because the resolution of the stack was more

than adequate to resolve all the features.

Running ilastik on a multicore computer had little

effect because most of the processing of the carving

module runs single threaded. This limitation is currently

being addressed such that future versions of ilastik will

parallelize its workload.

Why is it difficult to describe a complex 3D
model?

The resulting 3D model (Fig. 5) appears as a very

complex forest of connected axons (Fig. 5, white) and

dendrites (Fig. 5, blue), packed within and around a

complex astrocytic perivascular endfoot (Fig. 5, green)

that closely envelops them. Because of their complex-

ity, qualitative observations are difficult, even for an

experienced neuroscientist. Nevertheless, there are

obvious benefits from any system that allows a clear

and complete view of the entire model.

Benefits of CAVE and zSpace systems
In our work, CAVE was pivotal to assess the spatial

arrangement of glycogen granules (Supplementary

Video 2). The use of an interactive VR room and the

more portable system zSpace (Supplementary Video 3)

allows multiple users to share and discuss minute

details, potentially setting up a new standard in the

observation of densely populated neurobiology datasets.

First, the granules appear as a collection of random

points in space, but upon further observation when fully

immersed inside the virtual 3D space, the cloud of

granules appears to be grouped in various sized clus-

ters. Granules and clusters of granules also appear to

have a certain spatial relationship with spines, boutons,

or the blood vessel, when visualized together. These ini-

tial observations led us to design an analytical strategy

to unveil the spatial association between glycogen gran-

ules or clusters, and the different cellular elements

(Fig. 6).

Analysis
Our results indicate that significant portions of gran-

ules are within astrocytic profiles associated with the

vasculature, a fact that may reflect the immediate con-

version of glucose entering the brain parenchyma from

the bloodstream. Furthermore, energy stores, repre-

sented by glycogen granules, accumulate preferentially

around presynaptic boutons rather than dendritic

spines. Bouton distribution analysis revealed that bou-

tons of uncertain nature, most likely monoaminergic

varicosities, are associated with energy stores, suggest-

ing a functional interaction between the two elements.

This is not surprising, as monoamines such as nor-

adrenaline and serotonin modulate glycogen metabo-

lism in the brain (Magistretti and Allaman, 2015).

The clustering reveals a nonrandom distribution of

glycogen granules, suggesting the existence of cellular

mechanisms that regulate the process. We can specu-

late that two separate processes, each with its own

role, are involved—one triggered by high glucose con-

centration near the blood vessel and resulting in glyco-

gen storage, and the other resulting in the

accumulation of glycogen in the proximity of neuronal

elements that contain neuromodulators that can mobi-

lize glycogen upon increased energy demands (Phelps,

1972; Roach et al., 2012; Magistretti and Allaman,

2013).

CONCLUSIONS

We have described a series of procedures and soft-

ware applications that allow 3D reconstruction of an

entire brain volume from serial EM sections, and how

to take full advantage of such a model using a fully

immersive VR facility (i.e., CAVE) as a powerful explora-

tive tool. Also, because ilastik or TrakEM2 could pro-

cess any kind of image stack and generate meshes

that Blender could process, our pipeline could be

applied to any imaging technology producing an image

stack. The narrow field of view of a 2D monitor cannot

compare with the advantage of being immersed in a

complex dataset, similarly to an astronomer looking at

the stars on the monitor of the screen rather than in

the open air through a powerful telescope. In addition

to providing an unprecedented opportunity to examine

the relationships of cellular and subcellular elements of

the neuropil, with particular emphasis on relationships

at the neuron–glia–vascular unit level, this approach

has allowed us to identify a particular association

between glycogen clusters contained in astrocytic pro-

files and presynaptic boutons of likely monoaminergic

varicosities. Our approach represents a useful tool to

analyze glycogen localization and dynamics, particularly
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in behavioral paradigms in which its role has already

been demonstrated, such as for synaptic plasticity,

memory consolidation, and sleep–wake regulation

(Suzuki et al., 2011; Magistretti and Allaman, 2015;

Petit et al., 2015).

ACKNOWLEDGMENTS
We thank Hubert Fiumelli, Igor Allaman, and Dan Keller

for feedback and scientific discussions, Carolyn Unck for

revision of the manuscript, and Graham Knott (BioEM facil-

ity, Lausanne, EPFL) for providing the image stack.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

ROLE OF AUTHORS

All authors had full access to all the data in the

study and take responsibility for the integrity of the

data and the accuracy of the data analysis. CC wrote

the manuscript; CC and JB worked on the reconstruc-

tion; CC, JB, HL, and DB performed the analysis; DB, JB,

and HL wrote the analysis scripts; MS and GH super-

vised the virtual reality environments; GH tested the

performance of ilastik; AK and FAH wrote ilastik 0.5

software; CC, HL, and PJM initiated and supervised the

project and contributed to the manuscript.

LITERATURE CITED
Bentley JL. 1975. Multidimensional binary search trees used

for associative searching. Commun ACM 18:509–517.
Briggman KL, Bock DD. 2012. Volume electron microscopy for

neuronal circuit reconstruction. Curr Opin Neurobiol 22:
154–161.

Broadwell RD, Cataldo AM, Salcman M. 1983. Cytochemical
localization of glucose-6-phosphatase activity in cerebral
endothelial cells. J Histochem Cytochem 31:818–822.

Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I,
Preibisch S, Longair M, Tomancak P, Hartenstein V,
Douglas RJ. 2012. TrakEM2 software for neural circuit
reconstruction. PLoS One 7:e38011.

Cataldo AM, Broadwell RD. 1986. Cytochemical identification
of cerebral glycogen and glucose-6-phosphatase activity
under normal and experimental conditions. II. Choroid
plexus and ependymal epithelia, endothelia and peri-
cytes. J Neurocytol 15:511–524.

Chklovskii DB, Vitaladevuni S, Scheffer LK. 2010. Semi-auto-
mated reconstruction of neural circuits using electron
microscopy. Curr Opin Neurobiol, 20:667–675.

Denk W, Horstmann H. 2004. Serial block-face scanning elec-
tron microscopy to reconstruct three-dimensional tissue
nanostructure. PLoS Biol 2:e329.

Ester M, Kriegel HP, Sander J, Xu X. 1996. A density-based
algorithm for discovering clusters in large spatial data-
bases with noise. Kdd 96:226–231.

Fiala JC. 2005. Reconstruct: a free editor for serial section
microscopy. J Microsc 218:52–61.

Gaugler MN, Genc O, Bobela W, Mohanna S, Ardah MT, El-
Agnaf OM, Cantoni M, Bensadoun J-C, Schneggenburger
R, Knott GW, Aebischer P, Schneider BL. 2012. Nigrostri-

atal overabundance of a-synuclein leads to decreased
vesicle density and deficits in dopamine release that cor-
relate with reduced motor activity. Acta Neuropathol
123:653–669.

Gene Ontology Consortium, Blake JA, Dolan M, Drabkin H, Hill
DP, Li N, Sitnikov D, Bridges S, Burgess S, Buza T,
McCarthy F, Peddinti D, Pillai L, Carbon S, Dietze H,
Ireland A, Lewis SE, Mungall CJ, Gaudet P, Chrisholm RL,
Fey P, Kibbe WA, Basu S, Siegele DA, McIntosh BK,
Renfro DP, Zweifel AE, Hu JC, Brown NH, Tweedie S,
Alam-Faruque Y, Apweiler R, Auchinchloss A, Axelsen K,
Bely B, Blatter MC, Bonilla C, Bouguerleret L, Boutet E,
Breuza L, Bridge A, Chan WM, Chavali G, Coudert E,
Dimmer E, Estreicher A, Famiglietti L, Feuermann M, Gos
A, Gruaz-Gumowski N, Hieta R, Hinz C, Hulo C, Huntley R,
James J, Jungo F, Keller G, Laiho K, Legge D, Lemercier P,
Lieberherr D, Magrane M, Martin MJ, Masson P, Mutowo-
Muellenet P, O’Donovan C, Pedruzzi I, Pichler K, Poggioli
D, Porras Mill�an P, Poux S, Rivoire C, Roechert B,
Sawford T, Schneider M, Stutz A, Sundaram S, Tognolli M,
Xenarios I, Foulgar R, Lomax J, Roncaglia P, Khodiyar VK,
Lovering RC, Talmud PJ, Chibucos M, Giglio MG, Chang
HY, Hunter S, McAnulla C, Mitchell A, Sangrador A,
Stephan R, Harris MA, Oliver SG, Rutherford K, Wood V,
Bahler J, et al. 2013. Gene Ontology annotations and
resources. Nucleic Acids Res 41:D530–535.

Hamilton NB, Attwell D, Hall CN. 2010. Pericyte-mediated
regulation of capillary diameter: a component of neuro-
vascular coupling in health and disease. Front Neuroe-
nergetics 2.pii:5.

Hell SW, Wichmann J. 1994. Breaking the diffraction resolution
limit by stimulated emission: stimulated-emission-
depletion fluorescence microscopy. Opt Lett 19:780–782.

Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS,
Denk W. 2013. Connectomic reconstruction of the inner
plexiform layer in the mouse retina. Nature 500:168–174.

Hess ST, Girirajan TPK, Mason MD. 2006. Ultra-high resolution
imaging by fluorescence photoactivation localization
microscopy. Biophys J 91:4258–4272.

Ichimura K, Miyazaki N, Sadayama S, Murata K, Koike M,
Nakamura K-I, Ohta K, Sakai T. 2015. Three-dimensional
architecture of podocytes revealed by block-face scan-
ning electron microscopy. Sci Rep 5:8993.

Jorstad A, Nigro B, Cali C, Wawrzyniak M, Fua P, Knott G.
2015. NeuroMorph: a toolset for the morphometric anal-
ysis and visualization of 3D models derived from electron
microscopy image stacks. Neuroinformatics 13:83–92.

Kandel ER, Markram H, Matthews PM, Yuste R, Koch C. 2013.
Neuroscience thinks big (and collaboratively). Nat Rev
Neurosci 14:659–664.

Kaynig V, Vazquez-Reina A, Knowles-Barley S, Roberts M, Jones
TR, Kasthuri N, Miller E, Lichtman J, Pfister H. 2013.
Large-scale automatic reconstruction of neuronal proc-
esses from electron microscopy images. arXiv:1303.7186.

Knott G, Marchman H, Wall D, Lich B. 2008. Serial section
scanning electron microscopy of adult brain tissue using
focused ion beam milling. J Neurosci 28:2959–2964.

Knowles-Barley S, Kasthuri N, Lichtman J, Roberts M. 2014.
IEEE Xplore Full-Text PDF.

Kreshuk A, Straehle CN, Sommer C, Koethe U, Cantoni M,
Knott G, Hamprecht FA. 2011. Automated detection and
segmentation of synaptic contacts in nearly isotropic
serial electron microscopy images. PloS One 6:e24899.

Leighton SB. 1981. SEM images of block faces, cut by a mini-
ature microtome within the SEM—a technical note. Scan
Electron Microsc 73–76.

Lichtman JW, Pfister H, Shavit N. 2014. The big data chal-
lenges of connectomics. Nat Neurosci 17:1448–1454.

3D Virtual reality for neural tissue

The Journal of Comparative Neurology | Research in Systems Neuroscience 37



Maco B, Holtmaat A, Jorstad A, Fua P, Knott GW. 2014. Cor-
relative in vivo 2-photon imaging and focused ion beam
scanning electron microscopy: 3D analysis of neuronal
ultrastructure. Methods Cell Biol 124:339–361.

Magistretti PJ, Allaman I. 2013. Brain energy metabolism. In:
Neuroscience in the 21st century. New York, NY:
Springer New York. p 1591–1620.

Magistretti PJ, Allaman I. 2015. A cellular perspective on brain
energy metabolism and functional imaging. Neuron 86:
883–901.

Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer
J, Potvin J, Graham TE. 2002. Quantification of subcellular
glycogen in resting human muscle: granule size, number,
and location. J Appl Physiol 93:1598–1607.

Meehan TF, Masci AM, Abdulla A, Cowell LG, Blake JA,
Mungall CJ, Diehl AD. 2011. Logical development of the
cell ontology. BMC Bioinformatics 12:6.

Newman LA, Korol DL, Gold PE. 2011. Lactate produced by
glycogenolysis in astrocytes regulates memory process-
ing. PLoS One 6:e28427.

Obel LF, M€uller MS, Walls AB, Sickmann HM, Bak LK,
Waagepetersen HS, Schousboe A. 2012. Brain glycogen—
new perspectives on its metabolic function and regula-
tion at the subcellular level. Front Neuroenergetics 4:3.

Petit JM, Burlet-Godinot S, Magistretti PJ. 2015. Glycogen
metabolism and the homeostatic regulation of sleep.
Metab Brain Dis 30:263–279.

Phelps CH. 1972. Barbiturate-induced glycogen accumulation
in brain. An electron microscopic study. Brain Res 39:
225–234.

Puhka M, Joensuu M, Vihinen H, Belevich I, Jokitalo E. 2012.
Progressive sheet-to-tubule transformation is a general
mechanism for endoplasmic reticulum partitioning in
dividing mammalian cells. Mol Biol Cell 23:2424–2432.

Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS.
2012. Glycogen and its metabolism: some new develop-
ments and old themes. Biochem J 441:763–787.

Rousseeuw PJ. 1987. Silhouettes—a graphical aid to the inter-
pretation and validation of cluster-analysis. J Comput
Appl Math 20:53–65.

Rust MJ, Bates M, Zhuang X. 2006. Sub-diffraction-limit imag-
ing by stochastic optical reconstruction microscopy
(STORM). Nat Methods 3:793–795.

Saalfeld S, Cardona A, Hartenstein V, Tomancak P. 2009.
CATMAID: collaborative annotation toolkit for massive
amounts of image data. Bioinformatics 25:1984–1986.

Shepherd GM, Harris KM. 1998. Three-dimensional structure
and composition of CA3–>CA1 axons in rat hippocampal
slices: implications for presynaptic connectivity and com-
partmentalization. J Neurosci 18:8300–8310.

Sommer C, Straehle CN, Koethe U, Hamprecht FA. 2011. ilas-
tik: interactive learning and segmentation toolkit. Pro-
ceedings of ISBI, Chicago, IL, USA.

Sonomura T, Furuta T, Nakatani I, Yamamoto Y, Unzai T,
Matsuda W, Iwai H, Yamanaka A, Uemura M, Kaneko T.
2013. Correlative analysis of immunoreactivity in confo-
cal laser-scanning microscopy and scanning electron
microscopy with focused ion beam milling. Front Neural
Circuits 7:26.

Straehle CN, Koethe U, Knott G, Hamprecht FA. 2011. Carv-
ing: scalable interactive segmentation of neural volume
electron microscopy images. Proceedings of MICCAI,
Springer, 6891, 653–660.

Stuart G, H€ausser M. 2007. Dendrites. Oxford: Oxford Univer-
sity Press.

Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH,
Magistretti PJ, Alberini CM. 2011. Astrocyte-neuron lac-
tate transport is required for long-term memory forma-
tion. Cell 144:810–823.

Takado Y, Knott G, Humbel BM, Escrig S, Masoodi M, Meibom
A, Comment A. 2015. Imaging liver and brain glycogen
metabolism at the nanometer scale. Nanomedicine 11:
239–245.

Tanaka K, Mitsushima A. 1984. A preparation method for
observing intracellular structures by scanning electron
microscopy. J Microsc 133:213–222.

Tanaka K, Mitsushima A, Fukudome H, Kashima Y. 1986.
Three-dimensional architecture of the Golgi complex
observed by high resolution scanning electron micros-
copy. J Submicrosc Cytol 18:1–9.

Th�evenaz P, Ruttimann UE, Unser M. 1998. A pyramid
approach to subpixel registration based on intensity.
IEEE Transactions on Image Processing : a Publication of
the IEEE Signal Processing Society, 7:27–41.

Watanabe T, Sakai Y, Koga D, Bochimoto H, Hira Y, Hosaka
M, Ushiki T. 2012. A unique ball-shaped Golgi apparatus
in the rat pituitary gonadotrope: its functional implica-
tions in relation to the arrangement of the microtubule
network. J Histochem Cytochem 60:588–602.

Witcher MR, Kirov SA, Harris KM. 2007. Plasticity of perisy-
naptic astroglia during synaptogenesis in the mature rat
hippocampus. Glia 55:13–23.

Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov
SA. 2010. Three-dimensional relationships between peri-
synaptic astroglia and human hippocampal synapses.
Glia 58:572–587.

Yang J, Ruchti E, Petit J-M, Jourdain P, Grenningloh G, Allaman
I, Magistretti PJ. 2014. Lactate promotes plasticity gene
expression by potentiating NMDA signaling in neurons.
Proceedings of the National Academy of Sciences of the
United States of America, 111:12228–12233.

C. Cal�ı et al.

38 The Journal of Comparative Neurology | Research in Systems Neuroscience


