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Abstract: The endothelium, which constitutes the inner layer of blood vessels and lymphatic struc-
tures, plays an important role in various physiological functions. Alterations in structure, integrity
and function of the endothelial layer during pregnancy have been associated with numerous gesta-
tional complications, including clinically significant disorders, such as preeclampsia, fetal growth
restriction, and diabetes. While numerous experimental studies have focused on establishing the role
of endothelial dysfunction in pathophysiology of these gestational complications, their mechanisms
remain unknown. Numerous biomarkers of endothelial dysfunction have been proposed, together
with the mechanisms by which they relate to individual gestational complications. However, more
studies are required to determine clinically relevant markers specific to a gestational complication
of interest, as currently most of them present a significant overlap. Although the independent
diagnostic value of such markers remains to be insufficient for implementation in standard clinical
practice at the moment, inclusion of certain markers in predictive multifactorial models can improve
their prognostic value. The future of the research in this field lies in the fine tuning of the clinical
markers to be used, as well as identifying possible therapeutic techniques to prevent or reverse
endothelial damage.

Keywords: endothelial dysfunction; endothelium; preeclampsia; FGR; diabetes

1. Introduction

The endothelium is a unique monolayer of cells lining the blood vessels. It was
once believed to be a rigid structure with a protective purpose only. In turn, it is now
considered to play a role in many biological functions including vasomotor tone, hemostatic
balance, cell trafficking, permeability, proliferation, survival and immunity. In addition
to the multifunctional nature of the endothelium, it is also characterized by phenotypic
heterogeneity. For example, postcapillary venule endothelial cells are mainly responsible
for leukocyte trafficking, while the arteriolar wall endothelium primarily regulates motor
tone [1].

Endothelial cells of the vascular system are covered by a carbohydrate polymer known
as the endothelial glycocalyx (EG), which maintains tissue integrity, prevents leukocyte
and platelet adhesion, and presents antithrombotic activity [2]. Located on the luminal
surface of endothelial cells, EG is a polyanionic structure consisting of membrane anchored
glycosphingolipids, glycoproteins, proteoglycans and glycosaminoglycans (GAGs) [3].
Proteoglycans, such as syndecans, glypicans and endocans, are the core transmembrane
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proteins that exhibit carbohydrate attachments in the form of GAG chains (heparan sul-
phates, chondroitin sulphates, dermatan sulphates). Heparan sulphates are the most
abundant type of GAG within the EG, accounting for 50–90% of all proteoglycans. In con-
trast with other glycocalyces, EG is denser, ranging between 0.2 and 0.5 µm in capillaries
and 2–3 µm in small arteries. EG is believed to play a role in multiple functions associ-
ated with vascular processes, including vascular permeability, inflammation, thrombosis,
mechanotransduction, and cytokine signalling [4]. Moreover, EG damage was reported to
result in edema and albuminuria [5].

Recently, a glycocalyx-like structure has been found on the surface lining of placental
blood vessels [6]. This structure, referred to as the placental glycocalyx, is produced
by syncytiothrophoblasts as a part of the extracellular matrix of maternal blood vessels.
Syncytiotrophoblasts are believed to fuse together into a continuous layer of cells forming
the exterior surface of chorionic villi. Due to the epithelial origin and unusual location of
syncytiotrophoblasts, it is possible that the nature of glycocalyx would be different from
that of endothelial cells [4]. With that said, there are only a few studies that analyzed the
composition of the placental glycocalyx in detail, and those that did found some similarities
to EG [7]. Both placental and vasculature endothelia are abundantly covered by syndecans.
Although the role of the placental glycocalyx is still a point of investigations, alterations in
its structure, along with endothelial dysfunction, have been implemented in preeclampsia
(PE) [8].

Overall, injury to the endothelium and associated structures has been implicated in
many gestational complications, including PE, fetal growth restriction (FGR), and diabetes.
The aim of this article is to review and discuss the proposed mechanisms by which endothe-
lial dysfunction is implicated in pregnancy complications, as well as to identify common
mechanisms and responsible biomolecules. We believe that this knowledge may in the
future assist in differentiating some of these pathologies and provide important clinical
information about the severity of the disease.

2. Methods

To compile this narrative review, we searched the PubMed database for relevant
references up to November 2021 using the following terms: “endothelial dysfunction
preeclampsia”, “endothelial dysfunction gestational hypertension”, “endothelial dysfunc-
tion fetal growth restriction”, “endothelial dysfunction intrauterine growth restriction”,
“endothelial dysfunction diabetes pregnancy”, and “endothelial dysfunction gestational
diabetes”. We also searched the database with all the phrases mentioned above using
the terms “endothelial damage” and “endothelial injury” instead of “endothelial dysfunc-
tion”. Bibliographies from included articles were reviewed for the purpose of identifying
any additional relevant articles that aligned with the objective of the paper. We initially
excluded articles not related to the aims of the review, analyzing the titles and abstracts.
Then, we analyzed the full texts of each paper included in this review. We selected only the
articles written in English during the manuscript preparation, which could be a possible
study limitation. Distribution of articles that were analyzed as part of the review is depicted
in Figure 1.
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Figure 1. Bar chart showing the number of publications published in certain years that were analyzed and included as part
of this review article.

3. Discussion
3.1. Preeclampsia (PE)

PE is probably the most characteristic pregnancy complication associated with en-
dothelial injury and dysfunction. This association includes the two most important issues:
(1) a predisposition to PE in pregnant women with a primary endothelial dysfunction
and (2) a secondary endothelial injury as a consequence of a primary impaired placental
perfusion, the two main phenomena in the pathophysiology of PE [9–11].

The most important factor contributing to endothelial injury in PE is an increased
production of antiangiogenic factors, including soluble fms-like tyrosine kinase 1 (sFlt-1)
and soluble endoglin (sEng), by a poorly perfused, hypoxic placenta (Figure 2) [9,12].
SFlt-1, in case of overproduction, neutralizes vascular endothelial growth factor (VEGF)
and placental growth factor (PlGF), which are well known protectors of vascular and
endothelial structures (Figures 2 and 3) [10,12,13]. Similarly, by binding and neutralizing
soluble transforming growth factor-β1 (TGF-β1) in the blood, sEng contributes to increased
vascular permeability (Figure 2) [13].

Another possible mechanism of endothelial dysfunction in PE involves activation
of the maternal immune system caused by an increased production of cytokines by dif-
ferent types of leukocytes, including monocytes and neutrophils [14–16]. Both cytokines
and neutrophils (directly) may contribute to endothelial injury [14]. Among possible
mechanisms which possibly result in activation of immune systems in patients with PE
are: (1) the increased shedding of syncytiotrophoblast microparticles (STBM) by poorly
perfused placenta, and (2) the increased production of reactive oxygen species (ROS) in
hypoxic placenta (Figure 2) [14,16].

The significance of endothelial dysfunction in PE is especially important from a
clinical point of view, because most of the clinical symptoms of PE, especially the maternal
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ones, may be explained by this phenomenon [11,17,18]. The most characteristic clinical
consequences of endothelial damage are: (1) proteinuria, (2) oedema, and (3) hypertension.
Another interesting clinical aspect is the presence of a possible difference in the degree of
endothelial damage in patients with early- (EOP) and late-onset PE (LOP).

In PE, similarly to other clinical pathologies, the presence and the degree of endothelial
dysfunction may be assessed by different methods, which include non-invasive in vivo
and in vitro methods.
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tyrosine kinase 1; VEGF-vascular endothelial growth factor; PIGF-placental growth factor; TGF-
β1-transcription growth factor β1; STBM- syncytiotrophoblast microparticles; ROS-reactive oxygen
species. Created with Biorender.com (accessed on 19 October 2021).

3.1.1. Methods of Endothelial Dysfunction Assessment in PE

The gold standard of non-invasive in vivo methods is flow-mediated dilation (FMD),
and its modified version, known as reactive hyperemia peripheral arterial tonometry
(RH-PAT) [19–21].

In comparison to healthy pregnant women, a significantly impaired endothelial func-
tion, manifesting in a reduction of FMD, was found in patients with PE [19,22]. These
differences were most significant in the third trimester of pregnancy, especially after around
30 weeks of gestation, when using both the FMD [19] and the RH-PAT methods [21]. How-
ever, impaired endothelial function in women with PE compared to the healthy pregnant
ones could already be observed in the second trimester of pregnancy, several weeks before
the development of clinical symptoms of PE [22].

Some controversies concern the results of endothelial function after delivery in women
who developed PE. Whereas an earlier meta-analysis [22] showed a lower value of FMD
three years after delivery in women with previous PE compared to the control group,
another study [23] indicated a quick normalization of these results, even after one month
post-partum.

Interestingly, so far, there are no comparative studies on the degree of endothelial
dysfunction assessed by these non-invasive in vivo methods in early- (EOP) and late-onset
PE (LOP). There is also no data on the association of such studies with clinical results and
characteristics of patients with PE.

The in vitro assessment of endothelial function/dysfunction consists of the measure-
ment of the serum concentration of different markers of endothelial dysfunction. The most
common include: (1) endothelin-1 (ET-1), (2) vascular adhesive molecule-1 (VCAM-1),

Biorender.com
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(3) selectins (4) thrombomodulin, (5) markers of endothelial glycocalyx (EG) degrada-
tion, (6) the von Willebrand factor, (7) circulating endothelial cells (CECs), and circulating
endothelial progenitor cells (CEPCs).
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3.1.2. Endothelin-1

Endothelin-1 is known as a strong vasoconstrictor produced mainly by endothelial
cells [24]. In numerous previous PE studies, ET-1 serum levels were found to be significantly
elevated compared to healthy pregnant women [25–28]. Interestingly, serum ET-1 was
also found to be significantly higher, even in the first trimester of pregnancy, in women
who later developed PE compared to those who remained normotensive [29]. Serum
levels of ET-1 were especially increased in women who developed the HELLP syndrome,
being even higher than in preeclamptic patients without HELLP [30]. The specific genetic
predisposition of the Lys198Asn polymorphism affected patients for increased ET-1 serum
concentration was also found [31]. Moreover, ET-1 levels were also found to be significantly
higher in placental tissues from patients with PE compared to those of healthy pregnant
women [32].

While the exact mechanism of increased ET-1 production in women with PE is un-
known, it could be a consequence of increased production of sFlt-1 and matrix metallopro-
teinases (MMPs) in ischemic, hypoxic placentas (Figure 4) [33]. Animal studies revealed
that MMPs may be responsible for the cleavage of big-ET-1 to an active ET-1 form [33].
A significant correlation between serum concentrations of ET-1 and sFlt-1, as well as ET-1
and the sFlt-/PlGF ratio, was described by Aggarwal et al. in women with PE [34]. Inter-
estingly, one of the statins (pravastatin) significantly reduced secretion of both ET-1 and
sFlt-1 in the in vitro model [35].
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3.1.3. VCAM-1

The key pathophysiological element of endothelial dysfunction is its activation, which
may be triggered by different factors, including those involved in the pathogenesis of PE.
Serum levels of the soluble form of VCAM-1 (sVCAM-1) are a known marker of endothelial
activation (Figure 3). PE is characterized by an increased serum concentration of s-VCAM-1,
significantly higher than in normal pregnancy [11,36–38]. However, some controversies
concern the difference in the levels of sVCAM-1 in patients with EOP and LOP. In the earlier
study, sVCAM-1 was found to be lower in LOP compared to EOP [39], whereas more recent
studies did not show such a difference [11,40]. Moreover, the rs3181092 polymorphism of
VCAM-1 was found to be associated with an increased risk of PE [41].

Interestingly, in one of above-mentioned studies [36], a significant negative correlation
was observed between sVCAM-1 level and birth weight and gestational age at delivery,
which emphasizes the utility of such measurement. Another interesting finding was a de-
creased expression of VCAM-1 observed in the placentas of women with PE in comparison
to healthy ones, which may indicate another role of VCAM in the placenta, for example,
in the process of placentation [42].

3.1.4. E-Selectin, P-Selectin, L-Selectin

Selectins are transmembrane proteins produced by the endothelium (E-selectin),
platelets (P-selectin), and leukocytes (L-selectin), which are activated and translocated to
the cell surface upon activation of the inflammatory process associated, among others, with
increased migration and adhesion of different immune cells [43,44]. Interestingly, selectins
also play a role in the process of implantation [45].

The most indicative marker of endothelium damage and dysfunction seems to be the
soluble E-selectin (sE-selectin) (Figure 3) [43]. Increased serum concentration of sE-selectin
in patients with PE in comparison to normotensive pregnant women was identified in
multiple studies [37,43,46–48]. Interestingly, in the study by Papakonstantinou et al. [46]
these differences were observed only in patients with PE, and not in patients with gesta-
tional hypertension. On the other hand, Mistry et al. [43] observed a significantly higher

Biorender.com


Biomedicines 2021, 9, 1756 7 of 24

level of sE-selectin in patients with EOP compared to patients with LOP, which indicates
a correlation between levels of this marker and severity of the disease. Additionally,
Mehrabian et al. [48] and Carty et al. [49] found an increased level of sE-selectin many
weeks before the development of PE, including in the first trimester of pregnancy. Un-
like sE-selectin, the serum concentrations of soluble P-selectin (sP-selectin) and soluble
L-selectin (sL-selectin) do not seem to be as reliable markers of endothelial dysfunction
and damage in PE as sE-selectin. In turn, while sP-selectin serum levels were found to be
increased in patients with PE in some previous studies [37,50], it was not confirmed in the
latest one by Mistry et al. [43]. Moreover, conflicting results have been reported regarding
the concentration of sL-selectin in patients with PE [37,43].

3.1.5. Thrombomodulin (TM)

Thrombomodulin (TM) is a transmembrane glycoprotein expressed mainly on the gly-
cocalyx surface of endothelial cells [51]. It has an important role in the process of hemostasis,
inflammation and apoptosis (Figure 3) [51]. Its anticoagulation activity is a consequence of
protein C activation and thrombin deactivation [52,53]. Therefore, an endothelial injury
with a degradation of its glycocalyx structure may contribute to intravascular hypercoagu-
lability, which is a PE characteristic.

Another interesting role of TM may concern the maintenance of the glomerular filtra-
tion barrier, which has been proved in diabetic mice [51].

Increased serum concentrations of TM in patients with PE in comparison to nor-
motensive pregnant women is probably the consequence of its cleavage associated with
endothelial glycocalyx degradation, as was reported by Minakami et al. [54] in 1993. Lately,
these findings have been confirmed by Zhu et al. [55] and Alpoim et al. [56]. Zhu et al. [55]
recorded increased levels of TM in both EOP and LOP patients, whereas the second
study [56] only observed an increase of TM in patients with severe EOP.

There are more controversies concerning the predictive value of TM level assessment
in pregnant women. Conflicting results in this field were obtained by Prochazka et al. [57]
and Wang et al. [58], both of which do not consider measurement of TM clinically relevant
in the prediction of PE.

So far, only two studies have measured mRNA expression of TM in placental tis-
sues [55,59]. While both studies have identified decreased mRNA expression of TM in
placentas of PE patients, in a study by Zhu et al. [55] this finding concerned mainly EOP.

The only study on expression of TM in kidneys of patients with PE was done by van
Aanhold et al. [51]. The authors found increased glomerular TM mRNA expression in
patients with PE compared to the control group. This observed upregulation, according to
authors of the study, may have a protective role.

3.1.6. Markers of Endothelial Glycocalyx (EG) Degradation

The endothelial glycocalyx (EG) is the most important protective, external structure of
endothelium. It is an external layer of endothelial cells composed of different proteoglycans
(PGs), glycoproteins, glycolipids and GAGs [2,60]. The protective role of EG for endothe-
lium includes, among others, maintenance of tissue integrity, prevention of leukocytes and
platelets adhesion, and antithrombotic activity [2,60].

Moreover, serum concentrations of soluble components of EG may reflect the degree
of endothelial damage as a consequence of the shedding of EG components.

The most reliable markers of EG degradation seem to include endocan-1 (ESM-1),
hyaluronan (HA) and syndecan-1 (SDC-1) (Figure 3).

Endocan-1 is one of the important PGs of EG. In most of the studies, the serum level
of ESM-1 was found to be significantly increased in patients with PE, compared to the
normotensive pregnant women [61–63]. However, in two other studies [64,65], including
the most recent one [65], the serum concentration of ESM-1 did not differ between patients
with PE and the control group. Important findings were described by Adekola et al. [54],
who found a significant correlation between the concentration of ESM-1 and the levels of
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antiangiogenic factors, including sFlt-1 and sEng. Additionally, no difference concerning
the serum concentration of ESM-1 was found between patients with EOP and LOP. On the
other hand, Cakmak et al. [63] found some positive correlations between the serum level of
ESM-1 and some clinical characteristics, including the value of systolic and diastolic blood
pressure and the degree of proteinuria.

Hyaluronan is an important GAG component of EG. Interestingly, so far, it seems to be
the most reliable marker of EG degradation, indicating both endothelial dysfunction and
activation (Figure 3). So far, in few, but all available studies, the significantly higher serum
level of HA was found in patients with PE than in healthy pregnant women [11,22,66–69].
Similar to the study by Adekola et al. [61], which discussed ESM-1, Kornacki et al. [3,59]
did not report a significant difference in the level of HA in patients with EOP and LOP.
Both of these studies indicate a common pathophysiological mechanism of EOP and LOP,
including the comparable degree of endothelial damage in both types of PE. In the another
study by Kornacki et al. [67], while no significant correlation was generally found between
the level of HA and the concentration of sFlt-1, such a trend was observed only for patients
with EOP.

Another practical use of serum HA level assessment was proposed by Wiles et al. [70],
who found that an increased level of HA was a good marker differentiating between
PE and exacerbation of the primary condition in patients with diabetic kidney disease.
In those who developed PE, the concentration of HA, as well as sVCAM-1, was significantly
higher [70].

Syndecan-1, like ESM-1, is an important PG of EG. Interestingly, most of the available
data indicate the presence of lower serum levels of SDC-1 in patients with PE than in
normotensive pregnant women [66,71,72]. Only Lahsinoui et al. [67] and Weissgerber
et al. [22] did not find significant differences between such levels in patients with PE and
those from the control groups. These findings of rather low serum levels of SDC-1 in
patients with PE are in contrast with the opposite data on the concentrations of ESM- 1 and
HA. This may indicate another significant source of SDC-1 during pregnancy, which could
be the placenta [22,73]. Also, SDC-1 is universally increased in all pregnant women, and it
has a positive correlation with gestational age, which decreases its utility in indicating
endothelial damage [74].

3.1.7. Von Willebrand Factor (vWf)

The Von Willebrand Factor (vWf) is a glycoprotein produced by endothelial cells and
megakaryocytes. It plays an important role in vascular hemostasis, including promoting
the adhesion of platelets to the endothelium and stabilizing of Factor VIII [75]. Additionally,
it is involved in the process of inflammation, being released into circulation by activated
endothelial cells (Figure 3) [44,75]. All of the above factors make the serum concentration
of vWf one of the endothelial activation and injury markers [44].

In recent years, there is limited data on the assessment of the serum concentration
of vWf in patients with PE. In two of the studies [76,77], a significantly increased serum
level of vWf was found in patients with PE compared to the control group, but only in
the case of a presence of placental insufficiency and in severe PE. In the two other studies,
the concentration of vWf did not differ statistically between the patients with PE and
normotensive pregnant women [57,78].

3.1.8. Circulating Endothelial Cells (CECs) and Circulating Endothelial Progenitor
Cells (CEPCs)

Both CECs and CEPCs may be used as another blood marker of endothelial injury
and dysfunction [44]. In the process of endothelial activation and injury, these cells may
be detached and released in a higher amount into the circulation [44,78]. The mechanisms
that may cause increased shedding of CECs include apoptosis, mechanical injury, an imbal-
ance between pro- and antiangiogenic factors, weakening of the intracellular connections,
endothelial structure injury by cytokines and proteases, as well as the activity of different
drugs (Figure 3) [78].
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Both types of cells may be identified in the blood using multicolour flow cytometry or
immunomagnetic techniques. CECs, as opposed to CEPCs, are CD-133 negative, since they
lose this antigen during maturation [79]. Hence, the CEPC/CEC ratio is another potential
marker of endothelial activation and dysfunction [80].

In a few recently published studies, women with PE were found to have an increased
number of CECs in serum compared to healthy controls [48,78,81]. At the same time,
Lagana et al. [82] found a decreased number of CEPCs in patients with PE compared to
normotensive pregnant women. In turn, Szpera et al. [78] and Heimrath et al. [83] observed
decreased CEPCs only in patients with chronic hypertension and gestational hypertension.

Additionally, Mehrabian et al. [48] observed an increased number of CECs in patients
with PE even a few weeks prior to the onset of disease, which emphasizes the role of these
cells in predicting PE.

Finally, both patients with PE and those with chronic hypertension in pregnancy had
a significantly decreased CEPC/CECs ratio compared to healthy pregnant women [78].

3.2. Fetal Growth Restriction

FGR is a condition in which the fetus does not achieve full growth potential in utero
due to genetic or environmental factors. Clinically, FGR is diagnosed when estimated
fetal weight is below the 10th percentile for the gestational age. There can be multiple
factors contributing to FGR, including maternal, fetal and placental. These causes can also
overlap with each other; therefore, a clear differentiation between them is often complex.
FGR is associated with increased fetal and neonatal morbidity and mortality. Moreover,
it is reported that neonates with FGR face an increased risk of atherosclerosis, hypertension,
coronary artery disease and chronic kidney disease in the future [84]. While the endothe-
lium plays a crucial role in maintaining a proper vascular function and homeostasis both
prenatally and postnatally, it is not surprising that its dysfunction can lead to long-term
cardiovascular-related disorders.

In this section, we will focus mainly on the placental origin of FGR, as it is believed to
involve endothelial dysfunction in its pathomechanism [85]. Impaired vascular remodeling
and decreased vascular volume affect placental vascularity and the capability to respond to
vasodilatory signals. The combination of these changes leads to decreased oxygen supply
to the fetus, which results in chronic hypoxia, contributes to reduced growth of the fetus,
and causes the development of an oxidative stress environment [86,87].

3.2.1. Balance between Vasodilation and Vasoconstriction Signals in of FGR
Placental Vessels

It is believed that morphology and function of the vasculature of various levels (i.e.,
arteries and veins) can be modified by environmental factors, such as blood flow, levels of
oxygen, epigenetic factors and the level of oxidative stress [88]. Nitric oxide (NO), produced
by endothelial nitric oxide synthase (eNOS), is believed to be functionally related to these
environmental factors (Figure 4) [89]. The release of NO is triggered by either shear stress or,
to a lower extent, through binding of insulin, vascular endothelial growth factor (VEGF) and
calcitonin gene-related peptide (CGRP) (Figure 4) [90–92]. Increased levels of NO-related
metabolites were described in FGR and PE placentas [93]. Similarly, eNOS, the activity of
which results in NO generation, exhibited significantly increased expression in chorionic
and umbilical arteries, and decreased levels in the umbilical vein in FGR [94–96]. Umbilical
vein findings were also confirmed during in vitro experiments on FGR-derived human
umbilical vein endothelial cell (HUVEC) cultures [97]. The vasodilatory activity of eNOS is
believed to be counteracted by arginase-2 (ARG2), since both of them compete for the same
substrate, L-arginine (Figure 4). When it comes to FGR, ARG2 expression and activity were
increased in cultured endothelial cells from FGR umbilical arteries (HUAEC), but not veins
(HUVEC) [93]. At the same time, decreased in vitro eNOS activation was also recorded,
thus FGR placentas had a decreased eNOS/arginase-2 ratio, which may have been the
contributing factor to relative vasoconstriction of the vascular beds. Another study has
demonstrated that the expression of both ARG2 and eNOS are independently regulated
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by DNA methylation and histone post-transcriptional modifications in HUAECs [98,99].
eNOS activity in the endothelium is also believed to be regulated by the expression of
dimethylarginine dimethylaminohydrolase 1 (DDHA1) and nuclear factor-erythroid factor
2-related factor 2 (NRF2) [100–102]. One of the eNOS endogenous inhibitors, asymmetric
dimethylarginine (ADMA), is metabolized by DDHA1 Thus, an increased DDHA1/ADMA
ratio is associated with endothelial protection (Figure 4) [103]. NRF2 also protects the
endothelium by acting as a transcription factor which induces the expression of SOD1 and
GPX1, which in turn promotes antioxidant response.

3.2.2. Endothelial Function in FGR Resulting from PE Compared to FGR in
Normotensive Pregnancies

Studies have traditionally attempted to determine whether the mechanism of en-
dothelial dysfunction and hypoxia resulting from PE is similar to that in normotensive
patients with FGR. A recent study analyzed the relationship between endothelial func-
tion and oxidative stress in normotensive women with FGR, compared to those with PE
and normal pregnancies, by measuring concentrations of oxygen free radicals (d-ROMs),
PlGF, sFlt-1 and placental oxidative damage [104]. Once the placenta becomes hypoxic,
the production of free radicals and hypoxia-inducible factor-1α (HIF-1α) takes place in
placenta decidua [105,106]. As a result of HIF-1α overexpression, sFlt-1 is upregulated,
which promotes a cascade of events leading to angiogenesis. sFlt-1 serves as a receptor for
VEGF and PlGF. However, once sFlt-1 is present in excess, VEGF and PlGF production by
placenta is suppressed, resulting in maternal endothelial dysfunction [104]. Although the
maternal serum concentration of sFlt-1 was increased, while that of PlGF was decreased in
patients with early- or late-onset PE, levels of those factors in patients with normotensive
FGR remained comparable to those with normal pregnancies. Not surprisingly, the sFlt-
1/PlGF ratio has been used as a clinical tool to rule out the onset of PE in women with
suspected disease [107]. At the same time, higher than normal placental DNA oxidative
damage, measured by the portion of nuclei staining positive for 8-OHdG, was recorded in
both patients with PE and FGR. Thus, while oxidative stress was evident in both groups, a
different mechanism of oxidative stress induction (irrespective of sFlt-1 signalling) may be
implicated in patients with normotensive FGR. For instance, maternal plasma soluble en-
doglin, a factor inhibiting angiogenesis, was found to be significantly increased in women
with normotensive FGR between the first and second trimesters. Additionally, an increase
in expression of transforming growth β-induced factor was reported in FGR placentas
in two mice studies [108,109]. This factor hinders transcriptional activation of TGF- β,
which is normally involved in placental angiogenesis, cell proliferation, differentiation
and apoptosis.

3.2.3. Transcriptional Modification in FGR Placentas

Additionally, certain miRNAs, especially miR-21 and miR-126, were responsive to hy-
poxia in HUVECs [110]. These miRNAs have been involved in angiogenesis, the regulation
of endothelial function, and vascular remodeling. In the context of FGR, one study found
hsa-miR-21 to be decreased and miR-126 to be elevated in cultured FGR HUVECs [111].
While a decrease in miR-21 was attributed to hg-miR-21 gene promoter methylation,
no changes to miR-126 promoters were observed in the study. There was a reverse relation-
ship observed between the levels of miR-21 and those of eNOS and DDHA1, and further
analysis revealed the decreased stability of eNOS and DDHA1 transcripts in the presence of
this miRNA subtype. It was concluded that the selective expression of the hypoxic-miRNA
profile in FGR plays a role in the regulation of the NO pathway in endothelial cells.

3.2.4. Long-Term Clinical Implication of FGR Pregnancies

Overall, endothelial dysfunction implicated in FGR pregnancies has debilitating long-
lasting effects on both the mother and the fetus [84]. Neonates born in the aftermath of
FGR are not only at increased risk for perinatal morbidity and mortality, but are also more
likely to experience systemic hypertension (HTN), coronary heart disease, atherosclerosis,
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and chronic kidney disease (CKD). According to several animal models, FGR pregnancies
were at increased risk of developing HTN later in life [112,113]. Human epidemiological
study results are also in accordance with these findings, reporting a correlation between
increased blood pressure and low body weight in infancy, adolescence and adulthood.
Moreover, a recent study reports a direct link between hypertension and low birth weight.
Endothelial dysfunction has also been associated with CKD. In fact, an analysis of 18 studies
reports that infants born after FGR are at a higher risk of developing albuminuria, end-
stage renal disease and a decreased glomerular filtration rate later in life [114]. However,
the sequence of events remains undetermined, therefore it is unclear whether endothelial
dysfunction precedes the development of both HTN and CKD [84]. After FGR pregnancies,
women may experience cardiovascular system dysfunction in the form of asymptomatic
heart failure, the increased risk of developing hypertension, and an increased risk of
mortality from cardiovascular-related illness [115].

3.3. Endothelial Dysfunction in Pregnancies with Diabetes

Diabetes results in a risk of developing various pregnancy-related complications, such
as PE, preterm delivery, or placental insufficiency. Numerous studies have attempted
to identify an elusive multifactorial pathogenesis of those adverse pregnancy outcomes,
which are undoubtedly associated with vascular dysfunction. It is believed that the in-
creased fetomaternal morbidity and mortality observed in patients with diabetes is linked
with endothelial damage induced by both hyperglycemia and chronic low-grade inflam-
mation [116,117].

3.3.1. Markers of Endothelial Dysfunction in Diabetes
Adhesion Molecules

Several membrane proteins, such as VCAM-1, intercellular adhesion molecule 1
(ICAM-1), or E-selectin represent the group of biomarkers characteristic of endothelial
cells [118]. These adhesion molecules mediate the interactions with the cells mediating
the inflammatory process. Endothelial activation increases the expression of adhesion
molecules and promotes the attachment and migration of adherent monocytes, which
precede the endothelial damage [119,120]. Significantly increased serum concentrations
of soluble VCAM-1 have been noted in patients with gestational diabetes mellitus (GDM)
and type 1 diabetes (T1D) compared with the control group [121–124]. Furthermore,
the prolonged increase in concentrations of adhesion molecules in the peripheral blood were
noted in patients with diabetes progression after pregnancy and in women with a history
of GDM [118,125,126]. In contrast to those findings, Bajaj et al. noted markedly decreased
VCAM-1 levels in the group of women with GDM three years after pregnancy [127]. Finally,
others discovered no significant differences in the VCAM-1 and ICAM-1 concentrations
in maternal blood when comparing GDM patients and controls [128–131]. Interestingly,
Diaz-Perez et al. found significantly decreased ICAM-1 protein concentrations in patients
with GDM, while there were no changes in the ICAM-1 mRNA expression. Moreover, they
found a negative correlation between the ICAM-1 protein and maternal body mass index
(BMI). Thus, they hypothesized that decreased ICAM-1 in patients with GDM could be
connected with the hypothetical protective post-translational regulations [130]. In contrast
to those findings, other studies detected increased ICAM-1 levels in patients with GDM
and T1D [122–124,132–134]. The increased ICAM-1 expression in decidual endothelial cells
collected from women with T1D was associated with higher monocyte adhesion, which
was reduced following the ICAM-1 antibody blockade [135]. Finally, it was discovered that
the adhesion molecules’ concentrations might be associated with fetal growth disturbances
in patients with pregestational diabetes [136].

Other Mediators of Endothelial Dysfunction

It has been speculated that the disturbances in the expression of several proteins
involved in the regulation of angiogenesis could play a role in the development of various
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pregnancy-related complications. Lappas revealed that there were no differences in the
placental expression and secretion of adhesion molecules (VCAM-1, ICAM-1) and the
regulators of angiogenesis (i.a., PIGF, VEGF, sFlt-1, and fibroblast growth factor 2 [FGF2])
in patients with GDM [134]. However, significant changes in the expression of numerous
proteins associated with endothelial damage have been discovered in the explants of
omental adipose tissue. Du et al., in their prospective longitudinal study, assessed the
secretion of serum inflammatory markers in women with T1D who developed PE and
those who remained normotensive. They revealed significant differences in the C-reactive
protein (CRP), E-selectin, interferon-γ-inducible protein-10, interleukin-1 (IL-1) receptor
antagonist, and eotaxin serum concentrations [137]. Also, ADMA, which acts as an inhibitor
of eNOS, has been investigated as a potential marker of endothelial dysfunction in GDM.
However, there are numerous contradictory results of ADMA measurements between
various studies [131,132,138–140]. Tekin et al. hypothesized that alterations in plasma
levels of signal peptide-CUB-EGF domain-containing protein (SCUBE)-1, which was found
to be associated with endothelial dysfunction, could also be detected in patients with GDM.
They discovered that SCUBE-1 concentrations were markedly increased in patients with
GDM. However, the clinical relevance of these findings should be further tested [141].
Hiden et al. found increased membrane-type matrix metalloproteinase 1 (MT1-MMP)
protein expression in placentas obtained from patients with GDM. They revealed that
MT1-MMP expression in primary fetoplacental endothelial cells is stimulated by insulin
and insulin-like growth factor 2 (IGF-II) via phosphatidylinositol 3-kinase (PI3K) through
insulin receptors. Moreover, MT1-MMP blocking reduced angiogenesis in vitro [142].

3.3.2. Functional Assessment of Endothelial Damage In Vivo

Numerous studies have assessed the vascular function in pregnant women with di-
abetes. Bugatto et al. found that the mean uterine artery Doppler pulsatility index in
patients with GDM was significantly positively correlated with IL-6, triglycerides and
glycated hemoglobin, implying that alterations in lipids and glycemic homeostasis are
associated with vascular pathologies [128]. For instance, placental atherosclerosis was
discovered significantly more often in patients with GDM compared with normal preg-
nancies [143]. Hence, carotid artery intima-media thickness (IMT) measurement is used
to assess subclinical atherosclerosis and predict the risk of future adverse cardiovascu-
lar events in asymptomatic patients [144]. Atay et al. found that normotensive patients
with GDM had significantly increased IMT and homocysteine concentrations, as well
as reduced nitric oxide levels [145]. Moreover, markedly increased IMT was detected
in women with GDM in a previous pregnancy, 6.5 years after delivery, compared with
the control group. Interestingly, IMT values were significantly associated with E-selectin,
ICAM-1, IL-6, and CRP serum concentrations [126]. These observations imply the asso-
ciation between GDM and endothelial damage. When measuring endothelial function
with FMD, patients with GDM had significantly reduced values compared with healthy
controls [146,147]. Moreover, FMD reduction in women with GDM persisted in the early
postpartum period [148]. Furthermore, the increased arterial stiffness, indicated by lower
distensibility of the brachial and carotid artery, was noted in patients with GDM [148].
Mrizak et al. measured the forearm skin blood flow (FSBF) in response to acetylcholine
in patients with GDM and the control group. They found significantly reduced FSBF
values in the GDM group [149]. It was reported that myometrial arteries collected from
patients with GDM had markedly impaired endothelium-dependent relaxation ex vivo
compared with the control group [150]. Those findings are consistent with the thesis that
GDM is connected with vascular damage. In contrast, Acosta et al. found no differences
in vascular reactivity measured by laser Doppler examination in patients with GDM and
control individuals [151]. Moreover, Ang et al. did not detect any alterations in either en-
dothelial or smooth muscle function in small arteries obtained from patients with T1D [152].
Endothelial dysfunction could result in imbalances in the production of vasoconstrictor
and vasodilator molecules. Nonetheless, Swiderski et al. found no differences in the serum
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endothelin-1 and cyclic guanosine monophosphate concentrations in patients with GDM,
pregestational diabetes, and healthy study participants [153]. Furthermore, few studies
assessed the vascular function several years postpartum. Banerjee et al. reported that
maximal endothelium-dependent dilation related to carbachol was reduced in patients
with GDM (individuals previously enrolled in the HAPO study) [154]. They found that
inhibition of eNOS did not affect arteries dilation in patients with GDM, which suggests
the impairment of eNOS activity associated with hyperglycemia [154]. There were no
significant alterations in FMD values in patients with a history of GDM and women with
normal glucose tolerance six years postpartum [155]. Khurana et al. reported that while hy-
perinsulinemia did not change FMD values, hyperglycemia may reduce it in the late third
trimester in patients with type 2 diabetes [156]. It was reported that pregnancy improves
microvascular reactivity, measured by laser Doppler imaging and iontophoretic administra-
tion of endothelial-dependent and endothelial-independent vasodilators, compared to the
postnatal period in women with T1D. Nonetheless, control pregnant patients experienced
markedly higher endothelial function enhancement than T1D patients [152]. Interestingly,
there were no significant differences in skin microvascular reactivity, determined using
laser Doppler fluximetry, in patients with GDM and healthy controls [157].

3.3.3. Diabetes, Preeclampsia and Other Pregnancy-Related Complications

Kul et al., in their comparative study, reported that most of the patients with a history
of PE and GDM (91%) present features of coronary microvascular dysfunction, defined
by coronary flow reserve measured in echocardiography. Interestingly, the prevalence
of microvascular dysfunction is significantly lower in patients with isolated GDM (55%)
compared with individuals with combined PE and GDM [158]. Moreover, the increased
sFlt1/PIGF ratio, pronounced by the overexpression of anti-angiogenic sFlt1, is linked with
the development of PE in the general population. Similar findings have been noted in preg-
nant women with GDM [159]. It is believed that the altered adhesion molecules’ expression
could play a role in the development of PE. Clausen et al. discovered that elevated plasma
ICAM-1 and VCAM-1 concentrations are detected in the late first trimester in women
with T1D who developed PE in latter pregnancy [124]. ACE gene I/D polymorphism is
associated with increased PE risk in the general population. Dmitrenko et al. postulated
that this polymorphism also elevates the risk of PE in patients with GDM [160].

Pre-existing diabetes (T1D, or T2D) exerts more negative consequences for feto-
maternal vasculature in comparison to GDM. Prolonged maternal hyperglycemia induces
multiple pathological processes (i.e., non-enzymatic glycosylation, alterations in lipid
metabolism, local hypoxia, increased ROS synthesis, imbalances in cytokines and growth
factors production) that trigger vascular remodeling and endothelial injury. As a result,
patients with long-lasting diabetes are significantly more predisposed to PE development
compared to women with GDM [161] (Figure 5).

Gutaj et al. reported that primiparity and diabetic vasculopathy were the strongest
predictors of PE in women with T1D. Moreover, they found that pregestational hyperten-
sion, high gestational weight gain, and increased HbA1c and triglyceride concentrations in
maternal blood were also associated with the elevated risk of PE [162]. Pregnancies of pa-
tients with T1D are also frequently complicated by disturbances in fetal growth. Zawiejska
et al., investigating the concentrations of markers of endothelial injury in maternal blood,
revealed that both excessive and small-for-gestational-age (SGA) fetal growth might be
associated with diabetes-induced endothelial dysfunction [136]. Furthermore, Gutaj et al.
noted that the low PlGF serum levels in the mid-pregnancy, as well as no increase in its
values from early to mid-pregnancy, may be potentially indicative of SGA in patients with
T1D [163]. Our 25 years of experience in treating patients with long-duration T1D proves
that early introduction of optimal treatment measures and education on the role of strict
glycemic control and lifestyle habits significantly reduces the risk of adverse pregnancy
outcomes in patients with T1D [164].
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3.3.4. Assessment of Endothelial Function in In Vitro Conditions

Maternal exposure to hyperglycemia is connected with increased fetal vascular re-
sistance. It was found that those changes are associated with reduced phosphorylation
of eNOS and protein kinase B (AKT) at key residues involved in the nitric oxide synthe-
sis [165]. Anaya et al. found that the HUVECs isolated from mothers with diabetes showed
disrupted Ca2+ bursts which resulted in impaired activation of eNOS and reduced NO
production that could contribute to the development of vascular pathologies in patients
with diabetes [166]. However, Mordwinkin et al. detected the increased eNOS expression
in both maternal and cord blood [123]. Furthermore, HUVECs isolated from patients
with GDM show features of decreased proliferation, migration, and formation of the new
vessels compared to those obtained from healthy individuals [167–171]. It was reported
that hyperglycemia inhibits the proliferation of HUVESCs stimulated by FGF2 but did
not change the vascular endothelial growth factor-induced angiogenesis, which is con-
trolled by extracellular signal-regulated kinases 1/2 (ERK1/2) [169]. Cvitic et al. found
significant variation in the DNA methylation patterns and expression of genes attributed
to cell morphology and cellular movement in both arterial and venous fetoplacental en-
dothelial cells obtained from women with GDM and healthy controls [172]. Moreover,
Blue et al., using the genome-wide mRNA expression analysis, revealed that endothelial
dysfunction is associated with alterations in gene expression and DNA methylation [173].
Prieto et al. reported that Netrin-1 and its receptors might regulate the increased placental
angiogenesis observed in GDM. They found the decreased expression of anti-angiogenic
Unc-5 Netrin Receptor B in HUVECs obtained from patients with GDM [174]. In turn,
Peng et al. discovered increased miR-137 plasma levels in women with GDM and HUVECs
exposed to hyperglycemia. They reported that elevated miR-137 expression is associated
with decreased cell viability and angiogenesis, and increased secretion of inflammatory
cytokines and monocytes adhesion to HUVECs [175]. Floris et al. proposed a theory that
describes the role of miR-101 upregulation in the pathogenesis of HUVECs damage in pa-
tients with GDM. They speculated that the inhibition of miR-101 increased the enhancer of
zester homolog-2 (EZH2) expression and possibly improved the HUVECs’ bioactivity [171].
Meanwhile, Ye et al. investigated the role of maternally expressed gene 3 (MEG3) in the
development of endothelial dysfunction. They revealed that hyperglycemia promotes
the expression of the MEG3 gene that could be partially responsible for endothelial dys-
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function triggered by hyperglycemia. They found that MEG3 downregulated miR-370-3p
and stimulated overexpression of the AFF1 gene by inhibition of the PI3K/AKT pathway
and, consequently, played a role in endothelial damage [167]. Alqudah et al. found a
significant reduction in the FK506-binding protein like (FKBPL) and the upregulation
in the PIGF and vascular endothelial growth factor receptor 1 (VEGF-R1) expression in
placental tissue samples collected from women with T1D. In contrast to those observations,
only the expression SIRT-1 gene was significantly downregulated in patients with GDM
compared to the controls [176]. Moreover, the high FKBPL expression in HUVECs, evoked
by plasmid vector transfection, was associated with a reduction in tubule formation and
could be potentially responsible for endothelial dysfunction in vivo [176]. Di Tomo et al.
reported that HUVECs collected from women with GDM presented alterations in mito-
chondrial membrane potential and antioxidant response compared with cells obtained in
controls. Endothelial cells obtained in patients with diabetes exhibited a reduced SIRT-1
expression and increased p16, p21, and p53 activity. They postulated that those changes,
together with p300 activation, induce persistent endothelial senescence in patients with
GDM [177]. A microarray analysis revealed significant differences in the expression of
numerous genes involved in cellular function and proliferation regulation in HUVECs
collected from healthy controls and patients with GDM. Moreover, the same study found
differences in cell cycle distribution in those cellular subpopulations—HUVECs from
women with GDM had an increased proportion of cells in the G2/M phase, indicating
the immobilization of cell divisions provoked by prolonged hyperglycemia. All of those
factors and increased mitochondrial superoxide generation may contribute to endothelial
dysfunction pathogenesis [178]. Saez et al. investigated the influence of hyperglycemia on
exosomes secretion and bioactivity in HUVECs [179–181]. They found that hyperglycemia
stimulated the exosome release. Furthermore, exosomes isolated from HUVECs cultured
under hyperglycemic conditions promoted endothelial cell wound healing as well as the
expression of phosphorylated endothelial nitric oxide synthase, human cationic amino
acid transporter type 1 (hCAT-1), and ICAM-1 in HUVECs cultured in normal glucose
concentrations, imitating the destructive effects of hyperglycemia [179]. Results observed
in patients with T2D are consistent with findings from GDM studies—HUVECs obtained
from T2D patients presented with lower proliferation rates, increased apoptosis, and higher
levels of superoxide anions [182]. Moreover, Sultan’s study identified 132 genes, expression
of which was significantly altered in umbilical endothelial cells obtained from patients
with T2D [182].

3.3.5. Potential Inhibitors of Endothelial Dysfunction in Diabetes

Interestingly, it was discovered that myo-inositol supplementation could restrict en-
dothelial dysfunction in women with GDM. HUVECs obtained from women with GDM
who were treated with myo-inositol throughout the pregnancy had a markedly reduced
number of monocytes attached to their surface, less adhesion molecule exposure, and lower
intracellular oxidative stress levels in comparison to those of women treated with diet only.
The same effects were observed after 48h hours of stimulation with myo-inositol in in vitro
conditions [183]. Another in vitro study revealed that metformin improves cell migration
and stimulates angiogenesis of HUVECs. It was speculated that both processes are pro-
moted by the increased NRF2 and downregulated p65 expression caused by the metformin
treatment [184]. Liraglutide significantly reduced the monocyte adhesion, the expression
of adhesion molecules, MAPK/NF-kB activation, peroxynitrite levels, and endothelial
microvesicle release in the HUVECs exposed to tumor necrosis factor-alpha (obtained
from patients with GDM) [185]. Furthermore, Hemling et al. found that the thioredoxin
mimetic peptides supplementation improves migration, proliferation, survival and restores
VEGF resistance in HUVECs [186]. Based on the in vitro observations, the carotenoid-
rich diet may exert protective effects on the HUVECs in diabetic conditions [187]. Also,
the purified Ovothiol A exerted anti-inflammatory effects (decreased the expression of
adhesion molecules and monocyte-HUVEC interaction) and reduced the oxidative stress
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in HUVECs in vitro [188]. Gui et al. discovered that vitamin D supplementation could
restore the features of endothelial dysfunction in vitro in endothelial colony-forming cells
obtained from cord blood in women with GDM [170]. Also, the Centella Asiatica and lipoic
acid treatment inhibits the monocyte adhesion to HUVECs in in vitro conditions [189].
Interestingly, it was reported that the human chorionic mesenchymal stem cells co-cultured
with the HUVECs could reverse the high glucose-induced endothelial damage and restore
cell functionality [190]. Moreover, a conditioned medium of human embryonic stem cell-
derived endothelial cells could reverse endothelial progenitor cell dysfunction in patients
with T2D [191]. Subiabre et al. discovered that maternal insulin therapy does not restore
the biological functions of fetoplacental endothelial cells in patients with GDM [192]. How-
ever, insulin therapy acts differentially in HUVECs collected from patients with GDM and
healthy controls [193]. Therefore, it could restore the reduced adenosine uptake via human
equilibrate nucleoside transporter 1, -2 (hENT1, hENT2) [194,195].

4. Conclusions

In the review we presented the role of endothelial dysfunction and endothelial injury
in three pathologies of pregnancy: PE, FGR and diabetes, which often coexist with clinical
situations, sparking the need for their precise differentiation.

Overall, the endothelium plays an important role in maintaining blood vessel integrity.
There are theories linking alterations in endothelial integrity and patomechanism of certain
gestational conditions, including PE, FGR and DM, during pregnancy. However, the clear
differentiation of the involved mechanisms is challenging, because these complications
often coexist. The future of the research lies in fine tuning the clinical markers to be used
and identifying possible therapeutic techniques to reduce endothelial injury, improve its
function or promote regenerative mechanisms.

FGR without PE is usually not associated with a significant elevation of serum markers
of endothelial injury like sVCAM-1 or HA, which are increased in cases of PE with or with-
out FGR. Furthermore, both gestational diabetes and PE are associated with the increased
concentrations of some markers of endothelial dysfunction. However, the mechanism of
endothelial injury in PE is probably different and depends more on the elevation of sFlt-1
levels. The use of antiangiogenic markers, including sFlt-1 and placental growth factor
(PlGF), rather than markers of endothelial dysfunction, may be helpful to differentiate
some cases of PE from cases of exacerbation of diabetic kidney disease in pregnancy.
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162. Gutaj, P.; Zawiejska, A.; Mantaj, U.; Wender-Ożegowska, E. Determinants of Preeclampsia in Women with Type 1 Diabetes. Acta
Diabetol. 2017, 54, 1115–1121. [CrossRef] [PubMed]
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