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Enhancing motion tracking
accuracy of a low-cost 3D video
sensor using a biomechanical
model, sensor fusion, and
deep learning
Shahar Agami, Raziel Riemer and Sigal Berman*

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Low-cost 3D video sensors equipped with routines for extracting skeleton data
facilitate the widespread use of virtual reality (VR) for rehabilitation. However,
the accuracy of the extracted skeleton data is often limited. Accuracy can be
improved using a motion tracker, e.g., using a recurrent neural network
(RNN). Yet, training an RNN requires a considerable amount of relevant and
accurate training data. Training databases can be obtained using gold-
standard motion tracking sensors. This limits the use of the RNN trackers in
environments and tasks that lack accessibility to gold-standard sensors.
Digital goniometers are typically cheaper, more portable, and simpler to use
than gold-standard motion tracking sensors. The current work suggests a
method for generating accurate skeleton data suitable for training an RNN
motion tracker based on the offline fusion of a Kinect 3D video sensor and
an electronic goniometer. The fusion applies nonlinear constraint
optimization, where the constraints are based on an advanced shoulder-
centered kinematic model of the arm. The model builds on the
representation of the arm as a triangle (the arm triangle). The shoulder-
centered representation of the arm triangle motion simplifies constraint
representation and consequently the optimization problem. To test the
performance of the offline fusion and the RNN trained using the optimized
data, arm motion of eight participants was recorded using a Kinect sensor,
an electronic goniometer, and, for comparison, a passive-marker-based
motion tracker. The data generated by fusing the Kinect and goniometer
recordings were used for training two long short-term memory (LSTM)
RNNs. The input to one RNN included both the Kinect and the goniometer
data, and the input to the second RNN included only Kinect data. The
performance of the networks was compared to the performance of a tracker
based on a Kalman filter and to the raw Kinect measurements. The accuracy
of the fused data was high, and it considerably improved data accuracy. The
accuracy for both trackers was high, and both were more accurate than the
Kalman filter tracker and the raw Kinect measurements. The developed
methods are suitable for integration with immersive VR rehabilitation systems
in the clinic and the home environments.
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Introduction

The availability of low-cost 3D video sensors suitable for

joint motion tracking has paved the way for affordable

motion analysis and motion rehabilitation training with

virtual reality (VR) (1). Such low-cost, marker-less systems

can be simply and rapidly installed in both clinic and home

environments. However, the motion tracking accuracy of low-

cost 3D video sensors is limited, especially for multiple joint

motion tracking (2). The limited accuracy restricts the utility

of the low-cost 3D video sensors for rehabilitation training

and assessment, especially for upper limb rehabilitation. The

increased difficulty of tracking upper limb motion stems from

the complexity and the variability of upper limb motion

profiles. Developing algorithms for improving the accuracy of

upper limb motion tracking using low-cost 3D video sensors

is thus a crucial yet challenging task.

The Kinect (Microsoft, USA) sensor is among the most used

low-cost 3D video sensor suitable for full-body motion tracking

(1, 3). One reason for the Kinect’s high popularity is that a

custom, full-body skeleton extraction method is part of the

Kinect’s software development kit. The accuracy of the

extracted joint positions and angles using the software has

been extensively studied with various methods and in

different scenarios (3–7). The accuracy was found to vary and

depend on the camera location (orientation angle and

distance), the use case (e.g., the existence of obstacles, the

direction of movement), and the joint tracked. For example,

for a walking task away from and toward the camera, the

correlation of joint angles measured using a Kinect sensor

(both Kinect 1 and Kinect 2) and those measured with the

gold-standard sensor (Vicon system) was found to be

moderate to poor for all joints, except for the knees (for

which there was good to excellent correlation) (7).

Several tracking algorithms have been suggested for

improving the motion tracking accuracy of low-cost 3D video

sensors. The commonly used tacking algorithms include the

classical Kalman filter (8, 9) and more recently neural

networks (10). Recurrent neural networks (RNNs) are

especially suitable network structures for processing time-

series data, e.g., joint motion data, and have been used for

tracking upper limb motion based on Kinect data (11–14).

Excellent accuracy improvement can be obtained with neural

networks, especially RNNs, in environments and tasks for

which the network was trained. Training datasets are

produced by recording motion using gold-standard motion

tracking systems parallel to the low-cost 3D video. Accuracy

improvement across environments and tasks requires large

training datasets which are not currently available; therefore,

the trained RNNs are specific to the environment and the

use case for which their training data was acquired.

This requirement for large training sets produced with gold-
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standard systems constitutes a stumbling block to the large-

scale implementation of advanced VR systems based on low-

cost 3D video sensors in clinics and home environments.

The accuracy of motion data from low-cost 3D sensors can

be improved using offline motion data optimization methods.

The methods suggested typically apply noise filtering methods

and integrate biomechanical constraints (2). The biomechanical

constraints can be specific or floating constraints, i.e., related or

unrelated to an environment or a task. For example, to

improve the estimation of lower limb and trunk kinematics,

Matthew et al. (2) applied both floating biomechanical

constraints based on body segment length and task-specific

constraints fixing the ankle position in a sit-to-stand task.

However, due to the variability of upper limb motion defining

motion constraints suitable for optimizing joint position

measurement accuracy is challenging. In the current research,

we suggest an advanced upper-limb rigid body model based on

a shoulder-centered representation of the motion of the arm as

the rigid motion of a triangle (the arm triangle). Using a

shoulder-centered frame for optimization enables using data

collected from multiple locations of the Kinect camera with

respect to the participant. Digital goniometers are cheaper,

more portable, and simpler to use than gold-standard motion

tracking sensors. Using the arm triangle model facilitates fusing

data recorded from a Kinect and a digital goniometer based on

task constraints suitable for common upper-limb rehabilitation

training protocols for subjects with stroke.

Stroke is a leading cause of long-term sensory-motor

disability (15, 16). Upper limb impairment following stroke is

highly prevalent (17, 18), and many upper-limb motion

rehabilitation training protocols that integrate VR have been

developed for stroke survivors (12, 19–21). Facilitating the

widespread use of low-cost 3D video sensors for motion

rehabilitation for patients with stroke can assist in improving

accessibility to rehabilitation treatment. Individuals with

stroke tend to use motion compensations, e.g., excessive trunk

motion during reaching motion. Therefore, many training

protocols involve the restriction of trunk motion during

rehabilitation training (22). Individuals with stroke tend to

suffer from muscle weakness. Therefore, a passive or active

mechanism is typically used to support the arm against

gravity during training (23–27); for example, the forearm is

strapped to a manipulandum supporting motion against

gravity. In many cases, such support leads to immobilizing

elbow supination pronation motion. Such a motion restriction

is suitable for practicing reaching and pointing motion. The

task-specific constraints applied in the current work assume

an upper-limb rehabilitation system designed for practicing

reaching and pointing motion with restrained trunk motion

and with a manipulator supporting the forearm and hand

against gravity, i.e., immobilizing elbow supination pronation

motion. These task-specific constraints are integrated within

the triangle-based rigid body model of the arm.
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Fusing the Kinect and goniometer measurements using the

offline optimization method developed in the current work

facilitates the generation of highly accurate joint location

estimates, which can be used as training data for training an

RNN for upper limb motion tracking. Section two presents

the developed methods, which include the shouldered-

centered arm-triangle kinematic model, the constrained

optimization developed for fusing the Kinect with a

goniometer, and the RNN tracker. Section three represents an

experiment conducted to validate the methods with motion

recorded from eight healthy subjects. Section four presents the

results, and Section five presents a discussion of the results.

Finally, conclusions are presented in Section six.
Methods

Kinematic model of the arm

The arm can be modeled as a system of two rigid links, a

distal link, Ld, connecting the wrist and the elbow and a

proximal link, Lp, connecting the elbow and the shoulder

(Figure 1). The links are connected to two joints, a shoulder

joint with three degrees of freedom (flexion–extension,

abduction–abduction, internal–external rotation) and an

elbow joint with two degrees of freedom (flexion–extension,

supination–pronation). The two links of the arm and the

vector connecting the shoulder and the wrist joints form the

arm triangle (28, 29). The angle between the links, α, is the

elbow extension angle, also termed the triangle angle. When
FIGURE 1

Shoulder coordinate frame. Ld is the distal link. Lp is the proximal link.
x̂k , ŷk , and ẑk are the shoulder coordinate frame axes. α is the elbow
extension angle (the triangle angle).
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elbow pronation–supination is immobilized, arm motion can

be modeled as a change in the triangle angle together with a

3D rotation of the triangle about the shoulder.

The arm triangle facilitates straightforward integration of the

elbow extension angle, which can be measured by a goniometer,

αg, and the joint locations extracted by the Kinect skeleton

model from the 3D image. In the Kinect coordinate frame, the

joint locations are the wrist, Wk, elbow, Ek, and shoulder, Sk.

These locations form the shoulder–elbow vector, SEk =Ek− Sk,

and the elbow–wrist vector, EWk =Wk− Ek. A shoulder-

centered coordinate frame, i.e., a coordinate frame with an

origin at the shoulder (Sk), is defined such that the x̂k-axis is

along the direction of the SEk vector, the ẑk-axis is orthogonal

to the arm triangle plane (in the direction of SEk � EWk ), and

the ŷk-axis is defined as their orthogonal complement forming

a right-handed coordinate frame (Figure 2). In this shoulder

coordinate frame, the elbow coordinates are Es = [Lp, 0, 0], and

the wrist coordinates are Ws = [Lp− Ldcos(α), Ldsin(α), 0]. A

homogeneous shoulder-Kinect transformation matrix, Tks,

transforms point coordinates from the shoulder coordinate

frame to the Kinect coordinate frame:

Tks ¼ x̂k ŷk ẑk Sk
0 0 0 1

� �
(1)
Optimization

The shoulder joint position is determined based on the

Kinect measurement. Since trunk motion is restricted, the
FIGURE 2

LSTM RNN with a Kalman filter for the shoulder joint location. The
network receives measurements from the sensors and has a
recurrent memory of two previous time steps. S: shoulder,
E: elbow, W: wrist, α: elbow angle, k: Kinect frame, g: goniometer,
i: input, o: output, t: time. One network included the goniometer
measurement as input, and the other did not.
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shoulder location is expected to remain constant. To allow for

some shoulder motion, the location of the shoulder joint is

determined using a Kalman filter, modeling no shoulder

motion (zero motion speed). The elbow and wrist joint

positions are determined by optimally fusing the

measurements of the Kinect and the goniometer. Since angle

measurements from the goniometer are typically more

accurate than the Kinect joint position measurements, the

optimization gives preference to the goniometer. The arm

triangle angle is set to the angle measured by the goniometer,

and then, the optimal elbow and wrist locations are found by

rotating the arm triangle about the shoulder while minimizing

the error between the locations of the triangle apexes and the

location measured by the Kinect sensor.

Constrained nonlinear optimization of multivariate scalar

functions is applied for finding the rotation of the arm

triangle about the shoulder that minimizes the sum of the

Euclidean distances to the measured elbow and wrist

locations. The optimization is conducted for each time step

based on the shoulder, elbow, and wrist joint locations

measured by the Kinect, the angle measured by the

goniometer, and the shoulder, elbow, and wrist locations

determined in the previous optimization time step. The joint

location determined by the optimization is subsequently used

for the next time step.

The axis–angle (30) representation is used for rotating the

arm triangle during the optimization. Constraints are imposed

on the rotation angle, θ, and the direction of the rotation axis,

v̂s. The rotation angle is constrained to be small, and the

rotation axis is constrained to be similar to the axis

orthogonal to the arm triangle plane (the ẑ -axis of the

shoulder coordinate frame). The rotation angle is constrained

to be small based on the motion sampling frequency and the

expected movement speed. The rotation axis is constrained to

be similar to the ẑ -axis since the motion task is reaching or

pointing. For reaching and pointing tasks, arm orientation is

not prescribed by the task. Research has shown that for

reaching and pointing movement, changes in arm orientation

throughout the movement are very small (28). The

optimization model can be solved using sequential quadratic

programming (31, 32). At each iteration, a step rotation

matrix, Rstep u; v̂sð Þ, is calculated using the axis–angle

representation. The distance vectors between the calculated

and the measured joint locations, eE (elbow error) and eW
(wrist error) at time step t, are

eE(t)
1

� �
¼ Ek(t)

1

� �
� Tks(t � 1) � Rstep � Es(t � 1)

1

� �
(2)

eW(t)
1

� �
¼ Wk(t)

1

� �
� Tks(t � 1) � Rstep �Ws(t � 1)

1

� �
(3)
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The Euclidean distances �eE and �eW are calculated from the

distance vectors, and the sum of the squared distances is

minimized. The optimization model is defined by

minimize �e2E þ �e2W
over u [ R, v̂s [ R3

subject to u � 1�

jjv̂sjj ¼ 1
arcos(ẑ � v̂s) , 30�

(4)
Motion tracking

An LSTM RNN combined with a Kalman filter was

developed for arm motion tracking (Figure 2). The

measured shoulder coordinates are filtered using a Kalman

filter, assuming no motion of the shoulder. The RNN input

layer includes the measurements of the elbow and wrist joint

locations from the Kinect sensor and the shoulder location

from the Kalman filter. Two RNN versions were constructed,

where the input to one of the networks additionally includes

the uncalibrated elbow angle measured by the goniometer.

The output layer includes the elbow and wrist coordinates.

The LSTM has a two-step memory for all three joint

locations (shoulder, elbow, wrist). For comparison, an

additional run-time motion tracker based solely on a

Kalman filter was programmed. The model used for the

Kalman filter was based on assuming no shoulder motion,

fixed lengths of the arm links (a simple rigid body arm

model), and motion with a constant velocity of the elbow

and wrist.
Experiments

Subjects and environments

The arm motion of eight healthy participants, mean age of

27.5 years (SD 1.77), six men and two women, was recorded

(33). Participants had normal or corrected to normal vision.

The Ben-Gurion University Human Subjects Research

Committee approved the study, and informed consent was

obtained from all subjects.

The participants sat in a chair with a high backrest and no

armrests, and their arm was strapped to a passive manipulator

with three joints for supporting motion against gravity. The

manipulator is modeled after an ergonomic computer desk

armrest, and it immobilizes the wrist joint and elbow

supination–pronation motion. The participant was free to

perform elbow extension and shoulder motions. A Kinect

sensor was placed in front of the participant (about 2 m away
frontiersin.org
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FIGURE 3

Experiment environment. The participant is seated on an armless chair with her hand strapped to the manipulator, about 2 m in front of the Kinect
sensor. The goniometer and three V120:Trio reflectors are connected to the participant’s arm.
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and about 0.5 m above the participant’s shoulder). To

demonstrate the ability to use multiple camera positions in

the same training dataset, the Kinect was moved to an

alternative location about 20 cm to the right in the same

forward-facing orientation for one of the participants. An

electronic twin axis goniometer (Biopac Systems, USA) was

attached to the participant’s arm above the elbow joint using

double-sided tape (Figure 3). To facilitate fusion of the data

from the two sensors (the Kinect and goniometer), the

measurements from the sensors were acquired at

synchronized time points. For testing the accuracy of the

developed methods, the participant’s motion was also tracked

with a passive-marker motion capture system, V120:Trio

(OptiTrack, USA). Three reflective markers were used for the

V120:Trio recording. The markers were attached to bony

landmarks on the right arm, i.e., acromion, lateral epicondyle,

and wrist styloid process.

The recording environment was developed using Touch

Designer (Derivative, CA). The environment was connected

using a socket to MATLAB (Ver R2018b, MathWorks, USA),

which was connected to the shared memory module of the

electronic goniometer. The optimization procedure and the

LSTM networks were programmed with Python (Ver 3.7)

using the PyCharm interface (Ver 2019.2, JebBrains, USA).

The statistical analysis was conducted with R using the

RStudio interface (Ver 4.0.3, RStudio, Open Source). The data

recording was conducted using an Intel i7-9700K 3.60 GHz

processor and 32 GB RAM with a Windows 10 (64-bit)

operating system. The training and analysis of the neural

network were conducted using an Intel i7-8650U 2.11 GHz
Frontiers in Rehabilitation Sciences 05
processor and 16 GB RAM with a Windows 10 (64-bit)

operating system.
Procedures

The data from the Kinect sensor and the goniometer were

simultaneously recorded by the recording environment. The

data from the V120:Trio sensor was recorded in parallel to

another computer. At the beginning and end of each track, an

additional (fourth) reflective marker was briefly exposed to the

V120:Trio sensor by the experimenter to facilitate offline signal

synchronization between the V120:Trio and the Kinect and

goniometer. The sampling rates were 40 Hz for the Kinect,

100 Hz for the goniometer, and 120 Hz for the V120:Trio.

The specific locations at which the goniometer is attached to

the participant’s arm can influence the relationship between the

value measured and the true value of the elbow angle. Therefore,

the goniometer must be calibrated after it is attached to the arm.

Data for calibration were recorded at the beginning of each

session. The participant was asked to keep his/her arm still in

five different poses for 15 s each for the calibration recording.

Following the calibration recording, the participant was asked

to move his/her arm for eight 2-min intervals in one of four

tracks marked by color-coded tape on the floor (Figure 4).

The blue track indicated forward and backward movements,

the red track indicated movements to the right and left, the

white track indicated a clockwise circular movement, and the

black track indicated a counterclockwise circular movement.

Each track was repeated twice.
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FIGURE 4

Color-coded tracks, blue: forward and backward, red: right and left,
white: clockwise, black, counterclockwise.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.

minimize.html
2https://www.tensorflow.org/api_docs/python/tf/keras/models
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Analyses

The recorded data underwent preprocessing. Calibration

can be established with an absolute angle measurement

device, e.g., an absolute goniometer. In the current

experiment, the goniometer reading was calibrated to the

V120:Trio reading to simplify testing system accuracy;

however, this is not required in regular operation. The

calibration was performed by calculating the average values of

the V120:Trio and the goniometer at each of the five

calibration poses. A linear regression model was fitted to these

five data points. The regression model was used over all the

recorded data to convert the goniometer readings to angles.

Since the Kinect has the lowest sampling rate, the data from

the goniometer and the V120:Trio were resampled based on

the Kinect sampling time. The recordings of the goniometer

and the Kinect were automatically synchronized through the

recording environment. The V120:Trio signal was

synchronized to the goniometer and Kinect data based on the

recording of the fourth marker and manual scrutiny of the

elbow angles (the angles calculated based on the V120:Trio

data and the calibrated goniometer angles).

The optimization model fusing the Kinect and the

goniometer measurements was solved using a constrained
Frontiers in Rehabilitation Sciences 06
minimization of multivariate scalar functions programmed

with the scipy.optimize1 package. The performance of the

model was compared to the ground truth measurement. The

LSTM network was programmed using the sequential neural

network model in the tensorflow.keras2 package. The network

was trained using the values established by the offline

optimization algorithm. Its outcome was evaluated with respect

to the recorded V120:Trio data. The data were arranged by

tracks, and a four-fold cross-validation method was used. In

each fold, a network was trained using the optimization data

from six participants (48 tracks randomly presented), and the

error was evaluated with respect to the V120:Trio data using

the data from the remaining two participants (8 tracks each).

Leaving subjects out for each fold was chosen to establish that

the accuracy is not subject-dependent.

The network structure was based on an LSTM with 1

hidden layer and 50 neurons. The depth of the recurrent data

memory was two. These values were empirically selected. The

training method was based on the mean absolute error loss

function and the efficient Adam stochastic gradient descent

method. The model was fitted with 50 training epochs with a

batch size of 72, so that the network was trained with small

batches multiple times with a relatively short training time

(below 0.5 h). The network tracking performance was

compared both to the direct Kinect measurement and the

tracking performance of a Kalman filter.

For performance analysis purposes, direct parameter

measurements were regarded as the ground truth. Therefore,

the marker locations obtained using V120:Trio were regarded

as the ground truth for the joint locations, and the calibrated

goniometer data were regarded as the ground truth for the

elbow angle. As noted above, the two signals (the V120:Trio

and goniometer) were synchronized at the beginning of each

recording session to maintain coherency between the signals.

For the joint locations, the Euclidean distance to the ground

truth was calculated for each sample. A constant error was

expected between the position determined based on the

Kinect measurement and the V120:Trio. Accordingly, for the

joint positions, absolute residual errors were calculated. To

this end, the average error was calculated and the absolute

residual errors were determined for each subject by

subtracting the average error from the Euclidean errors of

each sample.

The goniometer elbow angle measurement was calibrated to

the V120:Trio. Accordingly, both the optimization and the

tracking networks were expected to produce the same angle as
frontiersin.org
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that measured by the V120:Trio. Therefore, absolute errors were

calculated for the elbow angles. The angle calculated based on

the Kalman filter tracking was not calibrated to the

goniometer measurement, and, therefore, for the Kalman filter

tracker, a constant difference in angles is expected and the

absolute residual error was calculated.
FIGURE 5

Top: Boxplot and data points for the absolute residual error with
respect to the OptiTrack data of the shoulder, elbow, and wrist
joint positions of the Kinect recording and the offline optimization.
Bottom: Boxplot and data points of the absolute error of the
elbow angle calculated from the Kinect measurements and from
the offline optimization with respect to the goniometer
measurements. Kinect: Kinect recording error, Opt: optimization
error. Red points represent outliers. *p < 0.05, ***p < 0.001.
Results

Optimization

The average absolute residual errors of the Kinect

measurement were 35.0 mm (SD 28.7 mm) for the shoulder

joint, 15.7 mm (SD 4.6 mm) for the elbow joint, and 75.6 mm

(SD 27.3 mm) for the wrist joint. The average absolute

residual errors of the offline optimization were 27.4 mm (SD

28.3 mm) for the shoulder joint, 15.5 mm (SD 8.8 mm) for

the elbow joint, and 34.6 mm (SD 16.4 mm) for the wrist

joint. The shoulder joint and the wrist joint position errors of

the Kinect measurement were much larger than the offline

optimization errors (shoulder: F1,116,0.95 = 5.9, p < 0.05, wrist:

F1,116,0.95= 158.2, p < 0.001), while the elbow joint position

errors were similar (Figure 4).

The average absolute error of the elbow angle calculated

directly from the Kinect measurement was 18.9° (SD 3.4°).

The error was much larger (F1,116,0.95 = 2559, p < 0.001) than

the average absolute error of the elbow angle calculated based

on the offline optimization, which was 0.1° (SD 0.1°) (Figure 5).
Tracking

The position of the shoulder joint was determined using a

Kalman filter in all tracking methods. Since the shoulder joint

location is identically determined in the offline optimization

scheme, the shoulder joint was not reanalyzed. The tracking

errors for the subject recorded with the different Kinect

positions were in the same range as those for the other

subjects, in all tracking methods, for all joint positions, and

for the elbow angle.

The average network training error (comparing the network

output to the training data) for the network with the goniometer

was 8.5 mm (SD 9.1 mm) for the elbow joint and 37.5 (SD

30.5 mm) for the wrist joint. The average network training

error for the network without the goniometer was 8.6 mm

(SD 9.5 mm) for the elbow joint and 31.3 (SD 25.5 mm) for

the wrist joint.

When compared to the ground truth recording (the V120:

Trio or the calibrated goniometer), the average absolute

residual errors for the elbow joint of the different trackers

were similar to the errors of the direct Kinect recording. The

errors were 16.3 mm (SD 9.6 mm) for the Kalman Filter,
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17.6 mm (SD 9.5 mm) for the network with goniometer

input, and 17.7 mm (SD 10.8 mm) for the network without

the goniometer input (Figure 6).

The wrist joint position errors of the trackers were all lower

than the error of the direct Kinect recording (Kalman filter:

F1,116,0.95 = 21.95, p < 0.001, network with goniometer:

F1,116,0.95 = 127, p < 0.001, network without goniometer:

F1,116,0.95 = 139.5, p < 0.001). The Kalman filter had an average

absolute residual error of 58.5 mm (SD 38 mm) and higher

errors than both network trackers (network with goniometer:

F1,116,0.95 = 17, p < 0.001, network without goniometer:

F1,116,0.95 = 21.4, p < 0.001). The errors of the network trackers

were similar, with an average of 42.5 mm (SD 20.6 mm) for

the network with the goniometer and 40.1 mm (SD 27.3 mm)

for the network without the goniometer.

The elbow angle errors of the run-time trackers were all

lower than the error of the elbow angles calculated from the

direct Kinect measurement (Kalman filter: F1,116,0.95 = 20.9,

p < 0.001, network with goniometer: F1,116,0.95= 346.1, p < 0.001,

network without goniometer: F1,116,0.95 = 643.8, p < 0.001). The

Kalman filter had an average absolute residual error of 16.6°

(SD 5°), and its errors were higher than the absolute errors of

both network trackers (network with goniometer: F1,116,0.95=
frontiersin.org
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FIGURE 6

Boxplots and data points of the elbow joint absolute residual error
(top), wrist joint absolute residual error (middle) and elbow angle
absolute error (for the network trackers), and absolute residual
error (for the Kalman filter) (bottom). Kinect: Kinect recording
error, Kalman: Kalman filter error, NetG: network with goniometer
input error, Net: network without goniometer input error. Black
points represent outliers. Blue points represent data from the
original position of the Kinect sensor. Red points represent data
from the alternative position of the Kinect sensor. *p < 0.05,
***p < 0.001.
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207.5, p < 0.001, network without goniometer: F1,116,0.95 = 353.9,

p < 0.001). The average absolute error for the tracker with the

goniometer was 7.1° (SD 6.6°), which was higher (F1,116, 0.95=

6.2, p < 0.05) than the average absolute error of 5.5° (SD 4.8°)

for the tracker without the goniometer.
Discussion

The offline optimization considerably improves the

measurement accuracy. The error in the wrist position is

reduced by more than 50%, and the elbow angle error is

reduced by more than 10-fold to an average value of 0.1°. The

low measurement errors following the optimization facilitate
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using the data as a training dataset for network trackers. The

performance of the optimization method was validated for

healthy subjects with a full range of arm motion. It will

therefore also hold in case a subject has a limited range of motion.

Since the offline optimization uses a shoulder-centered

kinematic model, data collected from multiple locations of the

Kinect camera with respect to the participant can be analyzed

collectively and can be used within a unified database for

training a network for run-time tracking. The ability to use

data from multiple locations facilitates simpler operation in

multiple environments and in scenarios in which fixing a

permanent location for the Kinect sensor may be difficult,

e.g., due to the shared space between different systems. Such

scenarios are typically encountered in rehabilitation clinics.

The biomechanical model used for the optimization was

developed based on several system-specific constraints. Some

of these constraints can be readily relaxed. For example, the

model can be easily adapted for practicing with a manipulator

that enables 3D motion of the hand or when trunk motion is

not restricted. In many rehabilitation schemes for patients with

stroke, as in the current work, the supporting manipulator

constraints elbow supination–pronation motion. The Kinect

skeletal model does not allow for direct measurement of

forearm pronation/supination. In fact, with the Kinect skeleton

model, elbow supination–pronation is manifested as the

vertical displacement of the wrist (34). The current model may

not suffice for training in which elbow supination–pronation is

important, e.g., when grasping objects in different orientations.

In such cases, alternative optimization methods, e.g., stochastic

optimization, can be explored.

Measurements from an electronic goniometer are required

when recording motion for the offline optimization algorithm.

Goniometers are commonly available in rehabilitation clinics,

and state-of-the-art electronic goniometers are lightweight and

untethered (transmit measurements using Wi-Fi), therefore, the

goniometer does not significantly impede motion. However, the

goniometer must be attached to the participant’s arm, which is

less convenient than motion tracking with only a marker-less

3D video sensor. During run-time operation, the goniometer is

not required, so to simplify operation, the goniometer can be

used only during system setup for tuning the RNN to the new

environment. In the current study, the goniometer was

calibrated to the V120:Trio data to facilitate direct performance

evaluation. This is not required in regular system operation,

and in an actual deployment scenario, calibration can be

established using any absolute angle measurement device, e.g., a

standard manual goniometer. The calibration establishes a

linear transformation between the goniometer’s output and

absolute elbow angle values. Establishing such a relation does

not require spanning the full angle range or that the calibration

angles measured are the same for all subjects. Therefore,

adapting the calibration procedure for a subject with a reduced

motion range is straightforward.
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The network trackers trained with the data following the

optimization had low tracking errors. The relatively short

recurrent memory (2-steps) used, facilitates fast response to

changes in motion velocity. The ability to closely follow the

executed motion gives the network trackers an edge over the

Kalman filter for rehabilitation training. Using a Kalman filter,

forming a computationally fast, causal model that accurately

represents human reaching motion is a challenge. The

simplified model applied to the elbow and wrist motion for the

Kalman filter in the current work does not capture motion

onset and offset well, and this causes slow responses at the

start and end of the reaching motion. Indeed, the LSTM

network trackers outperformed the Kalman filter tracker in the

tested trajectories. While the difference was small, the LSTM

tracker without the goniometer had a lower elbow angle error

than the LSTM tracker with the goniometer. The lower error of

the LSTM without the goniometer input could be related to

overfitting during network training. The low errors of the

network tracker are promising, and the system may contribute

to enhancing possible rehabilitation training schemes based on

the Kinect sensor. The network performance determined is

subject-independent (tested with a leave-subject-out procedure).

However, the system was tested with healthy subjects and the

tracker performance for individuals with stroke must be affirmed.
Conclusion

The current study suggests an offline optimization method

fusing measurements from a Kinect sensor and a goniometer

based on an advanced biomechanical model. The optimization

was used to generate training data for an LSTM network

combined with a Kalman filter for run-time motion tracking.

The methods considerably improved the accuracy of the joint

location measurement for the shoulder and wrist joints and

the accuracy of the calculated elbow angle. The Kinect

measurements of the elbow joint location in the evaluated

scenario were very accurate due to the characteristics of the

movements, and the developed methods did not further

improve (or degrade) it. The developed methods offer a low-

cost, accurate motion tracking system that can easily be

trained and adapted for rehabilitation clinics and home

environments.
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