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A B S T R A C T   

In this study, a nested grouped random parameter negative binomial framework is proposed to 
model crash counts at the segment level, a three-level longitudinal framework. The proposed 
model accounts for correlations along county routes and over time and thus includes a time 
variable, the year index, to analyze crash counts. The model is applied to crashes on undivided 
two-lane arterial roads in Ohio from 2012 to 2017. The results present two variants of the model: 
one with varying intercepts and fixed slopes and the other with varying intercepts and slopes. 
Both variants have comparable interpretations concerning the fixed parameters, but the latter 
variant exhibits a significantly improved fit and provides additional information on the in-
terpretations. The results show a significant quadratic relationship between the time variable and 
the crash count, indicating that, on average, the crash count of segments increases with a 
decreasing rate as time variable increases. Regarding random parameters, the findings show that 
17% of segments within routes and 2% of routes exhibit crash counts that decrease at accelerating 
downward trend as time variable increases. The effect of the natural logarithm of the segment 
length varies significantly across different routes, with an increase in this value primarily leading 
to an increase in crashes. On the other hand, the effect of the total shoulder width also varies 
across routes, but unlike the former, an increase in this value generally results in a decrease in 
crashes. The proposed model shows high forecast accuracy for crash count prediction, making it a 
valuable tool for informed decision-making in safety improvement.   

1. Introduction 

One challenge in analyzing road crash data is to account for the heterogeneity of observations, which means that the number or 
severity of crashes may vary depending on various factors that are not observed or measured. This heterogeneity can be derived from 
multiple sources, such as endogeneity, risk compensation, and spatial or temporal correlation [1]. Endogeneity refers to the correlation 
of an observed variable to other important observed or unobserved variables that have a large impact on the dependent variable and 
can affect parameter estimates and causal inferences. For example, if the relationship between the increase in traffic tickets and the risk 
of crashes in a particular place is not controlled by the duration of deployment, it may lead to erroneous conclusions about the 
effectiveness of speed enforcement [2,3]. Risk compensation refers to the driver’s behavior due to changes in perceived risk and safety, 
which can reduce or offset the expected benefits of safety interventions or policies. For example, if the driver wears the seatbelt but 
drives faster or aggressively, the net effect of the use of the seatbelt on the severity of the crash may be different from expected [4]. 
Spatial or temporal correlation refers to the dependence or similarity of the results of collisions over space and time, which is contrary 
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to the hypothesis of independent observations in standard models. For example, if crashes are spatially distributed at specific locations 
or temporally related at a specific time, disregarding this structure can lead to inaccurate and inconsistent parameter estimates and 
predictions. Therefore, the random parameter model can effectively deal with these heterogeneous sources in road crash data [5]. 

1.1. Random parameter models 

Several studies have used random parameter models to account for heterogeneity across observations by introducing random terms 
in the estimates of explanatory variables. The main difference between random parameter and fixed parameter models is that the effect 
of an explanatory variable on the outcome variable varies across observations in the former but is fixed in the latter. Considering a 
parameter that varies across observations could catch the heterogeneous effect of an explanatory variable, leading to an improvement 
of the model performance. For instance, one study compared the performance of random parameter and fixed parameter negative 
binomial models in modeling road crash frequencies on four rural interstate highways in Indiana [6]. The data covered five years and 
included pavement, geometric, and traffic characteristics as explanatory variables. The results showed that the random parameter 
model fitted the data better and had more accurate predictions than the fixed parameter model. One notable difference between the 
models was that the average annual daily traffic (AADT) variable had a negative coefficient in the fixed parameter model but a positive 
coefficient in the random parameter model. The authors explained that this could reflect the complex interaction between traffic 
volume, driver behavior, and crash frequency, which the random parameter model could better capture. The study also concluded that 
ignoring the heterogeneity of the effects of explanatory variables could lead to significant biases in both marginal effects and the 
magnitude of the effects of contributing variables on crash counts. Another study evaluated the performance of three types of negative 
binomial models in modeling road injury and non-injury crash counts on 826 multilane highway segments over a period of three years 
[7]. The models were uncorrelated random parameter, correlated random parameter, and fixed-parameter. The study found that the 
uncorrelated and correlated random parameter models were comparable, and both outperformed the fixed-parameter model. The 
significant variables for both injury and non-injury models included exposure-related measures (AADT, segment length), geometric 
features (lane width, left shoulder width, median width, tangent segments), road facility type (undivided and divided with different 
numbers of lanes), and pavement surface conditions. Only two variables, namely left shoulder width and tangent segment indicator, 
were found to vary significantly and randomly across observations in both models. A study investigated how ramp type, alignment, 
traffic volume, and interchange geometry affect the frequency of ramp crashes [8]. The study used a random parameter negative 
binomial model that captured two sources of heterogeneity: one in the mean and the other in the variance of crash counts. The study 

Table 1 
Summary of recent related studies that applied random parameter models in different applications.  

Model Type Summary Year 
Article 

Random parameters vary across observations 
Multinomial logit model Studied factors that influenced the severity of injuries from crashes at highway-rail crossings, using a random 

parameter model with heterogeneity in mean and variance. 
2023 
[10] 

Poisson/negative binomial regression 
Models 

Developed and evaluated a data-driven crash feature-based approach for boundary crash allocation with 
random parameter models. 

2023 
[11] 

Ordered logit model Studied factors that affect non-motorists’ safety perception of autonomous vehicles (AV) after hearing about 
a fatal AV crash using a random parameters model. 

2023 
[12] 

Logistic regression models Developed and evaluated spatiotemporal logistic regression models with random parameters to analyze the 
severity of motor vehicle–pedestrian crashes at urban intersections. 

2023 
[13] 

Negative binomial Lindley model Analyzed the impact of geometric design consistency on run-off-road crashes using a random parameter 
model. 

2023 
[14] 

Multinomial logit model Studied various factors that influenced the rear-end and non-rear-end crash severity using random parameter 
models with heterogeneity in mean and variance. 

2022 
[15] 

Bivariate tobit model Studied the effect of speed limit increase on both non-injury and injury rates using a correlated random 
parameter model. 

2022 
[16] 

Binary logit model Applied a random parameter model to account for the heterogeneity and unobserved factors that affected the 
severity of vulnerable road users in crashes with motor vehicles across different seasons. 

2022 
[17] 

Multinomial logit model Compared and analyzed contributing factors to the severity of large truck crashes in-state and out-of-state 
using random parameters with heterogeneity in means and variances. 

2022 
[18] 

Random parameters vary across groups 
Linear regression model Studied the factors that influenced a driver’s intention to avoid traffic violations, such as speeding, illegal 

overtaking, and running red lights, using a grouped random parameter model, with parameters that vary 
across individuals. 

2022 
[19] 

Poisson regression model Investigated the contributing factors to right-turn crashes at intersections using a grouped random parameter 
model, with parameters that varied across intersections. 

2022 
[20] 

Binary logit model and exponential 
regression model 

Investigated the effect of sleepiness in truck drivers on their time headway using a grouped random 
parameter model, with the parameters varying across individuals. 

2022 
[21] 

Multinomial logit model Analyzed the effect of traffic, geometric, and context variables on urban crash types using a grouped random 
parameter model, with the parameters varied across segments or intersections. 

2020 
[22] 

Linear regression model Analyzed the free-flow speed data before and after the reduction of the speed limit using a grouped random 
parameter model (3-level model), where parameters varied across sites within communities and varied 
across communities. 

2015 
[23]  
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identified some variables that had significant and varying effects on ramp crash frequency, such as ramp length, curvature, and truck 
volume. Another recent study developed an improved mixture model framework called joint negative binomial-multinomial logit 
fractional split to model crash counts by crash type for traffic analysis zones. The model accommodated zero crashes and incorporated 
random parameters to account for heterogeneity across traffic analysis zones [9]. Clearly, the random-parameter model is widely used 
in different applications. Table 1 shows some recent studies that applied random parameter models to different types of data. In the 
next section, the grouped random parameter model is introduced, which allows the parameters to vary across groups of observations. 

1.2. Grouped random parameter models 

A grouped random parameter model is similar to a random parameter model, except that it allows parameters to vary across groups 
of observations instead of individual observations. The grouping of observations can be based on criteria such as counties, cities, traffic 
analysis zones, and corridors [24]. This type of model is also known as a multilevel or nested model because it implies that observations 
are nested within groups. For example, segments can be nested within counties, cities, traffic analysis zones, corridors, etc. Such a 
grouping of observations assumes that there is a correlation within groups or unobserved heterogeneity across groups [24,25]. A study 
compared five negative binomial models to analyze intersection crashes using five years of data [26]. The models were standard, 
grouped random parameters, and three variations of grouped random parameters with different weight factors. The models accounted 
for the correlation of intersections within traffic analysis zones and the effects of boundary intersections between adjacent zones. The 
results showed that the grouped random parameter models performed better than the standard model. The study concluded that 
group-level variables can reduce unobserved heterogeneity across traffic analysis zones. Another study proposed two approaches that 
accounted for the effect of independent variables at the segment level or the intersection level in the estimation of crash frequency at 
the traffic analysis zone level [27]. The study used a grouped random parameter negative binomial model to model crash frequency at 
the segment level and intersection level. The study accounted for correlations within the traffic analysis zone by assuming that the 
segments or intersections located in the same traffic analysis zone were correlated. Among the models tested, the study found that the 
model improved performance by accommodating correlations within the traffic analysis zone, which was measured by the correlation 
between segments or intersections in the same traffic analysis zone. The study concluded that there were unobserved factors between 
segments or intersections in the same traffic analysis zone. A more recent study proposed a grouped random parameter negative 
binomial-Lindley model (G-RPNB-L) to account for unobserved heterogeneity in crash counts with a high percentage of zero occur-
rences [28]. The study applied the proposed model to lane departure crashes from rural interstate segments and compared it with 
standard negative binomial (NB), negative binomial-Lindley (NB-L), and grouped random parameter negative binomial (G-RPNB). The 
grouping variable was counties, and the group-level variables differed considerably across counties. The study found that the proposed 
model outperformed all its counterparts. In addition, the results showed that G-RPNB performed better than NB, and G-RPNB-L 
performed better than NB-L. The results also showed that NB-L performed better than G-RPNB. The authors explained that this was 
because 90% of the observations had zero values. The authors concluded that G-RPNB could better account for unobserved hetero-
geneity. Table 1 shows recent studies that have applied grouped random parameter models to different types of data. However, most of 
the studies mentioned above accounted for correlations within geographical units. The following section presents illustrative studies 
that have employed grouped random parameter models as a basis for longitudinal analysis, thereby accounting for a range of 
correlations. 

1.3. Longitudinal data analysis 

Longitudinal data refer to multiple observations taken on the same identity, which vary in time or location. For example, an annual 
crash count on the same segment or a crash count on multiple segments located along the same corridor. These multiple observations 
are usually assumed to be correlated. A grouped random parameter model can handle these correlations by grouping the observations 
into one group. Within this group, the observations are assumed to be correlated. A study innovatively utilized a grouped random 
parameters model to analyze multiple crash frequency variables by crash type for traffic analysis zones [29]. This study treated six 
crash types as repeated observations for the same traffic analysis zone. In this context, the ‘groups’ refer to traffic analysis zones. 
Consequently, unobserved heterogeneity is accounted for across these zones. In a subsequent study, the authors developed latent class 
segmentation for their proposed approach, aiming to account for heterogeneity across estimates of exogenous variables [30]. Another 
study used a grouped random parameter negative binomial model to analyze monthly crash counts at the city level [31]. Multiple 
observations were collected for each city, and these observations were grouped together. In other words, the monthly crash counts for 
one city were treated as one group. Several variables were included in the model to describe the groups or cities, group-level variables, 
and dummy variables indicating the year, season, and region in which the city was located, and other variables that change annually or 
monthly. The study compared three models: a random intercept model, an uncorrelated random intercept and slope model, and a 
correlated intercept and slope model. The study concluded that the correlated intercept and slope model outperformed all its coun-
terparts. In another study, a grouped random parameter negative binomial model was used to analyze 9 years of crash counts on 
interstate highways in Washington state [32]. The study allowed the parameters to vary across directional segments and assumed a 
correlation between two consecutive years by employing a one-lag autocorrelated structure. The study concluded that the grouped 
random parameter negative binomial model performed better than the standard negative binomial model. These findings show that 
grouped random parameter models can be used to account for a range of correlations among observations. 

Random parameter models are versatile tools for dealing with heterogeneity across groups of observations or homogeneity among 
groups of observations. These models have proven to be highly effective in capturing and analyzing complex data, as shown in the 
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studies discussed above and in Table 1. Section 1.2 presents compelling studies that used grouped random parameter models to capture 
spatial heterogeneity while investigating the effects of heterogeneity across traffic analysis zones, intersections, and counties. Section 
1.3 presents innovative studies that used grouped random parameter models for longitudinal data to account for correlations. This 
study proposes a three-level longitudinal model, known as the nested grouped random parameter model, to analyze crash count rates 
over time while accounting for correlations among segments along county routes. Crash counts over the years are considered repeated 
measurements at the lowest level, nested within segments at the second level, and these segments are nested within county routes at 
the third level. Three types of variables exist in this model: time variables, time-varying variables, and time-invariant variables. The 
time variable is simply an index of the year for that observation. Time-varying variables, such as AADT, are predictors that change 
yearly. Time-invariant variables, such as segment length, are predictors that remain fixed over the years. This advanced approach 
enables the concurrent modeling of both intraindividual change (how crash counts rate for a segment change over time) and inter-
individual change (the heterogeneity of this temporal change across segments) accounting for correlation along county routes. This 
article contributes to the field by providing a novel perspective on the analysis of crash count rates at the segment level. The proposed 
model could serve as a valuable tool for decision makers, aiding them in their efforts to improve road safety based on rigorous sta-
tistical analysis. 

2. Methodology 

This study proposes a three-level longitudinal model, known as the nested grouped random parameter model, to account for 
correlations along county routes and over years when modeling crash counts at the segment level. The proposed model assumes that 
the annual crash counts are nested within the segments and that these segments are nested within the routes. This nested structure 
implies that the multiple annual crash counts for the same segment are correlated and that the crash counts for segments located along 
the same route are also correlated. The following sections present the model framework and the statistical testing of the competing 
models. 

2.1. Three-level longitudinal framework model 

A three-level longitudinal modeling was applied to model the crash count per year at the segment level. Explanatory variables can 
be classified into three types: time variables, time-varying variables, and time-invariant variables. A time variable is a time index 
indicating the year. A time-varying variable changes over time. A time-invariant variable remains constant over time [33]. Thus, the 
regression models for each level are expressed as follows: 

Level 1 

yijk = e(β0jk+β1jkX1ijk+β2jkX2ijk+…+βpjkXpijk+εijk) (1) 

Level 2 

β0jk = γ00k + γ01kZ1jk + γ02kZ2jk + … + γ0qkZqjk + U0jk

β1jk = γ10k + γ11kZ1jk + γ12kZ2jk + … + γ1qkZqjk + U1jk

β2jk = γ20k + γ21kZ1jk + γ22kZ2jk + … + γ2qkZqjk + U2jk

�
βpjk = γp0k + γp1kZ1jk + γp2kZ2jk + … + γpqkZqjk + Upjk

(2) 

Level 3 

γ00k = δ000 + δ001R1k + δ002R2k + … + δ00lRlk + V00k

�

γ0qk = δ0q0 + δ0q1R1k + δ0q2R2k + … + δ0qlRlk + V0qk

��

γp0k = δp00 + δp01R1k + δp02R2k + … + δp0lRlk + Vp0k

�
γpqk = δpq0 + δpq1R1k + δpq2R2k + … + δpqlRlk + Vpqk

(3) 

The dependent variable, yijk, is the crash count for year i (i = 1, 2, …, I) at segment j (j = 1, 2, …,J) and route k (k = 1, 2, …, K). The 
explanatory variables that are indicated by X and indicated by the subscript p (p = 1, 2, …, P) are the variables at the first level. These 
variables contained information that described specific observations. The explanatory variables denoted by Z and indicated by the 
subscript q (q = 1, 2, …, Q) are the variables at the second level. These variables contained information that described specific seg-
ments. These variables can be called time-invariant because they are constant over the years. The explanatory variables denoted by R 
and indicated by subscript l (l = 1, 2, …, L) are the variables at the third level. These variables contain information that describes the 
specific route or are fixed-parameter variables. However, the dataset used in this study did not have a route describing variables. The 

O. Almutairi                                                                                                                                                                                                             



Heliyon 10 (2024) e28900

5

last term in each equation and in each level indicates the random parameter. The others, β, γ, and δ, are the regression parameters. 
Equations from all levels can be consolidated into a single equation. This is achieved by first substituting the equations from Level 3, 

shown in (3), into those from Level 2, shown in (2). Subsequently, the resulting equations from Level 2 are substituted into the equation 
from Level 1, shown in (1). This process yields the following consolidated equation: 

yijk = e(δp00Xpijk+δpqlRlkZqijXpijk+UpjkXpijk+VpqkZqjkXpijk+εijk) (4)  

where X0ijk = 1, (p = 0, 1, 2, …, P), Z0ij = 1, and (q = 0, 1, 2, …, Q), and others are as defined previously. 
Since the crash count is a non-negative value, and most often its variance is greater than its mean, a negative binomial model is 

typically applied [7]. Thus, the last term, e(εijk), in equation (1) is the random part in the first level and gamma-distributed with a mean 
of one and variance of 1/k, the dispersion parameter. The last terms in Level 2 are random parameters and have a multivariate normal 
distribution with a mean of zero. Similarly, the last terms in Level 3 are random parameters and have a multivariate normal distri-
bution with a mean of zero. As shown in Equations (1) and (4), there is a link function between the mean of the crash count and the 
predicted crash count to ensure that the fitted values are always non-negative. This is achieved using a log link. 

The negative binomial density function is as follows: 

f
(
yijk; k, μijk

)
=

Γ
(
yijk + k

)

Γ(k) × yijk!
×

(
k

μijk + k

)k

×

(
μijk

μijk + k

)yijk

(5)  

where Γ(.) is a gamma function. The relationship between the variance (σ2), and the mean (μ) is described by the equation σ2 = μ+ μ2

k , 
indicating that the variance increases in a quadratic manner with the mean. If the dispersion parameter k tends toward infinity, the 
mean and variance become equal. In this case, the Poisson model becomes a more appropriate choice than negative binomial model, as 
shown in equation (5), [25]. All model estimations were performed using the glmmTMB R package, which uses maximum likelihood 
estimation and Laplace approximation to integrate over random parameters [34]. 

2.2. Fitting performance of competing models 

This study used the likelihood ratio test in conjunction with Akaike’s information criterion (AIC) and Schwarz’s Bayesian infor-
mation criterion (BIC) to assess the significance of the contribution of a variable to the dependent variable. The test statistic for the 
likelihood ratio was calculated from the difference in deviances between the two competing models, equation (6). Here, deviance is 
defined as negative two times the log of the likelihood, with the likelihood being the value of the likelihood function at convergence 
[7]. The difference in deviances follows a chi-square distribution, with degrees of freedom equal to the difference in the number of 
estimated parameters between the two models [33]. The test statistic is expressed as follows: 

χ2 = devianceModel 1 − devianceModel 2 (6) 

The AIC test utilizes deviance but imposes a penalty for additional estimated parameters. This is expressed as follows: 

AIC= deviance+ 2 × q (7) 

Here, equation (7), q represents the number of estimated parameters. The BIC imposes a stricter penalty on complex models and is 
expressed as follows: 

BIC= deviance+ q× ln (N) (8)  

In equation (8), N represents the total number of observations, with other variables defined previously. Lower AIC and BIC values 
indicate a better fit for the model. 

This study used a bottom-up approach to test and construct the model using sequential likelihood ratio tests. Whenever a variable 
was introduced into the model, its significance was assessed. If found to be significant, it was retained in the model; otherwise, it was 
excluded. The initial step involved comparing a model with only a fixed intercept to a model with varying intercepts. Following this, 
each variable was tested as a fixed parameter until all variables were tested. Subsequently, the variables were tested in a similar 
manner to determine whether they varied significantly. The results section presents the model with varying intercepts and variables as 
fixed parameters, as well as models with varying intercepts and significantly varying slopes. These models were further evaluated 
using root mean squared errors (RMSE), equation (9), and plotting predicted values against observed values [35]. The RMSE is 
calculated as follows [7]: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Observed Valuesi − Predicted Valuesi)2

N

√
√
√
√
√

(9) 

These tools serve as effective measures for evaluating the accuracy of model forecasting. 
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3. Data preparation and description 

The data used in this study are for the state of Ohio and were provided by the Highway Safety Information System (HSIS). Data were 
received in two separate Excel files for each year from 2012 to 2017, one for the segment information file and one for the crash data. 
The segment file mainly contained information on state routes. There were multiple routes within each county, and each route was 
divided into homogeneous segments. Within each route, the mileposts denote the starting and end points of each segment. Thus, both 
the route name and milepost in the crash data were utilized to effectively associate each crash record with the corresponding segment 
based on the starting and ending milepost values, as well as the route name provided in the segment file. This process facilitated the 
determination of crash counts within each individual segment. The target population for this study was undivided two-lane arterial 
roads. After filtering, there were 38,184 records for segment information and crash counts for six years combined. This information 
describes undivided two-lane arterial segments in terms of annual average daily traffic, segment length, roadway width excluding 
shoulder width, total shoulder width, and several indicators. Table 2 shows the summary statistics for the variables. Several variables 
were created based on existing variables, or transformed. The time variable was indexed from zero to five, representing the years 2012 
(index zero) to 2017 (index five). The total shoulder width was calculated by adding both outside shoulder widths. The International 
Roughness Index (IRI) is classified into three groups: good pavement condition (IRI reading less than or equal to 95), fair pavement 
condition (IRI reading greater than 95 but less than or equal to 170), and poor pavement condition (IRI reading greater than 170). Two 
grouping variables were created: one that contained each segment over the years, and another that contained each route. The year 
group had 9,104 distinct groups. Among these, 3,569 groups had 6 observations, 125 groups had 5 observations, 2,677 groups had 4 
observations, 557 groups had 3 observations, 1,590 groups had 2 observations, and 586 groups had 1 observation. The route groups, 
which marked segments from the same routes, comprised a total of 621 routes (see Fig. 1). These grouping variables define the nested 

Table 2 
Summary statistics of variables used to describe road segments.  

Variables Mean Range SD 

Total crashes 2.4388 0–73 4.3030 
Time variable 2.1971 0–5 1.6245 
Time variable2 7.4660 0–25 8.1247 
Natural log of annual average daily traffic (AADT) 8.5757 4.6051–10.2234 0.6093 
Natural log of segment length (miles) − 1.4924 − 4.6052–2.6838 1.3949 
Total shoulder width (feet) 8.5440 0–60 5.7278 
Roadway width (feet) (without shoulder width) 23.8962 18–28 2.4215 
Area indicator (1 if the segment located in rural area, zero urban area) 0.4831 0–1 0.4997 
Arterial type indicator (1 if principal, 0 minor) 0.3275 0–1 0.4693 
International roughness index indicator, IRI (1 if IRI reading greater than 95 and less than or equal to 170, 0 otherwise) 0.4206 0–1 0.4937 
International roughness index indicator, IRI (1 if IRI reading greater than 170, 0 otherwise) 0.1247 0–1 0.3304  

Fig. 1. The nested structure of the dataset.  
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structure discussed in the methodology. 

4. Results and discussions 

Crash counts typically exhibit overdispersion, a condition in which the variance exceeds the mean. As illustrated in Table 2, the 
mean crash count was 2.44, while the variance was 18.52 (SD: 4.3030). This case leads to the favoring of the negative binomial model 
over the Poisson model. Another factor to consider is the presence of excess zeros, which contribute to overdispersion and hetero-
geneity [1]. To address this, the intercept-only zero inflated negative binomial model was compared with the intercept-only negative 
binomial model. Both models yielded a deviance of 152265, suggesting that excess zeros did not significantly influence the results. The 
nested structure described in the methodology was tested by comparing a varying intercept-only model with a fixed intercept-only 
model. The reduction in deviance was 27155, indicating a significant improvement in the model’s fit. This suggests a significant 
correlation among observations on the same segment and segments along the same route. While the correlation over the years is 
expected because crash counts are in the same segment, the correlation of segments on the same routes is less intuitive. To investigate 
this, a varying intercept-only model that varied only across segments was compared with one that varied across segments within routes 
and across routes. The latter model demonstrated a significant reduction in deviance (641), indicating a significant correlation be-
tween segments on the same route. Subsequently, a comparison was made between a varying intercept-only model and another with all 
significant variables added as fixed parameters. The reduction in deviance was 9,423.3, suggesting that adding explanatory variables 
as fixed parameters significantly improved the model’s fit. The last step was to test the improvement of a model that added significant 
variables as random parameters compared with a varying intercept-only model with explanatory variables added as fixed parameters. 
This model showed a reduction of 199 in deviance, indicating that adding significant variables as random parameters significantly 
improved the model’s fit. 

Table 3 presents the results of the final modeling step. Model A represents the varying intercept-only model, with explanatory 
variables added as fixed parameters, while Model B represents the varying intercept and significant varying slope model. The like-
lihood ratio test indicated that Model B significantly outperformed Model A in terms of fit. Furthermore, the RMSE for Model B was 

Table 3 
Model estimation results for varying intercept models and varying intercept and slope models.  

Model Model A Model B 

Fixed parameters Estimate Std. error Z-stat Estimate Std. error Z-stat 

Intercept − 4.6370 0.1718 − 26.99 − 4.6941 0.1728 − 27.16 
Time variable 0.0584 0.0080 7.33 0.0633 0.0084 7.56 
Time variable2 − 0.0089 0.0016 − 5.47 − 0.0111 0.0016 − 6.76 
Ln(AADT) 0.7083 0.0197 36.03 0.7159 0.0197 36.32 
Ln(Segment length) 0.9002 0.0078 114.82 0.9087 0.0104 87.56 
Total outside shoulder width (in feet) − 0.0163 0.0019 − 8.54 − 0.0172 0.0021 − 8.03 
International roughness index (IRI), indicators 
Fair pavement conditions 

95<IRI≤170 
0.0659 0.0126 5.23 0.0704 0.0129 5.48 

Poor pavement conditions 
IRI >170 

0.1659 0.0195 8.52 0.1693 0.0198 8.54 

Area − 0.2255 0.0218 − 10.34 − 0.2215 0.0222 − 9.98 
Random parameters 
Standard deviation of intercept (at level 2) 

Negative sign percentages 
0.6617 
≈100% 

0.0087 75.79 0.6194 
≈100% 

0.0116 53.23 

Standard deviation of intercept (at level 3) 
Negative sign percentages 

0.2767 
≈100% 

0.0162 17.04 0.2509 
≈100% 

0.0195 12.87 

Standard deviation of the time variable (at level 2) 
Negative sign percentages 

– – – 0.0663 
17% 

0.0055 12.06 

Standard deviation of the time variable (at level 3) 
Negative sign percentages 

– – – 0.0316 
2% 

0.0045 6.95 

Standard deviation of Ln(Segment length) (varying across routes only) 
Negative sign percentages 

– – – 0.1328  

≈0% 

0.0105 12.70 

Standard deviation of total outside shoulder width (varying across routes only) 
Negative sign percentages 

– – – 0.0141  

89% 

0.0020 7.21 

Goodness of fit measures       
Deviance 115644.7 115445.6 
AIC 115668.7 115481.6 
BIC 115771.3 115635.5 
Forecasting accuracy   
RMSE 1.582006 1.49796 
Likelihood ratio test Model A vs. Model B 
Degree of freedom 6 
Chi-square Statistics 199.06 
P-value <000.1  
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marginally lower than that for Model A, suggesting a slight improvement in forecasting accuracy. Fig. 2 provides a visual comparison 
of the predicted values versus the observed values for both models, further demonstrating that Model B offers a marginally better 
overall fit compared to Model A; the points were closer to the straight line in Model B compared to Model A. Thus, Model B exhibits a 
better fit than Model A 

In Model A, the intercept, which almost always took negative values, as shown in Table 3, varied across segments within and across 
different routes. This model retained only significant variables and identified five significant fixed-parameter variables: time variable, 
the natural logarithm of AADT, the natural logarithm of the segment length, the international roughness index (categorized into three 
groups), and area. Model B incorporated the same set of variables as Model A but also included significant random slopes for the time 
variable, the natural logarithm of segment length, and total outside shoulder width. The key difference between the two models was in 
these three variables, which significantly enhanced the fit of the model. The time variable was used to analyze individual crash count 
rates over the years. In Model A, both the linear and quadratic terms of the time variable were significant. This suggests that, on 
average, crash counts increased over time, but the increase decelerated. Model B exhibited a similar pattern, but the linear term of the 
time variable varied across segments within routes and across routes. At Level 2, the time variable coefficient followed a normal 
distribution, with a mean of 0.0633 and a standard deviation of 0.0663. At Level 3, it followed a normal distribution, with a standard 
deviation of 0.0316. Fig. 3 illustrates this quadratic relationship with the time variable on the x-axis and the incidence rate ratio on the 
y-axis. It depicts the incidence rate ratio of the time variable (including both the linear and quadratic terms), with all other variables 
held at their means, for Model B. If the sign of the linear term in the time variable were to change, Fig. 3 would then depict a rate that 
decreases, with an accelerating downward trend as the time variable increases. Consequently, 17% of the segments within the routes 

Fig. 2. Predicted values versus observed values for Models A and B.  
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exhibited this latter pattern, while only 2% of the routes did so. In other words, for 17% of segments within routes and 2% of routes, 
crash counts decreased at accelerating downward trend as the time variable increases. In Model B, the coefficient of the natural 
logarithm of segment length was found to vary significantly across routes, and an increase in the natural logarithm of the segment 
almost always led to an increase in the crash count. The coefficient of the total outside shoulder also varied significantly across routes, 
with 89% of the coefficients taking negative values. This implies that as the shoulder width increased, the number of crashes decreased. 
These findings are consistent with past studies [6,7]. 

The two models offered comparable interpretations with respect to the fixed parameters. In both models, the coefficient of the 
indicator of fair pavement conditions suggested an increase in crash count compared to good pavement conditions. Furthermore, the 
indicator of poor pavement conditions had a higher coefficient, implying a higher increase in crashes. Segments located in urban areas 
also exhibited more crashes than those in rural areas. Table 4 presents the average marginal effects for all variables for both models. 
Both models yielded comparable results and interpretations, all of which are logical and consistent with previous studies [6,7]. For 
example, the average marginal effect for the natural log of segment length indicated that a unit increase in this variable resulted in an 
average increase in crash count of 2.12 for Model B (and 2.18 for Model A). Thus, while the two models were comparable with respect 
to the fixed parameters in terms of interpretation, the random parameters provided additional information and significantly improved 
the model’s fit. 

5. Conclusion 

Recent methodological advances in crash count modeling have made random parameter models an effective tool for capturing 
dependencies between observations. These random parameters are typically used to capture heterogeneity across observations, while 
grouped random parameters are used to capture heterogeneity across groups of observations. From another perspective, the effects of 
these parameters are fixed on observations within the same group under the assumption that these observations are correlated. Several 
studies have utilized grouped random parameters to account for a range of correlations. This study proposed a nested grouped random 
parameter negative binomial three-level longitudinal framework for modeling crash counts at the segment level for undivided two- 

Fig. 3. Time variable versus incidence rate ratio for Model B.  

Table 4 
Average marginal effects for Models A and B.  

Variables Model A Model B 

Time variable 0.1413 0.1630 
Time variable2 − 0.0214 − 0.0269 
Natural log of annual average daily traffic 1.7131 1.7321 
Natural log of segment length (miles) 2.1774 2.1249 
Total shoulder width (feet) − 0.0395 − 0.0366 
Area indicator (1 if the segment located in rural area, zero urban area) − 0.5487 − 0.5389 
International roughness index indicator, IRI (1 if IRI reading greater than 95 and less than 170, 0 otherwise) 0.1603 0.1716 
International roughness index indicator, IRI (1 if IRI reading greater than 170, 0 otherwise 0.4279 0.4373  
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lane arterial roads. The proposed model accounts for correlations among segments located on the same route and the temporal cor-
relation of annual crash counts on the same segments. The time variable, the year index, is included in the proposed model to analyze 
the rate of change over the years. 

The proposed model was applied to Ohio data from 2012 to 2017. Two variants of the model are presented in Table 3: one with 
varying intercepts and a fixed slope and the other with varying intercepts and slopes. The findings reveal that the latter significantly 
improved the model’s fit and provided additional valuable information in terms of interpretation. Furthermore, the varying time 
variable provided more insights into the rate of change of crashes on segments over the years. The findings reveal a significant 
quadratic relationship of the time variable, indicating that, on average, the crash counts of segments increase over time, but the in-
crease rates decelerated as the time variable increases. Further, findings regarding the random aspect of the model show that 17% of 
segments within routes and 2% of routes had crash counts decreasing at accelerating downward trend as the time variable increases. 
The effect of the natural logarithm of the segment length varied significantly across routes and almost always increased crashes as it 
increased. Similarly, the effect of the total outside shoulder varied significantly across routes but with 89% of coefficients taking 
negative values, indicating that most of the time, its increase decreased crashes. The two variants of the proposed model had com-
parable interpretations with respect to fixed parameters, but the random parameters improved the model’s fit and provided additional 
information about its interpretation. Both variants exhibited decent forecasting accuracy, as indicated by the RMSE and Fig. 2. 

However, there is always room for improvement. The dataset used did not include variables that describe specific routes, which 
could improve the model’s accuracy. These variables can be easily added to a third level that, for example, explains variations between 
routes. Another assumption is that the crash counts for the segments within each route are equally correlated. Future studies could 
consider assuming that adjacent segments are more correlated than far segments. Despite this potential for further refinement, the 
proposed model offers substantial insights into interpretation, with decent forecasting accuracy for crash count predictions, making it a 
powerful tool for reaching informed decisions to improve safety. 
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