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ABSTRACT
Lung adenocarcinoma (LUAD) is one of the main causes of cancer deaths globally. Redox is emerging as 
a crucial contributor to the pathophysiology of LUAD, which can be regulated by long non-coding RNAs 
(lncRNAs). The aim of our research is to identify a novel redox-related lncRNA prognostic signature 
(redox-LPS) for better prediction of LUAD prognosis. 535 LUAD samples from The Cancer Genome Atlas 
(TCGA) database and 226 LUAD samples from the Gene Expression Omnibus (GEO) database were 
included in our study. 67 redox genes and 313 redox-related lncRNAs were identified. After performing 
LASSO-Cox regression analysis, a redox-LPS consisting of four lncRNAs (i.e., CRNDE, CASC15, LINC01137, 
and CYP1B1-AS1) was developed and validated. Our redox-LPS was superior to another three estab
lished models in predicting survival probability of LUAD patients. Univariate and multivariate Cox 
regression analysis revealed that risk score and stage were independent prognostic indicators. 
A nomogram plot including risk score and stage was constructed to predict survival probability of 
LUAD patients; this was further verified by calibration curves. Functional enrichment analysis and gene 
set enrichment analysis, were performed to determine the differences in cellular processes and signaling 
pathways between the high – and low-risk subgroups. A variety of algorithms (such as single-sample 
gene set enrichment analysis and CIBERSOFT) were conducted to uncover the landscape of tumor 
immune microenvironment in the high- and low-risk subgroups. In conclusion, a novel independent 
redox-LPS was constructed and validated for LUAD patients, which might provide new insights for 
clinical decision-making and precision medicine.
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Introduction

Lung adenocarcinoma (LUAD) is the most com
mon type of lung cancer, with an average five- 
year survival rate of 21.2% in the USA and 
19.8% in China [1,2]. With the widespread 
application of gene chip and sequencing technol
ogy, a variety of sensitive and effective methods 
have been proposed for the diagnosis and prog
nostic prediction of LUAD [3,4]. Even so, LUAD 
is still the most common cause of mortality 
among all cancers worldwide. Therefore, the 
development of a novel prognostic signature for 
better prediction of LUAD prognosis is of criti
cal significance.

Many scholars have concluded that redox 
homeostasis is a physiological regulation to 
stress responses such as tumors, which plays an 
important role in physical health [5–8]. 
Additionally, several studies have indicated that 
redox is implicated in tumorigenesis, disease 
progression, and drug resistance in LUAD [9– 
11]. Oxidative stress, a process caused by the 
accumulation of reactive oxygen species (ROS), 
is common in many types of tumor cells [12,13]. 
Interestingly, it can be either tumor-promoting 
or tumor-killing, which depends on the level of 
ROS. Oxidative eustress (a slight increase in 
ROS) can promote the occurrence and develop
ment of tumors through regulation of a variety 
of intracellular signaling pathways. However, 
oxidative distress (high level of ROS) can cause 
tumor cell death [14,15].

Long non-coding RNAs (lncRNAs) are func
tional RNA molecules of more than 200 nucleo
tides in length. Although they do not play a role in 
encoding proteins, they can regulate gene expres
sion at the epigenetic, transcriptional, and post- 
transcriptional levels and participate in a variety of 
pathophysiological processes [16]. Research has 
revealed that lncRNAs interact with redox regula
tion. Redox regulation can change the expression 
of lncRNAs. In turn, lncRNAs can also influence 
redox regulation [17].

Hence, the aim of the current study was to 
identify and validate a novel redox-related 
lncRNA prognostic signature (redox-LPS) for bet
ter prediction of the prognosis of LUAD patients. 

In addition, the differences in cellular processes, 
signaling pathways, and immune status between 
the high– and low-risk subgroups would be 
explored. The goal was to develop a nomogram 
plot to predict survival probability of LUAD 
patients for clinical decision-making and indivi
dual management.

Methods

Data acquisition and data procession

First, the TCGA database was utilized to obtain the 
transcriptome profiling and complete clinical data of 
LUAD samples (535 samples; 55,268 genes). Next, the 
GEO database was accessed and a dataset (GSE31210) 
containing the transcriptome profiling and complete 
clinical data of LUAD samples (226 samples; 20,174 
genes) was obtained. All data from the TCGA and 
GEO databases were converted into log2(x + 1) form 
for further analysis [18]. After intersecting all genes 
from the two datasets, 18,870 differential genes were 
identified. Then, the ‘Surrogate Variable Analysis 
(sva)’ package in R was utilized to batch normalize 
the gene expression profile data from the different 
databases [19]. Additionally, the Molecular 
Signatures Database (MSigDB) (https://www.gsea- 
msigdb.org/gsea/msigdb) was searched and two 
redox-related gene sets, ‘GO_CELL_REDOX_ 
HOMEOSTASIS’ and ‘GO_RESPONSE_ 
TO_REDOX_STATE’, were downloaded, which con
tained 59 and 14 genes, respectively. After removing 
two duplicate genes, there were 71 redox-related genes 
left. Furthermore, the human gene transfer format 
(gtf) file was obtained from the Ensembl database 
(http://www.ensembl.org/) and was further utilized 
to distinguish lncRNAs from protein-coding genes.

Identification of redox-related lncRNAs and 
group division

Based on the expression profiling of the TCGA 
dataset, the Pearson correlation coefficients 
between redox-related protein-coding genes and 
all lncRNAs were calculated by the built-in func
tion ‘cor.test’ in R [20]. Subsequently, lncRNAs 
with |correlation coefficients| >0.4 and p values 
<0.001 were considered as redox-related lncRNAs 
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for further analysis [21]. Then, the expression of 
redox-related lncRNAs was combined with clinical 
information in the TCGA and GEO datasets, 
respectively. Due to a lack of clinical survival 
data, 45 samples in the TCGA dataset were 
excluded. Subsequently, 490 samples in the 
TCGA dataset and 226 samples in the GEO dataset 
were retained. Then, the 490 samples in the TCGA 
dataset were randomly divided into a train cohort 
(n = 246) and test1 cohort (n = 244) at an approx
imate ratio of 1:1. In addition, all samples in the 
TCGA dataset were allocated to the test2 cohort 
(n = 490) and all samples in the GEO cohort were 
allocated to the test3 cohort (n = 226).

Construction and verification of a redox-LPS

In the train cohort, univariate Cox regression ana
lysis was utilized to identify redox-related 
lncRNAs with prognostic value (filter criteria: 
p < 0.1) [22]. Then, least absolute shrinkage and 
selection operator (LASSO) regression analysis was 
performed to avoid over-fitting and select appro
priate variables among the redox-related lncRNAs 
with prognostic value [23]. Subsequently, multi
variate Cox proportional hazards regression analy
sis was utilized to construct a redox-LPS and risk 
score was calculated using the following formula: 
risk score = 

Pn

k¼1
expk � βk [24]. After calculating 

the risk score of each sample in the train cohort, 
all 246 samples were stratified into high-risk and 
low-risk subgroups according to the median risk 
score [25]. The LUAD patients in the test1 cohort, 
test2 cohort, and test3 cohort were all stratified 
into high– and low-risk subgroups according to 
the median risk score obtained in the train cohort 
[26]. For internal and external validation of the 
redox-LPS, the following analyses were conducted 
in the train cohort, test1 cohort, test2 cohort, and 
test3 cohort, respectively (1) principal component 
analysis (PCA) to explore the distribution of dif
ferent subgroups, utilizing the ‘ggplot2’ R package 
[27]; (2) survival analysis to evaluate the predictive 
ability of the signature, utilizing the Kaplan-Meier 
method [28]; (3) receiver operating characteristic 
(ROC) curves to test the redox-LPS diagnostic 
value of one-year, three-year, and five-year 

survival rates [29]; (4) C-indices to evaluate the 
predictive effectiveness of the redox-LPS [30].

In addition to these, the predictive performance of 
our redox-LPS was compared with another three 
prognostic signatures (an immune signature con
structed by Guo et al, an autophagy-related gene 
prognostic signature constructed by Zhu et al, and 
a seven-gene signature constructed by Zhang et al) 
[31–33]. All genes used for construction of Guo’s, 
Zhu’s and Zhang’s prognostic signatures were 
obtained. The gene expression profiles and corre
sponding clinical information were preserved for 
further analysis. Then, the ‘survival’, ‘tidyverse’, and 
‘timeROC’ packages in R were applied to evaluate 
the predictive abilities of our redox-LPS, Guo’s sig
nature, Zhu’s signature and Zhang’s signature.

Co-expression relationships between redox genes 
and their related lncRNAs, and their clinical 
significance

After validating the accuracy of redox-LPS for the 
prediction of LUAD prognosis, a Sankey diagram 
and correlation circle plot were constructed to reveal 
the co-expression relationships between redox genes 
and their related lncRNAs based on the gene expres
sion profiles of the train cohort [30]. Following this, 
the chi-square test was utilized to investigate the cor
relations between these redox genes, their related 
lncRNAs, and the clinical parameters of LUAD 
patients, including gender, smoking history, and 
stage [27].

Identification and validation of the independent 
prognostic value of the risk score acquired from 
the redox-LPS

Univariate and multivariate Cox regression ana
lyses were performed to identify the independent 
prognostic value of the risk score. Only the sta
tistically significant indicators (p < 0.05) in both 
univariate and multivariate Cox regression ana
lyses were considered to be independent prognos
tic factors. Because the clinical information 
provided by the TCGA and GEO databases was 
not the same, we only conducted independent 
prognostic analyses of three cohorts (i.e., train 
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cohort, test1 cohort, and test2 cohort) from the 
TCGA database. Subsequently, these independent 
prognostic factors laid the foundation for the 
construction of nomogram plots for quantitative 
analysis of the clinical outcomes of LUAD [34].

Construction and validation of a risk score-based 
nomogram plot

In order to offer a quantitative method to predict 
the survival probability of LUAD patients in clin
ical practice, the package ‘rms’ in R was utilized to 
construct a nomogram plot by integrating inde
pendent prognostic indicators based on the train 
cohort. Following this, its predictive performance 
was validated in train, test1, and test2 cohorts 
using calibration curves. In addition, multivariate 
ROC curves were plotted to compare the prognos
tic performance of the nomogram with other clin
ical prognostic factors, including age, gender, 
smoking history, and stage, on the basis of the 
area under the curve (AUC) [35].

Characterization of the tumor immune 
microenvironment in high – and low-risk 
subgroups

Based on the algorithms of CIBERSORT, XCELL, 
EPIC, MCPCOUNTER, and QUANTISEQ, 
TIMER2.0 database (http://timer.cistrome.org/) 
provides a comprehensive immune signature of 
tumor infiltrating cells in a diverse array of tumor 
samples from TCGA database [36]. The ‘pheatmap’ 
package in R was applied to demonstrate the infil
tration of various immune cells for each sample in 
train, test1, and test2 cohorts. Subsequently, the 
‘limma’ package in R was used to calculate the 
statistical differences of immune cell infiltration 
between high– and low-risk subgroups, and only 
those immune cells with statistically significant dif
ferences (p < 0.05) were preserved.

Gene ontology (GO) functional annotation, gene 
set enrichment analysis (GSEA), and single- 
sample gene set enrichment analysis (ssGSEA)

In order to better understand the potential mechan
isms of the different prognoses between the high– and 
low-risk subgroups, GO functional annotation, 

GSEA, and ssGSEA were performed in the train 
cohort. First, the package ‘limma’ in R was used to 
determine the differentially expressed genes (DEGs; | 
log2FC| >1 and FDR <0.05) between the high– and 
low-risk subgroups [37]. Following this, the 
‘clusterProfiler’ package in R was used to conduct 
GO functional annotation of DEGs; meanwhile, 
GSEA was employed for Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis using the soft
ware GSEA 4.0.3 (http://www.gsea-msigdb.org) [38]. 
The gtm file or geneset for ssGSEA of immune cell 
and immune function has been shown in the 
‘Supplementary gtm file’. Ultimately, the ‘gsva’ pack
age in R was used to conduct ssGSEA to determine 
the immunocyte infiltrations and immune-related 
functions that differed between the high– and low- 
risk subgroups [39].

Results

The novel redox-LPS was composed of four lncRNAs: 
Colorectal Neoplasia Differentially Expressed 
(CRNDE), Cancer Susceptibility 15 (CASC15), Long 
Intergenic Non-Protein Coding RNA 1137 
(LINC01137), and CYP1B1 Antisense RNA 1 
(CYP1B1-AS1). The redox-LPS could help predict 
the 1-year, 3-year, and 5-year survival probability of 
LUAD patients. Univariate and multivariate Cox 
regression analysis revealed that risk score and stage 
were independent prognostic indicators. 
A nomogram plot including risk score and stage was 
constructed to predict survival probability of LUAD 
patients. Functional enrichment analysis, GSEA, and 
ssGSEA were performed to determine the differences 
in cellular processes, signaling pathways, and immune 
status between the high– and low-risk subgroups.

Identification of redox-related lncRNAs and 
group division

Four of the 71 redox-related genes (i.e., NCF1, 
TXNDC5, TXNRD3, and PDIA5) were excluded 
due to an absence of expression among the 18,870 
intersecting genes; thus, a total of 67 redox-related 
genes were included for further analysis. A total of 
1630 lncRNAs were screened out from the list of 
18,870 intersecting genes according to the gene anno
tation in the gtf file. After applying the threshold of | 
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Pearson correlation coefficient| >0.4 and p value 
<0.001, 313 redox-related lncRNAs were retained for 
further analysis. In addition, after excluding LUAD 
samples with incomplete clinical data, there were 490 
samples in the TCGA dataset and 226 samples in the 
GEO dataset remaining. In order to identify and 
validate a novel redox-LPS that could truly predict 
the prognosis of LUAD patients, the combination of 
internal verification and external verification was 
adopted. Of note, the test1 and test2 cohorts were 
considered as the internal verification, and the test3 
cohort was considered as the external verification.

Construction of the redox-LPS based on the train 
cohort

The results of the univariate Cox regression analysis 
showed that 57 of the 313 redox-related lncRNAs were 

potential prognostic indicators (Supplementary Table 
1). Following this, LASSO regression analysis was con
ducted to eliminate collinearity among the 57 redox- 
related lncRNAs and avoid over-fitting of the prognos
tic model (Supplementary Figure 1A and 1B). 4 redox- 
related lncRNAs were obtained for further multivariate 
Cox regression analysis. Ultimately, multivariate Cox 
proportional hazards regression analysis involving four 
redox-related lncRNAs (i.e., CRNDE, CASC15, 
LINC01137, and CYP1B1-AS1) was performed to 
establish a novel redox-LPS (Supplementary Figure 
1C). On the basis of the Cox coefficient, the risk 
score was calculated as follows: (0.351843870912946 
× expression level of CASC15) – (0.336130524310107 
× expression level of CRNDE) + (0.404548536917624 
× expression level of LINC01137) – 
(0.747769589685504 × expression level of CYP1B1- 
AS1). Subsequently, LUAD patients in the train cohort                                
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Figure 1. Construction of redox-LPS in train cohort. (A) Group division on the basis of median risk score in train cohort. (B) 
Distributions of risk score and survival status in train cohort. (C) PCA in train cohort. (D) Heatmap about the expression levels of the 
four lncRNAs involved in the signature in train cohort. (E) Survival curve of train cohort. (F) ROC curves of train cohort.
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were divided into high– and low-risk subgroups based 
on the median risk score of 0.951304 (Figure 1A). The 
distributions of the risk scores and survival status are 
shown in Figure 1B; it can be seen that patients with 
high risk scores were more likely to die. The PCA result 
shown in Figure 1C indicates that the patients in the 
two subgroups could be clearly distinguished. The 
heatmap in Figure 1D depicts the expression levels of 
the four lncRNAs involved in the model, which are 
aligned with the coefficients in the calculation formula. 
Compared with the low-risk subgroup, CASC15 and 
LINC01137 were more highly expressed in the high- 
risk subgroup; however, CRNDE and CYP1B1-AS1 
exhibited lower expression levels in the high-risk sub
group. Consistently, patients in the high-risk subgroup 
exhibited a worse overall survival rate (p < 0.05) 

(Figure 1E). Additionally, a prognosis evaluation of 
the risk score for LUAD patients was performed. The 
AUC values of the ROC curves were 0.779, 0.652, and 
0.675 for one-, three-, and five-year survival, respec
tively (Figure 1F). The c-index was 0.704 in the train 
dataset, suggesting that the redox-LPS exhibited great 
prognostic performance.

Validation of the redox-LPS based on the three 
test datasets

For validation of the reliability of the redox-LPS, risk 
scores were calculated, and samples were distin
guished in the test1 cohort, test2 cohort, and test3 
cohort, respectively (Figure 2A, 3A, 4A). Of note, the 
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median risk score of 0.951304 obtained in the train 
cohort was a unified standard when distinguishing the 
samples. In both internal verification (test1 and test2 
cohorts) and external verification (test3 cohort), 
the distributions of the risk scores and survival 
status in the three cohorts exhibited similar 
trends to those observed in the train cohort 
(Figure 2B, 3B, 4B) and PCA demonstrated 
that patients in the two subgroups could be 
clearly distinguished (Figure 2C, 3C, 4C). The 
heatmaps obtained from the test1, test2, and 
test3 cohorts showed the same high-expression 
genes (CASC15, LINC01137) and low-expression 
genes (CRNDE, CYP1B1-AS1) in high-risk sub
group (Figure 2D, 3D, 4D). Additionally, 

patients with high risk scores had worse overall 
survival rates, in both internal verification and 
external verification (all p < 0.05) (Figure 2E, 3E, 
4E). Regarding the ROC curves, the AUC values 
of the ROC curves were 0.645, 0.671, and 0.617 
in the test1 cohort and 0.701, 0.662, and 0.65 in 
the test2 cohort for one-, three-, and five-year 
survival, respectively. In the external verification, 
the AUC values were 0.645, 0.671, and 0.617 in 
the test3 dataset (Figure 2F, 3F, 4F). In the 
external verification, the AUC values were 
0.659, 0.614, and 0.648 in the test3 dataset 
(Figure 4f). The c-index was 0.614, 0.656, and 
0.616 in the test1, test2, and test3 datasets, 
respectively.
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For the train and test2 cohorts, survival prob
ability predicted by our redox-LPS is superior to 
the other three prognostic signatures. And for the 
test1 cohort, our redox-LPS showed a similar pre
dictive power of survival probability to the other 
three prognostic signatures (Figure 5A, 5B, 5C).

Co-expression relationships between redox genes 
and their related lncRNAs, and the clinical 
significance of them

Based on the LASSO-Cox regression analysis, a total of 
four lncRNAs were included in our prognostic model. 
According to the Pearson correlation analyses, there 
were obvious co-expression relationships between 
these four lncRNAs and six redox-related protein- 

encoding genes (i.e., ARHGDIB, CLOCK, ERO1B, 
P4HB, PRDX5, and RYR2). The Sankey diagram 
demonstrated the corresponding relationships between 
the six redox-related protein-encoding genes and four 
lncRNAs (Figure 5D). The correlation circle plot 
revealed the degree of co-expression between the six 
redox-related genes and four lncRNAs (Figure 5E). In 
order to explore the potential clinical significance of 
these six redox-related genes and four-lncRNAs, chi- 
square tests were performed to investigate differential 
expression of these six redox-related genes and four- 
lncRNAs between different clinical subgroups. The 
results showed that ARHGDIB, CLOCK, and ERO1B 
were significantly associated with LUAD gender 
(Figure 5F); CASC15 was significantly associated with 
LUAD stage (Figure 5G); ARHGDIB, PRDX5, 
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CRNDE, and LINC01137 were significantly associated 
with LUAD smoking habits (Figure 5H).

Identification and validation of the independent 
prognostic value of the risk score acquired from 
the redox-LPS

The results of the univariate and multivariate cox 
regression analyses in the train cohort showed that 
the risk score was an independent prognostic indicator 
(risk score: univariate HR = 1.361, 95% 
CI = 1.230 − 1.504, p < 0.001; multivariate 
HR = 1.279, 95%CI = 1.153 − 1.420, p < 0.001; 

Figure 6A and 6B). In addition, stage was an indepen
dent prognostic index (Figure 6A and 6B). More 
importantly, the independent prognostic role of risk 
score and stage in LUAD was confirmed in the test1 
cohort (Figure 6C and 6D) and test2 cohort (Figure 6E 
and 6F).

Construction and validation of a risk score-based 
nomogram plot

In order to quantitatively evaluate the survival prob
abilities of LUAD patients, a nomogram plot for 
one-year, three-year, and five-year survival rates 

Figure 5. Comparative analysis, co-expression analysis, and clinical significance analysis. The AUC values of the ROC curves for 
predictive performance of redox-LPS compared with Guo’s, Zhu’s and Zhang’s signatures in (A)train cohort, (B)test1 cohort, and (C) 
test2 cohort. (D)Sankey diagram for corresponding relationship and (E)circle plot for degree of co-expression between six redox- 
genes and four lncRNAs. Differential expression of these six redox-genes and four-lncRNAs between (F)female/male patients sex, (G) 
stage I/II/III/IV patients, and (H)patients with different smoking history (Smoker I: Lifelong Non-smoker (less than 100 cigarettes 
smoked in Lifetime); Smoker II: Current smoker(includes daily smokers and non-daily smokers or occasional smokers); Smoker III: 
Current reformed smoker for >15 years (greater than 15 years); Smoker IV: Current reformed smoker for ≤15 years (less than or equal 
to 15 years); Smoker V: Current reformed smoker, duration not specified).
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was constructed based on the risk score and stage of 
each LUAD patient in the train cohort (Figure 6G). 
Meanwhile, predictive performance of the nomo
gram plot was validated in the train, test1, and test2 
cohorts using calibration curves. The results indi
cated that the nomogram-predicted and actual sur
vival probabilities were generally aligned (Figure 6H, 

6I, 6J). In addition, multivariate ROC curves were 
plotted to evaluate the prognostic performance of the 
nomogram and clinical parameters. The results 
showed that the nomogram was an effective prog
nostic indicator, even compared with tumor stage. 
The AUC values of the ROC curves were 0.787, 
0.814, and 0.792 in the train cohort (Figure 6K), 
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Figure 7. The landscape of the distribution of immune cell infiltration in (A) train, (B) test1, and (C) test2 cohorts
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0.746, 0.735, and 0.716 in the test1 cohort (Figure 6L) 
and 0.750, 0.770, and 0.763 in the test2 cohort 
(Figure 6M) for one-, three-, and five-year survival 
probability, respectively.

Tumor immune microenvironment analysis, GO 
functional annotation, GSEA, and ssGSEA

The landscape of the distribution of immune cell 
infiltration in train, test1, and test2 cohorts has 
been shown in Figure 7A, 7B, and 7C, respectively. 

On the basis of the results from MCPCOUNTER, 
the infiltration of neutrophil showed a lower level 
in the high-risk subgroup in train cohort, test1 
cohort and test2 cohort, respectively. 
Additionally, according to the results from 
XCELL, plasmacytoid dendritic cell (pDC) and 
Th2 cells in the high-risk subgroup revealed 
a higher proportion. Furthermore, compared with 
low-risk subgroup, endothelial cell significantly 
diminished in high-risk subgroup based on 
MCPCOUNTER algorithm.
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Based on |log2FC| >1 and FDR <0.05, 274 DEGs 
(including 148 up-regulated and 126 down- 
regulated genes) between the high– and low-risk 
subgroups in the train dataset were identified 
(Figure 8A). Then, these DEGs were used for GO 
functional annotation, GSEA, and ssGSEA. As 
shown in Figure 8B, the DEGs were associated 
with many redox-related functions such as mono
oxygenase activity, oxidoreductase activity, and 
oxygen binding, as well as many other functions 
such as vitamin metabolic process, positive regula
tion of defense response to bacterium, and fibro
blast growth factor receptor binding. In addition, 
several KEGG pathways were explored by GSEA, 
including amino sugar and nucleotide sugar meta
bolism, biosynthesis of unsaturated fatty acids, 
oxidative phosphorylation, P53 signaling pathway, 
pentose phosphate pathway, and proteasome. Of 
note, all these involved pathways had higher 
enrichment scores in the high-risk subgroup 
(Figure 8C-8H).

The results regarding the difference in immune 
status between the high-risk and low-risk subgroups 
were obtained from ssGSEA and are shown in 
Figure 8I and 8J. The antigen presentation process 
exhibited a noteworthy difference between the two 
subgroups. Notably, the aDCs score was lower in the 
high-risk subgroup while the scores for the other 
antigen presentation processes were higher in the 
high-risk subgroup, including APC co-inhibition, 
APC co-stimulation, and MHC class I. Further, the 
scores for NK cells, pDCs, Tfh, Th2 cells, CCR, check- 
point, inflammation-promoting, parainflammation, 
and Type I IFN response were higher in the high- 
risk subgroup. Interestingly, tumor immune micro
environment analysis showed similar results. The 
landscape of immune cell infiltration based on 
XCELL revealed a higher proportion of pDCs and 
Th2 cells in the high-risk subgroup, which is consis
tent with the analysis by ssGSEA. Yet, it is worth 
noting that some of these processes are protective 
while others are risk.

Discussion

At present, lung cancer has the highest mortality 
among all cancers, accounting for about one- 

quarter of all cancer deaths [40]. Although progress 
has been made in the treatment of lung cancer in 
recent decades, the prognosis of patients is still poor 
[41]. Lung adenocarcinoma is one of the most com
mon pathological types of lung cancer [42]. 
Therefore, it is of critical importance to explore 
more prognostic factors for lung adenocarcinoma. 
In recent years, many studies have shown that 
lncRNAs are associated with tumorigenesis, progres
sion, drug resistance, and prognosis of LUAD [43– 
45]. Additionally, it has been reported that redox can 
interact with lncRNAs and then influence the occur
rence and progression of LUAD [9]. Consequently, 
this research sought to develop and validate a specific 
redox-LPS for better prediction of LUAD prognosis.

In this study, the prognostic performance of redox- 
related lncRNAs in LUAD was extensively investi
gated. A novel redox-LPS consisting of four 
lncRNAs (i.e., CRNDE, CASC15, LINC01137, and 
CYP1B1-AS1) was identified based on LASSO-Cox 
regression analysis. It has been reported that 
CRNDE is associated with many cancers, including 
colorectal cancer [46], hepatocellular carcinoma [47], 
and pancreatic cancer [48]. Many tumor-related path
ways can be regulated by CRNDE, such as the wnt/β- 
catenin signaling pathway [49], miR-33a-5p/CDK6 
axis [50], and miR-126-5p/ATAD2 axis [51]. In addi
tion, CRNDE can also decrease chemoresistance in 
gastric cancer [52]. CASC15, a tumor-associated 
lncRNA, may serve as a therapeutic target in many 
tumors [53]. Through targeting miR-101-3p, CASC15 
promotes proliferation and metastasis in both cervical 
cancer and nasopharyngeal carcinoma [54,55]. 
CASC15 functions as an oncogene in bladder cancer 
through sponging miR-130b-3p [56]. It has also been 
reported that the upregulation of CASC15 is con
nected with poor prognosis in lung cancer, which is 
consistent with the current findings. Interestingly, 
miR-130b-3p can also be targeted by CASC15 in non- 
small cell lung cancer [57]. LINC01137, a short-lived 
lncRNA, can be degraded by nuclear RNases. It upre
gulates after exposure to hydrogen peroxide (oxidative 
stress), which is consistent with our proposal of its role 
as a redox-related lncRNA, and may become an indi
cator of stress responses [58]. CYP1B1-AS1 is emer
ging as a powerful prognostic indicator for acute 
myeloid leukemia (AML), and plays an important 

BIOENGINEERED 4343



part in the intracellular biological process and extra
cellular microenvironment of AML cells [59]. Above 
all, the four lncRNAs in our signature showed poten
tial impacts on multiple types of cancers.

Subsequently, the LUAD patients in the train, 
test1, test2, and test3 cohorts were all split into 
high– and low-risk subgroups according to the 
median risk score computed in the train cohort. 
For all cohorts, low-risk LUAD patients had 
a survival advantage over high-risk LUAD 
patients, which was verified by time-dependent 
ROC analyses.

Till now, multiple signatures have been estab
lished and validated to help predict the prognosis 
of LUAD patients. Compared with prognostic sig
natures conducted by Guo et al, Zhu et al and 
Zhang et al, our redox-LPS exhibits a higher pre
dictive accuracy for LUAD patients.

Univariate and multivariate Cox regression ana
lyses revealed the independent prognostic role of 
risk score and stage in LUAD patients. Hence, 
stage and risk score were selected to plot 
a nomogram in train cohort and the survival prob
abilities of LUAD patients were then quantitatively 
analyzed. The predictive accuracy of the nomo
gram was demonstrated by calibration curves in 
train, test1 and test2 cohorts. Time-dependent 
multivariate ROC curves indicated that the prog
nostic performance of nomogram for one-, three-, 
and five-year survival was superior to other clinical 
parameters including tumor stage.

After verifying the universality of the redox- 
LPS, four lncRNAs used to construct the redox- 
LPS were closely studied to investigate their co- 
expressed redox genes. Following this, the clinical 
significance of these redox genes and lncRNAs was 
revealed. In order to better understanding the 
potential mechanisms underlying the differential 
prognoses of the high– and low-risk subgroups, 
a total of 274 DEGs between these subgroups 
were then identified. GO annotation showed that 
the DEGs were primarily enriched in many redox 
processes, including the epoxygenase P450 path
way, monooxygenase activity, oxidoreductase 
activity, and oxygen binding. The GSEA results 
revealed that oxidative phosphorylation, biosynth
esis of unsaturated fatty acids, P53 signaling path
way, and pentose phosphate pathway were 
significantly enriched in the high-risk subgroup. 

In addition to these, ssGSEA was conducted to 
reveal the discrepancy in immune status between 
the high – and low-risk subgroups.

It is generally accepted that the tumor immune 
microenvironment is complex, and anti-cancer 
and cancer-promoting immune responses often 
exist simultaneously in local tumor tissue. 
Consistently, the results of this study indicated 
that there were significant differences in both anti- 
cancer and cancer-promoting immune responses 
between the high– and low-risk subgroups. The 
results revealed significantly different scores 
between the high– and low-risk subgroups for 
dendritic cells (DCs), which are the most powerful 
professional antigen presenting cells (APCs) in the 
body. Activate DCs (aDCs) have the potential to 
promote the secretion of cytokines with anti- 
tumor abilities, including TNF-α and IL-12 from 
T helper (Th) 1 cells [60]. Plasmacytoid DCs 
(pDCs) establish an immunosuppressive tumor 
microenvironment and promote immune toler
ance [61]. Th2 cells, as a mediator of humoral 
immunity, can limit the protective function of 
Th1 cells. In addition, the immune response is 
usually biased to Th2 in malignant tumors and 
the up-regulation of Th2 protects tumor cells 
from immune rejection [62,63]. The immune 
checkpoint involving CTLA-4, PD-1, and PD-L1 
is involved in an inhibitory signaling pathway in 
the immune system. Expressed on the surface of 
T cells, CTLA-4 can inhibit the early stage of T cell 
activation, leading to tumor cell immune escape 
after binding with its ligand. The combination of 
PD-1 and PD-L1 can form an immunosuppressive 
tumor microenvironment [64,65]. The current 
results revealed that aDCs scores were significantly 
lower in the high-risk subgroup and pDCs, Th2, 
and immune checkpoint scores were significantly 
higher in the high-risk subgroup. Likewise, XCELL 
also revealed a higher proportion of pDCs and 
Th2 in the high-risk subgroup compared to that 
in the low-risk subgroup. This suggests that the 
anti-tumor immune response in the high-risk sub
group was weaker.

However, it is worth noting that the scores for 
certain anti-tumor immune cells and immune- 
related functions were significantly higher in the high- 
risk subgroup. NK cells, as an important part of the 
innate immune system, have a cytotoxic function and 
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secrete various immune regulatory cytokines; they are 
the first line of defense against malignant tumors 
[66,67]. Follicular helper T cell (Tfh), as a CD4 + T 
cell, can help B cells to activate and mature and are 
conducive to the control of tumor development 
through expression of IL-21, CXCL13, and other 
molecules. Deletion of the CXCL13 gene leads to the 
occurrence of tumors [68,69]. Type I interferon (IFN- 
I) acts to enforce the killing and destructive effect of 
NK cells and cytotoxic T lymphocyte (CTL) cells on 
tumor cells. Additionally, IFN-I enhances endogenous 
antigen presentation by promoting the expression of 
major histocompatibility complex-I (MHC-I). 
Interestingly, the current results revealed that the 
NK, Tfh, IFN-I, and MHC-I scores were significantly 
higher in the high-risk subgroup. Notably, the inflam
matory response score was also significantly higher in 
the high-risk subgroup compared to the low-risk sub
group. Overall, unbalanced anti-cancer and pro- 
cancer responses and an enhanced inflammatory 
response might be responsible for the poorer prog
nosis of high-risk LUAD patients.

There are several limitations of this study that 
should be noted. First, because the clinical data 
from the GEO database were inconsistent with 
the data from the TCGA database, only the 
TCGA data were used in the train, test1, and 
test2 cohorts to test if risk score was an indepen
dent prognostic predictor. Having external valida
tion may be better when verifying this 
nomogram. Second, a relatively small number of 
LUAD patients from the TCGA and GEO data
bases were utilized to establish the redox-LPS. 
Hence, a large prospective clinical study is war
ranted to validate the predictive power of our 
prognostic signature. Third, the redox-LPS was 
constructed by pure bioinformatics analysis and 
further basic experiments are warranted to verify 
our results.

Conclusions

A redox-LPS was successfully constructed and verified 
for the accurate prediction of the clinical outcomes of 
LUAD patients. The potential clinical significance of 
redox genes and redox-related lncRNAs were 
explored. Then, a nomogram comprising this 

signature and clinical stage was developed as 
a quantitative tool to help predict the survival prob
ability of LUAD patients. The work in this study 
broadens the horizon for clinical work about LUAD.
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