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SUMMARY
The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection re-
mains unknown. Here, we present single-cell transcriptomic analysis of >100,000 viral antigen-reactive CD4+

T cells from 40 COVID-19 patients. In hospitalized patients compared to non-hospitalized patients, we found
increased proportions of cytotoxic follicular helper cells and cytotoxic T helper (TH) cells (CD4-CTLs) re-
sponding to SARS-CoV-2 and reduced proportion of SARS-CoV-2-reactive regulatory T cells (TREG). Impor-
tantly, in hospitalized COVID-19 patients, a strong cytotoxic TFH response was observed early in the illness,
which correlated negatively with antibody levels to SARS-CoV-2 spike protein. Polyfunctional TH1 and TH17
cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influ-
enza-reactive CD4+ T cells. Together, our analyses provide insights into the gene expression patterns of
SARS-CoV-2-reactive CD4+ T cells in distinct disease severities.
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is causing substantial

mortality, morbidity, and societal disruption (Tay et al., 2020;

Vabret et al., 2020), and effective vaccines and therapeutics

may take several months or years to become available. A sub-

stantial number of patients become life-threateningly ill, and

the mechanisms responsible for causing severe acute respira-

tory distress syndrome (SARS) in COVID-19 are not well under-

stood. Therefore, there is an urgent need to understand the

key players driving protective and pathogenic immune re-

sponses in COVID-19 (Vabret et al., 2020). This knowledge

may help devise better therapeutics and vaccines for tackling

the current pandemic. CD4+ T cells are key orchestrators of

anti-viral immune responses, either by enhancing the effector

functions of other immune cell types like cytotoxic CD8+

T cells, NK cells, and B cells or through direct killing of infected

cells (Sallusto, 2016). Recent studies in patients with COVID-

19 have verified the presence of CD4+ T cells that are reactive

to SARS-CoV-2 (Braun et al., 2020; Thieme et al., 2020; Grifoni

et al., 2020). However, the nature and types of CD4+ T cell sub-

sets that respond to SARS-CoV-2 and the roles these subsets
1340 Cell 183, 1340–1353, November 25, 2020 Crown Copyright ª 2
play in driving protective or pathogenic immune responses

remain elusive. Here, we have analyzed single-cell transcrip-

tomes of virus-reactive CD4+ T cells to determine associations

with severity of COVID-19 illness and to compare the molecular

properties of SARS-CoV-2-reactive CD4+ T cells to other com-

mon respiratory virus-reactive CD4+ T cells from healthy control

subjects.

RESULTS

CD4+ T Cell Responses in COVID-19 Illness
To capture CD4+ T cells responding to SARS-CoV-2 in patients

with COVID-19 illness, we employed the antigen-reactive T cell

enrichment (ARTE) assay (Bacher et al., 2013, 2016, 2019;

Schmiedel et al., 2018) that relies on in vitro stimulation of periph-

eral blood mononuclear cells (PBMCs) for 6 h with overlapping

peptide pools targeting the immunogenic domains of the spike

and membrane proteins of SARS-CoV-2 (see STAR Methods;

Thieme et al., 2020). Following in vitro stimulation, SARS-CoV-

2-reactive CD4+ memory T cells were isolated based on the

expression of cell surfacemarkers (CD154 and CD69) that reflect

recent engagement of the T cell receptor (TCR) by cognatemajor
020 Published by Elsevier Inc.
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histocompatibility complex (MHC)-peptide complexes (Fig-

ure S1A). In the context of acute COVID-19 illness, CD4+

T cells expressing activation markers have been reported in

the blood (Braun et al., 2020; Thevarajan et al., 2020); such

CD4+ T cells, presumably activated in vivo by endogenous

SARS-CoV-2 viral antigens, were also captured during the

ARTE assay, thereby enabling us to study a comprehensive array

of CD4+ T cell subsets responding to SARS-CoV-2. We sorted >

300,000 SARS-CoV-2-reactive CD4+ T cells from > 1.3 billion

PBMCs isolated from a total of 40 patients with COVID-19 illness

(22 hospitalized patients with severe illness, 9 of whom required

intensive care unit [ICU] treatment, and 18 non-hospitalized sub-

jects with relatively milder disease; Figures 1A and 1B and Ta-

bles S1A and S1B). In addition to expressing CD154 and

CD69, sorted SARS-CoV-2-reactive CD4+ T cells co-expressed

other activation-related cell surface markers like CD38, CD137

(4-1BB), CD279 (PD-1), and HLA-DR (Figures 1C and S1B and

Table S1C).

Recent evidence from studies in non-exposed individuals

(blood sample obtained pre-COVID-19 pandemic) indicates

pre-existing SARS-CoV-2-reactive CD4+ T cells, possibly indic-

ative of human coronavirus (HCoV) cross-reactivity. Such cells

are observed in up to 50% of the subjects studied (Braun

et al., 2020; Grifoni et al., 2020; Le Bert et al., 2020). To capture

such SARS-CoV-2-reactive CD4+ T cells, likely to be coronavirus

(CoV)-reactive, we screened healthy non-exposed subjects and

isolated CD4+ T cells responding to SARS-CoV-2 peptide pools

from 4 subjects with highest responder frequency (Figures 1A

and S1C and Table S1D). Next, for defining the CD4+ T cell sub-

sets and their properties that distinguish SARS-CoV-2-reactive

cells from other common respiratory virus-reactive CD4+

T cells, we isolated CD4+ T cells responding to peptide pools

specific to influenza hemagglutinin protein (FLU-reactive cells,

see STAR Methods) from 8 additional healthy subjects who pro-

vided blood samples before and/or after influenza vaccination

(Figures 1A, S1D, and S1E and Tables S1D and S1E). CD4+

T cells responding to peptide pools specific to other common

respiratory viruses like human parainfluenza (HPIV) and human

metapneumovirus (HMPV) were also isolated from healthy

subjects (Figure S1C and Tables S1D and S1F). In total, we inter-

rogated the transcriptome and TCR sequence of >100,000 viral-

reactive CD4+ T cells from 53 subjects (Figures 1A, S2A, and S2B

and Tables S2A–S2E).

SARS-CoV-2-Reactive CD4+ T Cells Are Enriched for TFH

Cells and CD4-CTLs
Analysis of the single-cell transcriptomes of all viral-reactive

CD4+ T cells from all subjects revealed 13 CD4+ T cell subsets

that clustered distinctly, reflecting their unique transcriptional

profiles (Figures 2A–2D and Table S2F). Strikingly, a number of

clusters were dominated by cells reactive to particular viruses

(Figures 2B and S2C). For example, the vast majority of cells in

clusters 1 and 10 were FLU-reactive (>65%), whereas cells in

clusters 0, 5, 6, 7, and 12mainly consisted of SARS-CoV-2-reac-

tive CD4+ T cells (>70%) from COVID-19 patients (Figures 2B

and S2C). Conversely, cells in clusters 2, 3, 4, 8, and 9 were

not preferentially enriched for reactivity to any given virus (Fig-

ures 2B andS2C). These findings suggest that distinct viral infec-
tions generate CD4+ T cell subsets with distinct transcriptional

programs, although the timing of survey (acute illness versus

past infection) will also contribute to their cellular states. Our

data highlight substantial heterogeneity in the nature of CD4+

T cells generated in response to different viral infections on the

one hand and shared features on the other.

The clusters enriched for FLU-reactive CD4+ T cells (clusters 1

and 10) displayed features suggestive of polyfunctional T helper

(TH)1 cells which have been associated with protective anti-viral

immune responses (Seder et al., 2008). Such features include the

expression of transcripts encoding for the cytokines linked to

polyfunctionality such as IFN-g, IL-2, and TNFa , and several

other cytokines and chemokines like IL-3, CSF2, IL-23A, and

CCL20 (Figures 2D, 2E, S2E, and S2F). SARS-CoV-2-reactive

CD4+ T cells were underrepresented in these clusters (cluster 1

and 10, < 2%) when compared to FLU-reactive cells (> 70%)

or HMPV- and HPIV-reactive cells (~5%–20%) (Figure S2C).

Furthermore, SARS-CoV-2-reactive CD4+ T cells in cluster 1 ex-

pressed significantly lower levels of IFNG and IL2 transcripts

when compared to FLU-reactive cells (Table S2G). Together,

these data suggested a failure to generate robust polyfunctional

TH1 cells in SARS-CoV-2 infection. A similar pattern was also

observed in SARS-CoV-2-reactive CD4+ T cells from healthy

non-exposed subjects (Figures 2B and S2C) but not for HPIV-

or HMPV-reactive CD4+ T cells, suggesting the defect in

generating polyfunctional TH1 cells may be a common feature

for coronaviruses, although further studies specifically analyzing

HCoV-reactive CD4+ T cells in healthy individuals will be required

to verify this.

Other clusters that were relatively underrepresented for

SARS-CoV-2-reactive CD4+ T cells included clusters 2 and 8,

which were both enriched for TH17 signature genes, with cluster

2 highly enriched for cells expressing IL17A and IL17F tran-

scripts, thus representing bona fide TH17 cells (Figures 2B–2F

and S2C–S2E and Table S2F). TH17 cells have been associated

with protective immune responses in certain models of viral in-

fections (Acharya et al., 2016; Wang et al., 2011); however, in

other contexts they have been shown to promote viral disease

pathogenesis (Acharya et al., 2016; Ma et al., 2019). Therefore,

the functional relevance of an impaired TH17 response in

COVID-19 is not clear and requires further investigation.

Clusters that were evenly distributed across all viral-specific

CD4+ T cells include clusters 3 and 4. Cluster 3 displayed a tran-

scriptional profile consistent with enrichment of interferon (IFN)-

response genes (IFIT3, IFI44L, ISG15,MX2,OAS1), and cluster 4

was enriched for CCR7, IL7R, and TCF7 transcripts, likely repre-

senting central memory CD4+ T cell subset (Figures 2B–2F and

S2C–S2E and Table S2F). Cluster 12, which expressed high

levels of transcripts linked to cell cycle genes MKI67 and

CDK1, also contained a large proportion of SARS-CoV-2-reac-

tive CD4+ T cells (Figures 2B–2D), indicative of actively prolifer-

ating cells responsive to SARS-CoV-2 antigens. Cluster 6, also

dominated by SARS-CoV-2-reactive CD4+ T cells, was charac-

terized by high levels of PRF1, GZMB, GZMH, GNLY, and

NKG7 transcripts, which encode for molecules linked to cytotox-

icity (Patil et al., 2018) (Figures 2B–2F and S2C–S2E and Table

S2F). Gene set enrichment analysis (GSEA) showed significant

positive enrichment of signature genes for cytotoxicity in clusters
Cell 183, 1340–1353, November 25, 2020 1341
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Figure 1. CD4+ T Cell Responses in COVID-19 Illness

(A) Study overview.

(B) RepresentativeFACSplots showing surfacestainingofCD154 (CD40L) andCD69 inmemoryCD4+Tcells stimulated for 6hwithSARS-CoV-2peptidepools, post-

enrichment (CD154-based), in 22 hospitalizedand 18non-hospitalizedCOVID-19patients (left), and summary of numbers of cells sorted (right); data aremean±SEM.

(C) Representative FACS plots (left) showing surface expression of CD137 (4-1BB) and HLA-DR inmemory CD4+ T cells ex vivo (without in vitro stimulation) and in

CD154+ CD69+ memory CD4+ T cells following stimulation, post-enrichment (CD154-based). (Right) Percentage of CD154+ CD69+ memory CD4+ T cells ex-

pressing CD137 (4-1BB) or HLA-DR in 17 hospitalized and 18 non-hospitalized COVID-19 patients; data are mean ± SEM.

See also Figure S1 and Table S1.
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Figure 2. SARS-CoV-2-Reactive CD4+ T Cells Are Enriched for TFH Cells and CD4-CTLs

(A) Single-cell transcriptomes of sorted CD154+ CD69+ memory CD4+ T cells following 6 h stimulation with virus-specific peptide megapools are displayed by

uniform manifold approximation and projection (UMAP). Seurat-based clustering of 102,230 cells colored based on cluster type.

(B) UMAPs showing memory CD4+ T cells for individual virus-specific megapool stimulation conditions (left), and normalized proportions of each virus-reactive

cells per cluster is shown (right).

(legend continued on next page)
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6 and 9 (Figure S2G and Table S2H), confirming these clusters

represent cytotoxic CD4+ T cells (CD4-CTLs).

Clusters 0, 5, and 7, which were colocalized in the uniform

manifold approximation and projection (UMAP) plot, were domi-

nated by SARS-CoV-2-reactive CD4+ T cells (Figures 2A and

2B). Cells in these clusters were uniformly enriched for tran-

scripts encoding for cytokines, surface markers, and transcrip-

tional coactivators associated with T follicular helper (TFH) cell

function (CXCL13, IL21, CD200, BTLA, and POU2AF1) (Locci

et al., 2013) (Figures 2B–2F and S2C–S2E and Table S2F). Inde-

pendent GSEA showed significant positive enrichment of TFH
signature genes in these clusters, confirming that cells in these

clusters represent circulating TFH cells (Figure S2G and Table

S2H). Bona fide TFH cells reside in the germinal center; however,

TFH cells have been described in the blood where increased

numbers have been reported during viral infections and following

vaccinations (Bentebibel et al., 2013; Koutsakos et al., 2018;

Smits et al., 2020). Thus, the increase in circulating SARS-

CoV-2-reactive TFH subsets observed in patients with COVID-

19 is consistent with published reports in acute infections. Over-

all, our single-cell transcriptomic analysis revealed substantial

differences in the nature of CD4+ T cell responses to viral infec-

tions and highlight subsets that are specifically enriched or

depleted in COVID-19 illness.

SARS-CoV-2-Reactive CD4+ T Cell Subsets Associated
with Disease Severity
We next assessed if the proportions of SARS-CoV-2-reactive

CD4+ T cells in any cluster were greater or lower in hospitalized

COVID-19 patients when compared to non-hospitalized pa-

tients. Unsupervised clustering of patients, based on the propor-

tions of SARS-CoV-2-reactive CD4+ T cells in different clusters,

showed that patients with an increased proportion of TFH cells in

cluster 0 clustered distinctly from those with increased propor-

tions of TFH cells in cluster 5 or CD4-CTL cells (cluster 6) (Fig-

ure 3A). The total frequency of SARS-CoV-2-reactive CD4+

T cells with a TFH profile (cluster 0, 5, and 7) was not significantly

different between hospitalized and non-hospitalized COVID-19

patients (Figure 3B). However, the relative proportion of TFH cells

in cluster 5 was significantly greater in hospitalized patients (se-

vere disease) compared to non-hospitalized patients (mild dis-

ease), and the inverse was observed for the proportion of TFH
cells in cluster 0 (Figures 3C and S3A and Table S2B). This

pattern was maintained irrespective of whether the patients’

samples were analyzed early (< 3 weeks from symptom onset)

or later (> 3 weeks) in the course of illness (Figure S3B). Notably,

the proportion of TFH cells in cluster 7 was not significantly

different between hospitalized and non-hospitalized COVID-19

patients (Figure S3C).
(C) Heatmap showing expression of themost significantly enriched transcripts in e

of interest versus all other cells). The top 200 transcripts are shown based on a

percentage of cells expressing selected transcript between two groups of cells c

(D) Plot shows average expression (color scale) and percent of expressing cells

(E) Violin plots showing normalized expression level (log2(CPM+1)) of TFH (top)

compared to an aggregation of remaining cells (Rest). Color indicates percentag

(F) UMAP showing TFH, CD4-CTL, TH17, and interferon (IFN) response signature

See also Figure S2 and Table S2.
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To determine the transcriptional features that differentiated

SARS-CoV-2-reactive TFH cells present in cluster 5 from those

in cluster 0, we performed single-cell differential gene expres-

sion analysis (Figure S3D and Table S3A). Transcripts encoding

for transcription factors zinc finger BED-type-containing 2

(ZBED2) and zinc finger and BTB domain-containing protein 32

(ZBTB32) were enriched in TFH cells in cluster 5 andwere also ex-

pressed at significantly higher levels in hospitalized COVID-19

patients (Figures 3D and S3D and Tables S3A and S3B).

ZBTB32, also known as PLZP, belongs to a broad-complex,

tramtrack and bric-à-brac zinc finger (BTB-ZF) family of tran-

scriptional repressors like PLZF, B-cell lymphoma 6 (BCL6),

and T-helper-inducing POZ-Kruppel-like factor (ThPOK) and

has been shown to play a role in impairing anti-viral immune re-

sponses by negatively regulating T cell proliferation, cytokine

production, and development of long-term memory cells (Piazza

et al., 2004; Shin et al., 2017). ZBED2, a novel zinc finger tran-

scription factor without a mouse ortholog, has been linked to

T cell dysfunction in the context of anti-tumor immune response

(Li et al., 2019) andmore recently shown to repress expression of

IFN target genes (Somerville et al., 2020). In support of potential

dysfunctional properties of the cells in the TFH cluster 5, we found

increased expression of several transcripts encoding for mole-

cules linked to inhibitory function, like TIGIT, LAG3, TIM3, and

PD1 (Thommen and Schumacher, 2018), and to negative regula-

tion of T cell activation and proliferation, like DUSP4 and CD70

(Huang et al., 2012; O’Neill et al., 2017) (Figures 3D and S3D

and Table S3A).

Most strikingly, TFH cells in cluster 5 expressed high levels of

cytotoxicity-associated transcripts (PRF1, GZMB) (Figures 3E,

S3D, and S3E), reminiscent of the recently described cytotoxic

TFH cells, whichwere shown to directly kill B cells and associated

with the pathogenesis of recurrent tonsillitis in children (Dan

et al., 2019). Of relevance, recent studies reported a striking

loss of germinal center B cells in the thoracic lymph nodes and

spleen of patients who died of SARS-CoV-2 infection (Kaneko

et al., 2020), as well as slightly lower SARS-CoV-2 spike protein

(S)-specific immunoglobulin M (IgM) antibodies in deceased

COVID-19 patients (Atyeo et al., 2020). On the basis of these

findings, we hypothesized that the cytotoxic TFH cells (cluster

5) observed in hospitalized COVID-19 patients may impair hu-

moral (B cell) immune responses to SARS-CoV-2. To test this as-

sociation, we assessed the correlation between the proportions

of SARS-CoV-2-reactive TFH cell subsets and immunoglobulin G

(IgG) antibody titers against the SARS-CoV-2 S1/S2 (S1 and S2

subunits), which was higher in hospitalized patients (Figures 3F,

3G, and S3G). Although the total frequency of SARS-CoV-2-

reactive TFH cells (clusters 0, 5, and 7) showed a positive corre-

lation with antibody levels in hospitalized COVID-19 patients, but
ach cluster (see Table S2F). Seurat marker gene analysis (comparison of cluster

djusted P value < 0.05, log2 fold change > 0.25 and > 10% difference in the

ompared.

(size scale) for selected marker gene transcripts in each cluster.

, TH1 (middle), and TH17 (bottom) marker transcripts in designated clusters

e of cells expressing indicated transcript.

scores for each cell.



A

B C D

E

F G

H

(legend on next page)

ll

Cell 183, 1340–1353, November 25, 2020 1345

Article



ll
Article
not in non-hospitalized COVID-19 patients (Figure 3F), the rela-

tive proportions of cytotoxic TFH cells (TFH cells in cluster 5)

showed a strong negative correlation with anti-S1/S2 antibody

levels in hospitalized COVID-19 patients (Figure 3G and Table

S3C). Conversely, the proportions of TFH cells in cluster 0 (non-

cytotoxic) were positively correlated with antibody concentra-

tions in hospitalized COVID-19 patients (Figure S3H). We noted

that the magnitude of cytotoxic TFH response (cluster 5) also

showed a significant negative correlation with the time interval

between onset of illness and sample collection, suggesting

that their association with antibody levels could be confounded

by the timing of analysis of patients’ samples (Figure 3G and Ta-

ble S3C). Furthermore, we did not observe this negative associ-

ation between cytotoxic TFH cells and anti-S1/S2 antibody levels

in non-hospitalized patients, which suggested that other mech-

anisms such as lower viral titers may explain the low levels of

anti-S1/S2 antibodies in non-hospitalized patients. To further

assess effects on B cell function, we analyzed B cells specific

for SARS-CoV-2 spike protein (S1 and S2 subunits) from nine pa-

tients with varying proportion of cytotoxic TFH cells. Notably, in

the hospitalized patients with high proportions of cytotoxic TFH
cells (patients 08, 09, and 16), we observed amuch smaller num-

ber of S1/S2-specific B cells compared to those with lower pro-

portions of these cytotoxic TFH cells (Figure S3I). Future longitu-

dinal studies that examine the kinetics of T and B cell responses

to SARS-CoV-2 are likely to provide more definitive and time-

resolved associations between cytotoxic TFH cell and antibody

responses.

Next, to characterize upstream regulators that may induce the

differentiation and maintenance of the cytotoxic TFH cells, we

performed Ingenuity Pathway analysis (IPA) of the transcripts

increased in SARS-CoV-2-reactive TFH cells in cluster 5 (cyto-

toxic) when compared to those in cluster 0 (Tables S3D and

S3E). Surprisingly, we found that type 1 and 2 IFNs emerged

as the top upstream activators of genes enriched in the cytotoxic

TFH cluster (Figure S3J and Tables S3D and S3E). GSEA

confirmed that IFN response signatures were also significantly

enriched in the cytotoxic TFH cluster (cluster 5) (Figure S3K). Sin-

gle-cell trajectory analysis showed that a large fraction of cyto-
Figure 3. SARS-CoV-2-Reactive CD4+ T Cell Subsets Associated with
(A) Unsupervised clustering of COVID-19 patients based on the proportions of

stimulation. Clusters with fewer than 5% of the total dataset are not depicted.

schemes above the heatmap.

(B) Percentage of TFH cells (clusters 0, 5, and 7) in the total SARS-CoV-2-reactive

indicate data from a single subject. Data are mean ± SEM; significance for compa

(C) Proportion of clusters 5 and 0 cells in SARS-CoV-2-reactive TFH cells (clusters

mean ± SEM; significance for comparisons was computed using Mann-Whitney

(D) Violin plots showing normalized expression level (log2(CPM+1)) of ZBTB32 and

color indicates percentage of cells expressing indicated transcript. Plots below sh

indicated clusters.

(E) Scatterplot displaying normalized co-expression level (log2(CPM+1)) between

(left) and 0 (right). Numbers indicate percentage of cells in each quadrant.

(F) Correlation between percentage of SARS-CoV-2-reactive CD4+ TFH cells and

COVID-19 patients. Correlation coefficient r and the related P value were compu

(G) Correlation between percentage of SARS-CoV-2-reactive CD4+ TFH cells form

plots) and interval between symptom onset and blood draw (right two plots) in

coefficient r and the related P value were computed using Spearman correlation

(H) Single-cell trajectory analysis of cells in cluster 5 and 0 showing pseudotime,

See also Figure S3 and Table S3.
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toxic TFH cells (cluster 5) followed a separate trajectory from

cluster 0 cells (Figure 3H), and cells in this track were enriched

for the IFN response signature. In addition, we found that tran-

scripts encoding perforin (PRF1) and the transcription factor

ZBED2 were also enriched in the cytotoxic TFH cell trajectory,

which suggested the hypothesis that ZBED2 may contribute to

the differentiation or function of cytotoxic TFH cells, although

further studies will be needed to verify this.

Massive Clonal Expansion of CD4-CTLs
While T cells with cytotoxic function are thought to predomi-

nantly consist of conventional MHC class I-restricted CD8+

T cells, MHC class II-restricted CD4+ T cells with cytotoxic

potential (CD4-CTLs) have also been reported in several viral in-

fections in humans and are associated with better clinical out-

comes (Cheroutre and Husain, 2013; Juno et al., 2017; Meckiff

et al., 2019; Weiskopf et al., 2015a). Paradoxically, in SARS-

CoV-2 infection, we find that cells in the CD4-CTL clusters (Fig-

ure 4A; cluster 6 and 9) were present at higher frequencies in

some hospitalized COVID-19 patients compared to non-hospi-

talized patients, potentially contributing to disease severity,

although we observed substantial heterogeneity in responses

among patients (Figures 4B and 3A and Table S2B).

Interrogation of the transcripts enriched in the CD4-CTL sub-

sets pointed to several interesting molecules and transcription

factors that are likely to play an important role in their mainte-

nance and effector function. These include molecules like

CD72 and GPR18 that are known to enhance T cell proliferation

and maintenance of mucosal T cell subsets, respectively (Jiang

et al., 2017; Wang et al., 2014) (Figures 4C and S4A). Additional

examples include transcription factors HOPX and ZEB2 (Figures

4C and S4A) that have been shown to positively regulate effector

differentiation, function, persistence, and survival of T cells (Al-

brecht et al., 2010; Omilusik et al., 2015). Besides cytotoxicity-

associated transcripts, the CD4-CTL subsets (clusters 6 and 9)

and cytotoxic TFH cells (cluster 5) were highly enriched for tran-

scripts encoding for a number of chemokines like CCL3 (also

known as macrophage inflammatory protein [MIP]-1a), CCL4

(MIP-1b), and CCL5 (Figures 4D and S2F); these chemokines
Disease Severity
SARS-CoV-2-reactive CD4+ T cells in different clusters following 6 h peptide

Gender and hospitalization status per patient are indicated by different color

CD4+ T cell pool for non-hospitalized and hospitalized COVID-19 patients; dots

risons was computed using Mann-Whitney U test; ns, non-significant P value.

0, 5, and 7) in non-hospitalized and hospitalized COVID-19 patients. Data are

U test; ****p < 0.0001.

ZBED2 transcripts in SARS-CoV-2-reactive cells from clusters 0, 5, and 7 (top);

ow average expression and percent of cells expressing selected transcripts in

PRF1 andGZMB transcripts in SARS-CoV-2-reactive cells present in clusters 5

S1/S2 antibody titers in 15 non-hospitalized (left) and 20 hospitalized (right)

ted using Spearman correlation; *p < 0.05.

cluster 5 as a frequency of total CD4+ TFH and S1/S2 antibody titers (left two

15 non-hospitalized and 20 hospitalized (left) COVID-19 patients. Correlation

; **p < 0.01; ***p < 0.001; ns, non-significant P value.

expression of indicated genes, and IFN response signature score.
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Figure 4. SARS-CoV-2-Reactive CD4-CTLs and Single-Cell TCR Sequence Analysis

(A) UMAPs showing Seurat-normalized expression level of PRF1, GZMB, GNLY, and NKG7 transcripts in each virus-reactive cell.

(B) Percentage of CD4-CTLs (clusters 6 and 9) in the total SARS-CoV-2-reactive CD4+ T cell pool for non-hospitalized and hospitalized COVID-19 patients; dots

indicate data from a single subject. Data are mean ± SEM; significance for comparisons was computed using Mann-Whitney U test; ns, non-significant P value..

(C) Violin plots showing normalized expression level (log2(CPM+1)) of transcription factors HOPX and ZEB2 and effector molecules CD72, GPR18, and SLAMF7

transcripts in virus-reactive cells from designated clusters (6 and 9) compared to an aggregation of remaining cells (Rest).

(D) UMAPs showing Seurat-normalized expression of CCL3, CCL4, CCL5, XCL1, and XCL2 transcripts in each virus-reactive cell.

(E) UMAP showing TCR clone size (log2, color scale) of SARS-CoV-2-reactive cells from COVID-19 patients (6 h stimulation condition).

(F) Histogram bar graph (top) displaying single-cell TCR sequence analysis of SARS-CoV-2-reactive cells. Each bar shows the number of TCRs shared between

cells from individual clusters (rows, connected by lines). Connected lines (bottom) indicates what clusters are sharing TCRs. Clusters 6 (green), 9 (blue), and 11

(pink), i.e., CD4-CTLs, are highlighted.

(legend continued on next page)
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play an important role in the recruitment of myeloid cells (neutro-

phils, monocytes, macrophages), NK cells, and T cells express-

ing C-C type chemokine receptors (CCR)1, CCR3, and CCR5

(Hughes and Nibbs, 2018). The CD4-CTL subset in cluster 6

and cytotoxic TFH cells (cluster 5) also expressed high levels of

transcripts encoding for chemokines XCL1 and XCL2 (Figures

4D, S4B, and S4C) that specifically recruit XCR1-expressing

conventional type 1 dendritic cells (cDC1) to sites of immune re-

sponses where they play a key role in promoting the CD8+ T cell

responses by antigen cross-presentation (Lei and Takahama,

2012). Overall, the transcriptomic features of SARS-CoV-2-reac-

tive CD4-CTLs and cytotoxic TFH cells suggest that they are

likely to play an important role in orchestrating immune re-

sponses by recruiting innate immune cells to enhance CD8+

T cell responses, while also directly mediating cytotoxic death

of MHC class II-expressing virally infected cells.

The recovery of paired TCR sequences from individual single

cells enabled us to link transcriptome data to clonotype informa-

tion and evaluate the clonal relationship between different CD4+

T cell subsets as well as determine the nature of subsets that

display greatest clonal expansion (Tables S4A and S4B). In

SARS-CoV-2 infection, hospitalized patients were characterized

by large clonal expansion of the virus-reactive CD4+ T cells

(mean of 55.8%); in contrast, in non-hospitalized patients, recov-

ered TCRs were less clonally expanded (mean of 38.0%) (Fig-

ure S4D). Among SARS-CoV-2-reactive CD4+ T cells, CD4-

CTL subsets (clusters 6 and 9) displayed the greatest clonal

expansion (> 75% of cells were clonally expanded), indicating

preferential expansion and persistence of CD4-CTLs in some

patients with COVID-19 illness (Figure 4E and Tables S4A and

S4B). Analysis of clonally expanded SARS-CoV-2-reactive

CD4+ T cells from COVID-19 patients showed extensive sharing

of TCRs between cells in clusters 6 and 9, as well as those in

cluster 11 (Figure 4F), which, notably, was enriched for the

expression of XCL1 and XCL2 transcripts and also for cytotox-

icity-associated transcripts, albeit at lower levels compared to

the established CD4-CTL clusters (Figures 4D and S4C and Ta-

ble S2F). Thus, cells in cluster 11 are likely to be an intermediate

transition population, a hypothesis supported by single-cell tra-

jectory analysis that showed potential temporal connection and

transcriptional similarity between these subsets (Figure 4G).

Initial reports in patients with acute COVID-19 have suggested

that circulating T cells that express activation markers such as

CD38, HLA-DR, and PD-1 ex vivo (without in vitro peptide stim-

ulation) are enriched for SARS-CoV-2-reactive T cells (Braun

et al., 2020; Thevarajan et al., 2020). However, a recent study

indicated that bystander T cells reactive to other antigens (e.g.,

CMV and EBV) can also express these activation markers, likely

to be non-specifically activated without TCR engagement (Se-

kine et al., 2020). Thus, studies in active SARS-CoV-2 infection

that just examine T cells expressing activation markers are not

likely to reveal the full potential effector function of SARS-CoV-

2-reactive T cells. To determine the specificity and molecular

features of such T cells expressing activation markers ex vivo,
(G) Single-cell trajectory analysis showing relationship between cells in different

from COVID-19 patients (6 h stimulation condition) are shown.

See also Figure S4 and Table S4.
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we isolated CD38high HLA-DRhigh PD-1+ memory CD4+ T cells

from hospitalized COVID-19 patients and performed single-cell

transcriptome and TCR sequence analysis of >20,000 cells.

CD4+ T cells expressing activation markers ex vivo clustered

distinctly from the SARS-CoV-2-reactive CD4+ T cells, which

were isolated following in vitro stimulation with SARS-CoV-2

peptides for 6 h (Figure S4E and Tables S2C–S2E, S4C, and

S4D). TheCD4+ T cells expressing activationmarkers ex vivo dis-

played reduced activation and TFH signature scores and had

lower expression of transcripts encoding effector cytokines

(IFN-g, IL-2, TNFa), activation markers (OX40), and TFH associ-

ated genes (CD200, POU2AF1) (Figures S4F and S4G). Further-

more, by comparison of single-cell TCR sequences, we found

that 33.8% of SARS-CoV-2-reactive CD4+ T cells shared clono-

types with CD4+ T cells expressing activation markers ex vivo,

and 12.2% of CD4+ T cells expressing activation markers

ex vivo shared their TCRs with SARS-CoV-2-reactive CD4+

T cells (Figure S4H and Tables S4E and S4F). Our findings indi-

cate that using surface activation markers as a strategy to enrich

for SARS-CoV-2-reactive T cells without SARS-CoV-2 peptide

stimulation (ARTE assay) may not capture the full spectrum of

SARS-CoV-2-reactive T cells, like TFH biology and their cytokine

profiles, although the transcriptomic features of such in vitro acti-

vated cells may be affected by antigen-presenting cells present

in the cultures.

SARS-CoV-2-Reactive TREG Cells Are Reduced in
Hospitalized COVID-19 Patients
In order to capture SARS-CoV-2-reactive CD4+ T cells that may

not upregulate the activation markers (CD154 and CD69) after

6 h of in vitro stimulation with SARS-CoV-2 peptide pools, we

stimulated PMBCs from the same cultures for a total of 24 h

(see STARMethods) and captured cells based on co-expression

of activation markers CD137 (4-1BB) and CD69, a strategy that

allowed us to additionally capture antigen-specific regulatory

T cells (TREG) (Bacher et al., 2016) (Figures 5A andS5A). Our anal-

ysis of a total of 38,519 single-cell CD4+ T cell transcriptomes re-

vealed 6 distinct clusters (Figures 5A–5C and Tables S5A–S5C).

The TFH subset (cluster D) was detectable at relatively lower fre-

quencies in the 24 h condition, though they represented the ma-

jor CD4+ T cell subsets in the 6 h stimulation condition (Figures

2A and 5A). Consistent with delayed kinetics of activation of cen-

tral memory T (TCM) cells, we identified a higher proportion of

CD4+ T cells expressing transcripts linked to central memory

cells (CCR7, IL7R, and TCF7) (cluster C) (Figures 2A, 5A, and 5C).

The largest cluster (cluster A) was characterized by high

expression of FOXP3 transcripts, which encodes for the TREG
master transcription factor forkhead box P3 (FOXP3) (Rudensky,

2011) (Figures 5A–5D and Table S5C). Independent GSEA anal-

ysis showed significant positive enrichment of TREG signature

genes in this cluster, suggesting that cells in this cluster repre-

sented SARS-CoV-2-reactive TREG cells (Figure S5B and Table

S2H). Notably, the proportion of cells in the TREG cluster was

significantly lower in hospitalized COVID-19 patients compared
clusters (line), constructed using Monocle 3. Only SARS-CoV-2-reactive cells
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Figure 5. Analysis of SARS-CoV-2-Reactive CD4+ T Cells from 24 h Stimulation Condition

(A) Single-cell transcriptomes of sorted CD137+ CD69+ memory CD4+ T cells following 24 h stimulation with SARS-CoV-2-specific peptide megapools are

displayed by UMAP. Seurat-based clustering of 38,519 cells colored based on cluster type.

(B) Heatmap showing expression of the most significantly enriched transcripts in each cluster (see Table S5C). Seurat marker gene analysis—comparison of

cluster of interest versus all other cells—shown are top 200 transcripts with adjusted P value < 0.05, log2 fold change > 0.25, and > 10% difference in the

percentage of cells expressing differentially expressed transcript between two groups compared.

(legend continued on next page)

ll

Cell 183, 1340–1353, November 25, 2020 1349

Article



ll
Article
to non-hospitalized patients (Figures 5D, 5E, and S5C and Ta-

bles S5A and S5B), suggesting a potential defect in the genera-

tion of immunosuppressive SARS-CoV-2-reactive TREG cells in

hospitalized patients. Consistent with our data from 6 h stimula-

tion condition, we found that cells in the CD4-CTL clusters (clus-

ters B and F) were present at higher frequencies in some hospi-

talized COVID-19 patients (Figures 5E, 5F, and S5C and Tables

S5A and S5B). They also showed the greatest clonal expansion

compared to other clusters (Figures S5D an S5E and Table S4B),

suggesting potential importance of the CD4-CTL subset in

driving immune responses to SARS-CoV-2 infection.

Correlation analysis of the proportion of CD4-CTLs and TREG in

our 24 h dataset revealed a significant negative correlation,

which indicated that patients with an impaired TREG response

to SARS-CoV-2 mounted a stronger CD4-CTL response (Fig-

ure 5G and Table S5D). A recent study in amurinemodel showed

that cytotoxic TFH responses are curtailed by a subset of TREG
cells called follicular regulatory T (TFR) cells (Xie et al., 2019).

To determine if such association is observed in our datasets,

we first quantified TFR cells based on the expression of IL1R2

(Eschweiler et al., 2020) from cells in the TREG cluster A (Fig-

ure 5H). Independent GSEA confirmed that IL1R2-expressing

cells were significantly enriched for follicular and TFR signature

genes (Figure S5F), which indicated they represent TFR cells.

Over 40% of the cells in the TREG cluster expressed IL1R2; this

indicates that a strong circulating TFR response is generated in

SARS-CoV-2 infection. Importantly, the proportion of TFR cells

was significantly lower in hospitalized COVID-19 patients (Fig-

ure 5H) and showed a modest negative correlation with the pro-

portion of cytotoxic TFH cells (Figure 5I and Table S5E). On the

basis of these findings and the known function of these TREG
subsets, we hypothesize that the magnitude of TREG and TFR re-

sponses to SARS-CoV-2 are likely to modulate cytotoxic CD4+ T

and B cell responses in COVID-19 illness, although further

studies are required to confirm this hypothesis.

DISCUSSION

There is an urgent need to better understand the molecular de-

terminants of protective and pathogenic immune responses in

COVID-19. Given the importance of CD4+ T cells in anti-viral im-
(C) Plot showing average expression (color scale) and percent of expression (siz

(D) UMAP showing Seurat-normalized expression level of FOXP3 transcripts (lef

T cell pool for non-hospitalized and hospitalized COVID-19 patients; dots indicat

comparisons was computed using Mann-Whitney U test; ***p < 0.001.

(E) Average frequency of cells per cluster from hospitalized and non-hospitalized

(F) UMAP showing CD4-CTL signature score for each cell (left) and percentage of

for non-hospitalized and hospitalized COVID-19 patients; dots indicate data from

was computed using Mann-Whitney U test; ns, non-significant P value.

(G) Correlation between percentage of SARS-CoV-2-reactive CD4+ TREG and p

hospitalized (left) COVID-19 patients. Correlation coefficient r and the related P v

(H) UMAP showing Seurat-normalized expression level of IL1R2 transcripts (left

SARS-CoV-2-reactive CD4+ T cell pool for non-hospitalized and hospitalized COV

± SEM; significance for comparisons were computed using Mann-Whitney U tes

(I) Correlation between percentage of SARS-CoV-2-reactive cytotoxic TFH cells (p

and percentage of TFR cells (IL1R2-expressing cells in cluster A) in 25 COVID-1

relation; ns, non-significant P value..

See also Figure S5 and Table S5.
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munity, studying this adaptive immune cell population is likely to

provide insights into the nature of host responses observed in

patients with COVID-19. Current studies on antigen-specific

CD4+ T cells are limited to flow-cytometry-based phenotyping

of SARS-CoV-2-responding cells using limited sets of markers

(Braun et al., 2020; Grifoni et al., 2020; Thieme et al., 2020), which

thus fail to comprehensively capture the breadth of CD4+ T cells

that respond to SARS-CoV-2. Unbiased approaches employing

single-cell RNA-seq assays can provide these insights; however,

to our knowledge, single-cell studies to date have only examined

total CD4+ T cells in blood or bronchoalveolar lavage specimens

from patients with COVID-19 illness (Vabret et al., 2020). Due to

the rarity of SARS-CoV-2-specific cells in the total CD4+ T cell

populations, signals from these cells are likely to be masked

by the relative abundance of other non-antigen-specific CD4+

T cells. Furthermore, despite a profusion of single-cell transcrip-

tomic studies, the analysis of virus-specific or any antigen-spe-

cific T cells, as such in humans, has lagged behind, partly due

to the challenges imposed by methods to isolate antigen-spe-

cific T cells in sufficient numbers. Here, we have overcame these

issues and performed single-cell transcriptomic study of

>100,000 virus-reactive CD4+ T cells, focused on SARS-CoV-

2-reactive cells from 40 COVID-19 patients with varying disease

severity, and compared their molecular profile to CD4+ T cells

reactive to other common respiratory viruses.

We find remarkable heterogeneity in the nature of CD4+ T cell

subsets that are reactive to SARS-CoV-2 and other respiratory

viruses and across individual patients and with differing severity

of COVID-19. Polyfunctional TH1 cells, which are abundant

among FLU-reactive CD4+ T cells and considered to be protec-

tive (Seder et al., 2008), were present in lower frequencies

among SARS-CoV-2-reactive CD4+ T cells. Lower frequencies

of TH17 cells were also observed among SARS-CoV-2-reactive

CD4+ T cells. In contrast, we find increased proportions of

SARS-CoV-2-reactive cytotoxic TFH cells in hospitalized

COVID-19 patients. Cytotoxic TFH cells can kill B cells and

dampen germinal center responses (Xie et al., 2019), and to

our knowledge this is the first description of circulating cytotoxic

TFH cells in humans. Importantly, the magnitude of the cytotoxic

TFH response to SARS-CoV-2 was stronger early in the course of

illness and negatively correlated with antibody levels to SARS-
e scale) of selected marker gene transcripts in each cluster.

t). Percentage of TREG cells (cluster A) in the total SARS-CoV-2-reactive CD4+

e data from a single subject (right plot). Data are mean ± SEM; significance for

COVID-19 patients.

CD4-CTLs (clusters B and F) in the total SARS-CoV-2-reactive CD4+ T cell pool

a single subject (left plot). Data are mean ± SEM. Significance for comparisons

ercentage of SARS-CoV-2-reactive CD4-CTLs in 13 non-hospitalized and 17

alue were computed using Spearman correlation; ****p < 0.0001.

) and percentage of TFR cells (IL1R2-expressing cells in cluster A) in the total

ID-19 patients; dots indicate data from a single subject (left plot). Data aremean

t; ***p < 0.001.

roportion of TFH cells in cluster 5, from 6 h stimulation dataset as in Figure 3C)

9 patients (left). Correlation coefficient r was computed using Spearman cor-
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CoV-2 S. Recent reports have found that patients with fatal

COVID-19 infections have abrogated germinal center B cell re-

sponses (Kaneko et al., 2020) and very slightly reduced levels

of S-specific IgM antibodies (Atyeo et al., 2020), the mechanistic

basis of which is not known. Our findings of strong cytotoxic TFH
responses early in the illness may provide the link to defects in B

cells responses in some patients with severe and fatal COVID-19

illness.

Another striking observation is the abundance in SARS-CoV-

2-reactive CD4+ T cells of CD4-CTLs that express high levels

of transcripts encoding for multiple chemokines (XCL1, XCL2,

CCL3, CCL4, and CCL5), particularly from some hospitalized

COVID-19 patients. This suggests that the CD4-CTL responses

in COVID-19 illness may be linked to pathogenesis, although

further studies in animal models and large-scale association

studies in COVID-19 patients are required to verify or refute

this hypothesis. Notably, some hospitalized COVID-19 patients

showed impaired TREG response to SARS-CoV-2, and such pa-

tients mounted a strong CD4-CTL response, raising another

interesting association that warrants testing in larger studies.

Limitations and Future Directions
The limitation of this study is the relatively small sample size

considering the heterogeneity observed in the nature of CD4+

T cell responses to SARS-CoV-2. Analysis of patients in the

acute and convalescent phase of illness fails to discriminate

effector and long-term memory CD4+ T cell responses. Serial

sampling of the same patients in the recovered phase is likely

to provide insights into the nature and persistence of memory

CD4+ T cell responses to SARS-CoV-2.

Because the negative association between cytotoxic TFH cell

responses and anti-spike antibody levels was not observed in

non-hospitalized patients, the potential role of cytotoxic TFH cells

in antibody responses cannot be generalized. Furthermore, the

higher proportions of cytotoxic TFH cells in hospitalized patients

may merely reflect higher viral titers and IFN production. Longi-

tudinal studies are required to clarify the association between

aberrant cytotoxic TFH responses and their impact on modu-

lating the magnitude and duration of protective antibody re-

sponses to SARS-CoV-2. The role of CD4-CTLs in protective

or pathogenic immune responses to SARS-CoV-2 needs to be

clarified in pre-clinical models. Future studies in COVID-19 pa-

tients should also examine the relationships between the sub-

sets of SARS-CoV-2-reactive CD4+ T cells in the blood and those

observed in the mucosal tissues where control of SARS-CoV-2

infection is critical.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD3 Biolegend SK7; RRID: AB_10640737

CD3 Biolegend UCHT1; RRID: AB_314060

CD4 Biolegend OKT4; RRID: AB_2561866

CD8a Biolegend RPA-T8; RRID: AB_314134

CD8b eBioscience SIDI8BEE; RRID: AB_2762625

CD14 Biolegend HCD14; RRID: AB_830693

CD14 Biolegend M5E2; RRID: AB_493695

CD19 Biolegend HIB19; RRID: AB_314248

CD27 Biolegend M-T271; RRID: AB_2561825

CD38 Biolegend HIT-2; RRID: AB_2072782

CD38 Biolegend SK1; RRID: AB_2564510

CD40 (blocking) Miltenyi Biotec HB14; RRID: AB_10839704

CD45 BD Bioscience HI30; RRID: AB_2744399

CD45RA Biolegend HI100; RRID: AB_493763

CD56 Biolegend HCD56; RRID: AB_10896424

CD69 Biolegend FN50; RRID: AB_2563696

CD137 (4-1BB) Biolegend 4B4-1; RRID: AB_2566258

CD137 (4-1BB) Miltenyi Biotec REA765; RRID: AB_2654994

CD138 Biolegend MI15; RRID: AB_2562899

CD154 (CD40L) Biolegend 24-31; RRID: AB_314829

CD154 (CD40L) Miltenyi Biotec 5C8; RRID: AB_2751206

CD197 (CCR7) BD Bioscience 3D12; RRID: AB_2744306

CD279 (PD-1) BD Bioscience EH12.1; RRID: AB_2739399

CD298 (b2M; TotalSeq-C) Biolegend LNH-94; 2M2; RRID: AB_2801031,

AB_2801032, AB_2801033, AB_2820042,

AB_2820043, AB_2820044, AB_2820045,

AB_2820046

HLA-DR BD Bioscience G46-6; RRID: AB_2732846

IgD Biolegend IA6-2; RRID: AB_2563269

IgG Biolegend M1310G05; RRID: AB_2565788

IgM Biolegend MHM-88; RRID: AB_2562916

Ki-67 BD Bioscience B56; RRID: AB_2732007

Nucleoprotein Sino Biological

S1/S2 Protein Sino Biological

Biological Samples

Cryopreserved PBMCs from hospitalized

and non-hospitalized COVID-19 patients

Southampton University Hospital

Cryopreserved PBMCs from healthy non-

exposed subjects

San Diego Blood Bank

Cryopreserved PBMCs from subjects

before and/or after receiving flu vaccination

La Jolla Institute for Immunology

Chemicals, Peptides, and Recombinant Proteins

Peptivator SARS-CoV-2 Prot M (membrane

glycoprotein)

Miltenyi Biotec 130-126-703

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Peptivator SARS-CoV-2 Prot S (spike

glycoprotein)

Miltenyi Biotec 130-126-701

SARS-CoV-2 megapools (CD4-R and

CD4-S)

La Jolla Institute for Immunology - Sette

Human Parainfluenza (HPIV) megapool La Jolla Institute for Immunology - Sette

Human Metapneumovirus (HMPV)

megapool

La Jolla Institute for Immunology - Sette

Human Influenza (HA) megapool La Jolla Institute for Immunology - Sette

Fixable Viability Dye eFluor 780 eBioscience C34557

Deposited Data

Sequencing Data Gene Expression Omnibus GSE152522

Software and Algorithms

Flowjo v10 Flowjo https://www.flowjo.com/

Prism 8 Graphpad https://www.graphpad.com

Cellranger v3.1.0 10x Genomics https://www.10xgenomics.com

Seurat v3.1.5 (Stuart et al., 2019) https://www.satijalab.org/seurat

R v3.6.1 R Core team www.R-project.org

UpSetR v1.4.0 (Conway et al., 2017) https://github.com/hms-dbmi/UpSetR

Monocle3 v0.2.1 (Trapnell et al., 2014) https://cole-trapnell-lab.github.io/

monocle3/

MAST v1.10.0 (Finak et al., 2015) https://www.bioconductor.org/packages/

release/bioc/html/MAST.html

FGSEA (Korotkevich et al., 2019) https://bioconductor.org/packages/

release/bioc/html/fgsea.html

Other

Chromium Single Cell 5¿ Feature Barcode

Library

10x Genomics 1000080

Chromium Single Cell 5¿ Library & Gel

Bead Kit

10x Genomics 1000006

Chromium Single Cell 5¿ Library

Construction Kit

10x Genomics 1000020

Chromium Single Cell C(D)J Enrichment Kit,

Human T Cell

10x Genomics 1000005

Chromium Single Cell Chip A Kit 10x Genomics 1000151

Chromium i7 Multiplex Kit 10x Genomics 120262

Chromium i7 Multiplex Kit N, Set A 1000084

TexMACS Miltenyi Biotec 130-097-19
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents may be directed to the lead contact, Pandurangan Vijayanand (vijay@lji.org).

Materials availability
SARS-CoV-2, Human Influenza (FLU), Parainfluenza (HPIV) and Metapneumovirus (HMPV) epitope pools utilized in this paper will be

made available to the scientific community upon request and execution of a material transfer agreement (MTA) directed to Dr. Ales-

sandro Sette (alex@lji.org). There might be restrictions on the availability of the peptide reagents due to cost and limited quantity

Data and Code availability
Scripts are available in our repository onGitHub (https://github.com/vijaybioinfo/COVID19_2020). Sequencing data for this study has

been deposited onto the Gene Expression Omnibus with the accession number GSE152522.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

COVID-19 patients and samples
Ethical approval for this study from the Berkshire Research Ethics Committee 20/SC/0155 and the Ethics Committee of La Jolla Insti-

tute for Immunology (LJI) was in place. Written consent was obtained from all subjects. 22 hospitalized patients in a large teaching

hospital in the south of England with SARS-CoV-2 infection, confirmed by reverse transcriptase polymerase chain reaction (RT-PCR)

assay for detecting SARS-CoV-2, between April-May 2020 were recruited to the study. A further cohort of 18 participants consisting

of healthcare workers who were not hospitalized with COVID-19 illness, confirmed based on RT-PCR assay or serological evidence

of SARS-CoV-2 antibodies, were also recruited over the same period. All subjects provided up to 80mL of blood for research studies.

Clinical and demographic data were collected from patient records for hospitalized patients including comorbidities, blood results,

drug intervention, radiological involvement, thrombotic events, microbiology, and virology results (Table S1A). The 22 hospitalized

patients had a median age of 60 (33-82), 17 of these patients (77%) were men and this cohort consisted of 16 (73%) White

British/White Other, 4 (18%) Indian, and 2 (9%) Black British patients. All hospitalized patients survived to discharge from hospital.

All hospitalized patients were still symptomatic at time of blood collection, whereas some of the non-hospitalized patients (4/18) were

symptom free (Table S1A). The 18 non-hospitalized participants had a median age of 39 (22-50), 8 (44%) of these participants were

men and this cohort consisted of 15 (83%)White British/White Other, 2 (11%) Arab, and 1 (6%) Chinese participant. We noted that the

median age of the non-hospitalized patients was lower than the hospitalized COVID-19 patients.

Healthy controls
To study HPIV, HMPV, and SARS-CoV-2-reactive CD4+ T cells from healthy non-exposed subjects (pre-COVID-19 pandemic), we

utilized de-identified buffy coat samples from 5 healthy adult donors who donated blood at the San Diego Blood Bank before

2019, prior to the Covid-19 pandemic. Donors were considered to be in good health, free of cold or flu-like symptoms and with

no history of Hepatitis B or Hepatitis C infection. The median age was 50 (32-71) and 4 of these patients (80%) were men. To study

FLU-reactive cells, we obtained de-identified blood samples from 8 donors enrolled in the LJI Normal Blood Donor Program before

and/or after (12 - 14 days) receiving the FLUCELVAX vaccine (September andOctober 2019). Themedian agewas 37 (26-57) and 5 of

these patients (63%) were women. Approval for the use of this material was obtained from the LJI Ethics Committee.

METHOD DETAILS

PBMC processing
Peripheral blood mononuclear cells (PBMCs) were isolated from up to 80ml of anti-coagulated blood by density centrifugation over

Lymphoprep (Axis-Shield PoC AS, Oslo, Norway) and cryopreserved in 50% decomplemented human antibody serum, 40% com-

plete RMPI 1640 medium and 10% DMSO.

SARS-CoV-2 peptide pools
Pools of lyophilized peptides covering the immunodominant sequence of the spike glycoprotein and the complete sequence of the

membrane glycoprotein of SARS-CoV-2 (15-mer sequences with 11 amino acids overlap) were obtained from Miltenyi Biotec

(Thieme et al., 2020) resuspended and stored according to the manufacturer’s instructions.

SARS-CoV-2 antibody testing
The LIAISON SARS-CoV-2 S1/S2 IgG (DiaSorin S.p.A., Saluggia, Italy) was utilized as per the manufacturer’s instructions to obtain

quantitative antibody results from plasma samples via an indirect chemiluminescence immunoassay (CLIA) in a United Kingdom

Accreditation Service (UKAS) diagnostic laboratory at University Hospital Southampton. Sample results were interpreted as positive

(R 15 AU/mL), Equivocal (R 12.0 and < 15.0 AU/mL) and negative (< 12 AU/mL).

SARS-CoV-2 spike protein-specific B cell responses
To assess the level of SARS-CoV-2 S1/S2-specific B cells, cells were prepared in staining buffer (PBSwith 2%FBS and 2mMEDTA),

FcgR blocked (clone 2.4G2, BD Biosciences), stained with indicated primary antibodies and biotinylated S1/S2 proteins (Sino Bio-

logical) for 30 min at 4�C; washed, and subsequently stained with streptavidin-BV421. Patients 10, 24 and 49 were analyzed on a

different day with a lower intensity violet laser and required different gating.

Epitope Megapool of peptide (MP) design
The Human Parainfluenza (HPIV) and Metapneumovirus (HMPV) CD4+ T cell peptide megapools (MPs) were produced by sequential

lyophilization of viral-specific epitopes as previously described (Carrasco Pro et al., 2015, Weiskopf et al., 2015b). Full lists of the viral

protein sequences derived from the uniprot database and used for the HPIV and HMPVMP designs are available in Table S1F. T cell

prediction was performed using TepiTool tool, available in identification epitope database analysis resources (IEDB-AR, LJI),

applying the 7-allele prediction method and a median cutoff %20 (Dhanda et al., 2019, Paul et al., 2015, Paul et al., 2016). For the

HA-influenza MP, we selected 177 experimentally defined epitopes, retrieved by querying the IEDB database (www.IEDB.org) on
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07/12/19 with search parameters ‘‘positive assay only, No B cell assays, No MHC ligand assay, Host: Homo Sapiens and MHC re-

striction class II.’’ The list of epitopes was enriched with predicted peptides derived from the HA sequences of the vaccine strains

available in 2017-2018 and 2018-2019 (A/Michigan/45/2015(H1N1), B/Brisbane/60/2008, A/Hong_Kong/4801/2014(H3N2), A/Mich-

igan/45/2015(H1N1), A/Alaska/06/2016(H3N2), B/Iowa/06/2017, and B/Phuket/3073/2013). The resulting peptides were then clus-

tered using the IEDB cluster 2.0 tool and the IEDB recommended method (cluster-break method) with a 70% cut off for sequence

identity applied (Dhanda et al., 2019, Dhanda et al., 2018) (Table S1E). Peptides were synthesized as crudematerial (A&A, San Diego,

CA), resuspended in DMSO, pooled according to eachMP composition and finally sequentially lyophilized (Carrasco Pro et al., 2015).

For screening healthy non-exposed subjects (samples provided before the current pandemic) who cross-react to SARS-CoV-2, we

screened 20 healthy non-exposed subjects using SARS-CoV-2 peptide CD4-R and CD4-S pools, as described (Grifoni et al., 2020).

Antigen-reactive T cell enrichment (ARTE) assay
Enrichment and FACS sorting of virus-reactive CD154+ CD4+ memory T cells following peptide pool stimulation was adapted from

Bacher et al. 2016 (Bacher et al., 2016). Briefly, PBMCs from each donor, were thawed, washed, plated in 24-well culture plates at a

concentration of 53 106 cells/mL in 1 mL of serum-free TexMACSmedium (Miltenyi Biotec) and left overnight (5%CO2, 37
�C). Cells

were stimulated by the addition of individual virus-specific peptide pools (1 mg/mL) for 6 h in the presence of a blocking CD40

antibody (1 mg/mL; Miltenyi Biotec). For subsequent MACS-based enrichment of CD154+, cells were sequentially stained with fluo-

rescence-labeled surface antibodies (antibody list in Table S1G), Cell-hashtag TotalSeq-C antibody (0.5 mg/condition), and a biotin-

conjugated CD154 antibody (clone 5C8; Miltenyi Biotec) followed by anti-biotin microbeads (Miltenyi Biotec). Labeled cells were

added to MS columns (Miltenyi Biotec) and positively selected cells (CD154+) were eluted and used for FACS sorting of CD154+

memory CD4+ T cells. The flow-through from the column was collected and re-plated to harvest cells responding 24 h after peptide

stimulation. Analogous to enrichment for CD154+, CD137-expressing CD4+ memory T cells were positively selected by staining with

biotin-conjugated CD137 antibody (clone REA765; Miltenyi Biotec) followed by anti-biotin MicroBeads and applied to a newMS col-

umn. Following elution, enriched populations were immediately sorted using a FACSAria Fusion Cell Sorter (Becton Dickinson) based

on dual expression of CD154 and CD69 for the 6 h stimulation condition, and CD137 and CD69 for the 24 h stimulation condition. The

gating strategy used for sorting is shown in Figures S1A and S4B. All flow cytometry data were analyzed using FlowJo software

(version 10).

Cell isolation and single-cell RNA-seq assay (10x platform)
For combined single-cell RNA-seq and TCR-seq assays (10x Genomics), a maximum of 60,000 virus-reactive memory CD4+ T cells

from up to 8 donors were pooled by sorting into low retention 1.5 mL collection tubes, containing 500 ml of a 1:1 solution of PBS:FBS

supplemented with recombinant RNase inhibitor (1:100, Takara). For healthy donors, when possible, equal numbers of cells were

isolated from each donor and pooled before 10x Genomics single-cell RNA-seq experiments. For analysis of FLU-reactive CD4+

T cell responses, we sequenced paired pre- and post-vaccination samples from 4 donors and supplemented this with 2 non-paired

samples for both pre- and post-vaccination. Samples from both pre- and post-vaccination were pooled for analysis of FLU-reactive

CD4+ T cells. Following sorting, ice-cold PBS was added to make up to a volume of 1400 ml. Cells were then centrifuged for 5 min

(600 g at 4 �C) and the supernatant was carefully removed leaving 5 to 10 ml. 25 ml of resuspension buffer (0.22 mm filtered ice-cold

PBS supplementedwith ultra-pure bovine serum albumin; 0.04%, Sigma-Aldrich) was added to the tube and the pellet was gently but

thoroughly resuspended. Following careful mixing, 33 ml of the cell suspension was transferred to a PCR-tube for processing as per

the manufacturer’s instructions (10x Genomics).

Briefly, single-cell RNA-sequencing library preparation was performed as per the manufacturer’s recommendations for the 10x

Genomics 5’ TAG v1.0 chemistry with immune profiling and cell surface protein technology. Both initial amplification of cDNA and

library preparation were carried out with 13 cycles of amplification; V(D)J and cell surface protein libraries were generated corre-

sponding to each 5’’ TAG gene expression library using 9 cycles and 8 cycles of amplification, respectively. Libraries were quantified

and pooled according to equivalent molar concentrations and sequenced on Illumina NovaSeq6000 sequencing platform with the

following read lengths: read 1 – 101 cycles; read 2 – 101 cycles; and i7 index - 8 cycles.

Single-cell transcriptome analysis
Reads from single-cell RNA-seq were aligned and collapsed into UniqueMolecular Identifiers (UMI) counts using 10x Genomics’ Cell

Ranger software (v3.1.0) and mapped to GRCh37 reference (v3.0.0) genome. Hashtag UMI counts for each TotalSeq-C antibody

capture library were generated with the Feature Barcoding Analysis pipeline from Cell Ranger. To demultiplex donors, UMI counts

of cell barcodes were first obtained from the raw data output, and only cells with at least 100 UMI for the hashtag with the highest UMI

counts were considered for donor assignment. Donor identities were inferred byMULTIseqDemux (autoThresh = TRUE andmaxiter =

10) from Seurat (v3.1.5) using the UMI counts. Each cell barcode was assigned a donor ID, marked as a Doublet or having a Negative

enrichment. Cells were re-classified as doublets if the ratio of UMI counts between the top 2 barcodes was less than 3. Cells labeled

as Doublet or Negative were removed from downstream analyses. Raw 10x data were independently aggregated using Cell Ranger’s

aggr function (v3.1.0). Donors P28 and P48 were not stained with hashtag antibodies and therefore did not contribute to any donor-

specific data. The merged data was transferred to the R statistical environment for analysis using the package Seurat (v3.1.5) (Stuart

et al., 2019). To further minimize doublets and to eliminate cells with low quality transcriptomes, cells expressing < 800 and > 4400
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unique genes, < 1500 and > 20,000 total UMI content, and > 10%ofmitochondrial UMIs were excluded. The summary statistics for all

the single-cell transcriptome libraries are provided in Table S2C-E and indicate good quality data with no major differences in quality

control metrics across multiple batches, where batches are groups of donors whose libraries were sequenced together (Figure S2A).

This procedure was independently applied for data from CD4+ T cells stimulated for 0 and 6 h, 6 and 24 h.

For single-cell transcriptome analysis only genes expressed in at least 0.1%of the cells were included. The transcriptome data was

then log-transformed and normalized (by a factor of 10,000) per cell, using default settings in Seurat software (Stuart et al., 2019).

Variable genes with a mean UMI expression greater than 0.01 and explaining 25% of the total variance were selected using the Vari-

ance Stabilizing Transformation method, as described (Stuart et al., 2019). Transcriptomic data from each cell was then further

scaled by regressing the number of UMI-detected and percentage of mitochondrial counts. For data from CD4+ T cells stimulated

for 6 h, principal component analysis was performed using the variable genes, and based on the standard deviation of PCs in the

‘‘elbow plot,’’ the first 38 principal components (PCs) were selected for further analyses. Cells were clustered using the FindNeigh-

bors and FindClusters functions in Seurat with a resolution of 0.6. The robustness of clustering was independently verified by other

clustering methods and by modifying the number of PCs and variable genes utilized for clustering. Analysis of clustering patterns

across multiple batches revealed no evidence of strong batch effects (Figure S2A). For data from CD4+ T cells stimulated for 24

h, the first 16 PCs were selected for further analyses. Cluster 6 (G) in the 24 h dataset was merged with cluster 0 (A) after being iden-

tified as TREG. For 0 and 6 h aggregation analysis, 30 PCs were taken. Finally, cells were clustered using the FindNeighbors and

FindClusters functions in Seurat with a resolution of 0.6 and 0.2 for 6 and 0 h aggregation and 24 h, respectively. Further visualizations

of exported normalized data such as UMAP or ‘‘violin’’ plots were generated using the Seurat package and custom R scripts. Violin

shape represents the distribution of cell expressing transcript of interest (based on a Gaussian Kernel density estimation model) and

are colored according to the percentage of cells expressing the transcript of interest.

Single-cell differential gene expression analysis
Pairwise single-cell differential gene expression analysis was performed using the MAST package in R (v1.8.2) (Finak et al., 2015)

after conversion of data to log2 counts per million (log2(CPM + 1)). A gene was considered differentially expressed when Benja-

mini-Hochberg adjusted P-value was < 0.05 and a log2 fold change was more than 0.25. For finding cluster markers (transcripts en-

riched in a given cluster) the function FindAllMarkers from Seurat was used.

Gene Set Enrichment Analysis and Signature Module Scores
GSEA scores were calculated with the package fgsea in R using the signal-to-noise ratio (or the log2 fold change for cluster 5 versus

cluster 0 comparison) as a metric. Gene sets were limited by minSize = 3 and maxSize = 500. Normalized enrichment scores were

presented as GSEA plots. Signature module scores were calculated with AddModuleScore function, using default settings in Seurat.

Briefly, for each cell, the score is defined by the mean of the signature gene list after the mean expression of an aggregate of control

gene lists is subtracted. Control gene lists were sampled (same size as the signature list) from bins created based on the level of

expression of the signature gene list. Gene lists used for analysis are provided in Table S2H.

Single-cell trajectory analysis
The ‘‘branched’’ trajectory was constructed using Monocle 3 (v0.2.1, default settings) (Trapnell et al., 2014) with the number of UMI,

percentage of mitochondrial UMI as the model formula and including the highly variable genes from Seurat for consistency. After

setting a single partition for all cells, the cell-trajectory was projected on the PCA and UMAP generated from Seurat analysis. The

‘root’ was selected by the get_earliest_principal_node function provided in the package. Monocle 3 alpha was used to analyze clus-

ter 0 and 5 using the DDRTree algorithm for dimensional reduction after selecting the top 500 highly variable genes with Seurat.

T cell receptor (TCR) sequence analysis
Reads from single-cell V(D)J TCR sequence enriched libraries (Table S2D) were processed with the vdj pipeline from Cell Ranger

(v3.1.0 and human annotations reference GRCh38, v3.1.0, as recommended). In brief, the V(D)J transcripts were assembled and their

annotations were obtained for each independent library. In order to perform combined analysis of single-cell transcriptome and TCR

sequence from the same cells, V(D)J libraries were first aggregated using a custom script. Then cell barcode suffixes from these li-

braries were revised according to the order of their gene expression libraries. Unique clonotypes, as defined by 10x Genomics as a

set of productive Complementarity-Determining Region 3 (CDR3) sequences, were identified across all library files and their fre-

quency and proportion (clone statistics) were calculated based on the aggregation result considering only the cells present in the

gene expression libraries. This procedure was independently applied for data from CD4+ T cells stimulated for 6 and 24 h. Based

on the vdj aggregation files, barcodes captured by our gene expression data and previously filtered to keep only good-quality cells,

were annotated with a specific clonotype ID alongside their clone size (number of cells with the same clonotypes in either one or both

the TCR alpha and beta chains) and other statistics (Table S4A,B,E and F). Cells that share clonotypewithmore than 1 cell were called

as clonally expanded (clone size >2). Clone size for each cell was visualized on UMAP, depicting only SARS-CoV-2-reactive CD4+

T cells. Sharing of clonotype between cells in different clusters was depicted using the tool UpSetR (Conway et al., 2017). Finally, in

order to assess the sharing between the 0- and 6 h datasets, the same aggregation process was applied for all of the vdj libraries from

these data and only SARS-CoV-2-reactive CD4+ T cells specifically isolated from matched patients between sets were considered.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Processing of data, applied methods and codes are described in the respective section in the STAR Methods. The number of sub-

jects, samples, replicates analyzed, and the statistical test performed are indicated in the figure legends or STARmethods. Statistical

analysis for comparison between two groups were assessed with MannWhitney U test and correlation assessed with spearman test

with using GraphPad Prism.
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Figure S1. CD4+ T Cell Responses in COVID-19 Illness, Related to Figure 1

(A) Gating strategy to sort: lymphocytes size-scatter gate, single cells (Height versus Area forward scatter (FSC)), live, CD3+ CD4+ memory (CD45RA+ CCR7+

naive cells excluded) activated CD154+ CD69+ cells. Surface expression of activation markers was analyzed on memory CD4+ T cells.

(B) Representative FACS plots (left) showing surface expression of PD-1 and CD38 in memory CD4+ T cells ex vivo and in CD154+ CD69+ memory CD4+ T cells

following 6 h of stimulation, post-enrichment (CD154-based). (Middle) Plots depicting percentage of CD154+ CD69+ memory CD4+ T cells expressing PD-1 or

CD38 following stimulation and post-enrichment (CD154-based) in 17 hospitalized and 18 non-hospitalized COVID-19 patients. (Right) Plot showing the total

number of sorted CD154+ CD69+ memory CD4+ T cells per million PBMCs; data are mean ± SEM.

(C) Representative FACS plots showing surface staining of CD154 and CD69 in memory CD4+ T cells stimulated for 6 h with individual virus megapools, pre-

enrichment (top) and post-enrichment (CD154-based) (bottom) in healthy non-exposed subjects. (Right) Percentage of memory CD4+ T cells co-expressing

CD154 and CD69 following stimulation with individual virus megapools (pre-enrichment); data are mean ± SEM.

(D) Representative FACS plots (left) showing surface staining of CD154 in memory CD4+ T cells stimulated with Influenza megapool, pre-enrichment in healthy

subjects pre and/or post-vaccination. (Right) Percentage of memory CD4+ T cells expressing CD154 following stimulation with Influenza megapool (pre-

enrichment); data are mean ± SEM.

(E) Representative FACS plots showing surface staining of CD154 in memory CD4+ T cells stimulated with Influenza megapool, post-enrichment (CD154-based),

in healthy subjects pre and/or post-vaccination
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Figure S2. SARS-CoV-2-Reactive CD4+ T Cells Are Enriched for TFH Cells and CD4-CTLs, Related to Figure 2

(A) Number of genes recovered for each 10x library sequenced.

(B) Proportion of cells in each cluster for the 6 batches of donors.

(C) Donut charts show proportion of individual virus-reactive CD4+ T cells per cluster for different viruses. Notable clusters are highlighted.

(D) Violin plots showing enrichment patterns of TH17, IFN response, TFH, and CD4-CTLs gene signatures for each cluster. Color indicatesmean signature score of

cells within a cluster.

(E) Violin plots showing normalized expression level (log2(CPM+1)) of select TH1, TH17, IFN response, TFH and CD4-CTLmarker transcripts in designated clusters

compared to an aggregation of remaining cells (Rest). Color indicates the percentage of cells expressing indicated transcript.

(F) Scatterplot displaying co-expression level (log2(CPM+1)) of IL2 and TNF transcripts in IFNG-expressing, virus-reactive memory CD4+ T cells in cluster 1.

Numbers indicate percentage of cells in each quadrant.

(G) Gene set enrichment analysis (GSEA) for TH17, IFN response, cell cycling, TFH and CD4-CTL signature genes in a given cluster compared to the rest of the

cells; *p < 0.05; ***p < 0.01; ***p < 0.001.
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Figure S3. SARS-CoV-2-Reactive CD4+ T Cell Subsets Associated with Disease Severity, Related to Figure 3

(A) Average frequency of cells per cluster from hospitalized and non-hospitalized COVID-19 patients.

(B) Proportion of cluster 5 cells in SARS-CoV-2-reactive cytotoxic TFH cells (cluster 0, 5, and 7) in non-hospitalized and hospitalized COVID-19 patients who

provided blood samples under 21 days (left) and over 21 days (right) after onset of symptoms. Data are mean ± S.E.M; significance for comparisons was

computed using Mann-Whitney U test; **p < 0.01; ***p < 0.001.

(C) Proportion of cluster 7 cells in SARS-CoV-2-reactive TFH cells in non-hospitalized and hospitalized COVID-19 patients. Data are mean ± SEM. Significance for

comparisons was computed using Mann-Whitney U test; ns identifies non-significant P value.

(D) Volcano plot showing differentially expressed genes between SARS-CoV-2-reactive CD4+ T cells in cluster 5 versus cluster 0.

(E) Violin plots showing expression level (log2(CPM+1)) of PRF1 and GZMB transcripts in cells from clusters 0, 5 and 7.

(F) Scatterplot displaying co-expression level (log2(CPM+1)) of PRF1 andGZMB transcripts in SARS-CoV-2-reactive cells present in cluster 7. Numbers indicate

percentage of cells in each quadrant.

(G) Concentration of S1/S2 antibodies in the circulation of 22 hospitalized and 16 hospitalized non-hospitalized COVID-19 patients. Data are mean ± S.E.M;

significance for comparisons was computed using Mann-Whitney U test; *p < 0.05.

(H) Correlation between percentage of SARS-CoV-2-reactive CD4+ TFH cells form cluster 0 as a frequency of total CD4+ TFH cells and S1/S2 antibody titers (left

two plots) and interval between symptom onset and blood draw (right two plots) in 15 non-hospitalized and 20 hospitalized (left) COVID-19 patients. Correlation

coefficient r and the related P value were computed using Spearman correlation; ***p < 0.001.

(I) FACS plots showing S1/S2-specific B cells in 9 COVID-19 patients. Patient ID and proportion of SARS-CoV-2-reactive TFH cells in cluster 5 is specified.

(J) Ingenuity pathway analysis (IPA) of genes with increased expression (adjusted p < 0.05 and log2 fold change > 1) between cells from cluster 5 versus cluster 0.

Upstream regulatory network analysis of genes in IFN alpha pathway.

(K) GSEA for IFN response signature genes in cluster 5 versus cluster 0; ***p < 0.001.
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Figure S4. Single-Cell TCR Sequence Analysis and Analysis of SARS-CoV-2-Reactive CD4+ T Cells from 24 h Stimulation and Ex Vivo

Conditions, Related to Figure 4

(A) Average expression and percent expression of selected transcripts in indicated clusters.

(B) Violin plots showing normalized expression level (log2(CPM+1)) ofCCL3,CCL4,CCL5, XCL1, and XCL2 transcripts in designated clusters (6 and 9) compared

to an aggregation of remaining cells (Rest).

(legend continued on next page)
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(C) Scatterplots displaying co-expression level (log2(CPM+1)) of XCL1 and XCL2 transcripts in SARS-CoV-2-reactive cells present in designated clusters.

Numbers indicate percentage of cells in each quadrant.

(D) Proportion of expanded SARS-CoV-2-reactive CD4+ T cells (clone size >2) in hospitalized and non-hospitalized COVID-19 patients (6 h stimulation condition).

Data are mean ± S.E.M; significance for comparisons were computed using Mann-Whitney U test; *p < 0.05.

(E) Single-cell transcriptomes of memory CD4+ T cells expressing activation markers (CD38, HLA-DR, PD-1) ex vivo (0 h; blue) and sorted CD154+ CD69+memory

CD4+ T cells following 6 h stimulation with virus-specific peptide megapools (6 h; red) are displayed by UMAP. Seurat-based clustering of 122,292 cells.

(F) UMAP showing activation, TFH, and CD4-CTL signature scores for each cell.

(G) Violin plots showing expression level (log2(CPM+1)) of TNFRSF4, TNFRSF18,MIR155HG,CD200, IFNG, IL2, TNF, and POU2AF1 transcripts in 0- and 6 h time

points.

(H) Number of cells from matched patients with shared (yellow) and unique (blue) TCRs between activation marker-positive cells sorted ex vivo (0 h) and 6 h

peptide stimulated populations (left). Venn diagram illustrating the number of shared clones between activation marker-positive CD4+ T cells sorted ex vivo (0 h)

and 6 h peptide stimulated populations.

ll
Article



Figure S5. Analysis of SARS-CoV-2-Reactive CD4+ T Cells from 24 h Stimulation Condition, Related to Figure 5

(A) Representative FACS plots showing surface staining of CD137 and CD69 in memory CD4+ T cells stimulated for 24 h with SARS-CoV-2 peptide pools, post-

enrichment (CD137-based), in hospitalized and non-hospitalized COVID-19 patients (left). Summary of number of cells sorted in 14 hospitalized and 17 non-

hospitalized COVID-19 patients (right); data are mean ± SEM.

(B) GSEA for TREG, cytotoxicity, TFH and TH17 signature genes in a given cluster compared to the rest of the cells; **p < 0.01; ***p < 0.001.

(legend continued on next page)
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(C) Unsupervised clustering of 17 hospitalized and 13 non-hospitalized COVID-19 patients based on the proportions of SARS-CoV-2-reactive CD4+ T cells in

different clusters following 24 h peptide stimulation. Clusters with fewer than 5% of the total dataset are not depicted. Hospitalization status (red versus green)

and sex (pink versus blue) are indicated in the annotation rows immediately below the dendrogram.

(D) UMAP showing TCR clone size (log2, color scale) of SARS-CoV-2-reactive cells from COVID-19 patients (24 h stimulation condition).

(E) Proportion of clonally expanded (clone size >2) and non-expanded cells in each cluster (24 h stimulation condition).

(F) GSEA for TFH and TFR signature genes in IL1R2+ cells compared to IL1R2– cells in cluster A; *p < 0.05; ***p < 0.001.
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