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It is well known that aging is associated with dysregulated metabolism. This is seen both in
terms of systemic metabolism, as well as at the cellular level with clear mitochondrial
dysfunction. More recently, the importance of cellular metabolism in immune cells, or
immunometabolism, has been highlighted as a major modifier of immune cell function.
Indeed, T cell activation, differentiation, and effector function partly depend on alterations
in metabolic pathways with different cell types and functionality favoring either glycolysis or
oxidative phosphorylation. While immune system dysfunction with aging is well described,
what remains less elucidated is how the integral networks that control immune cell
metabolism are specifically affected by age. In recent years, this significant gap has been
identified and work has begun to investigate the various ways immunometabolism could
be impacted by both chronological age and age-associated symptoms, such as the
systemic accumulation of senescent cells. Here, in this mini-review, we will examine
immunometabolism with a focus on T cells, aging, and interventions, such as mTOR
modulators and senolytics. This review also covers a timely perspective on how
immunometabolism may be an ideal target for immunomodulation with aging.
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INTRODUCTION

As humans age, progressive deterioration leads to impaired function and continual decline that
results in increased risk of disease and death (1). Aging is characterized by six hallmarks that
contribute to this process and determine the aging phenotype. These include genomic instability,
telomere attrition, epigenetic alterations, loss of proteostasis, altered intracellular communication,
stem cell exhaustion, cellular senescence, mitochondrial dysfunction, and dysregulated nutrient
sensing (1). Two hallmarks, mitochondrial dysfunction and dysregulated nutrient sensing, are
tightly associated with metabolic alterations. Increasing research is investigating the role of
metabolism in controlling longevity (2). In line with the hallmarks of aging, several metabolic
changes accumulate with age, indicating the presence of a “metabolic clock” (2).

Three metabolic and nutrient sensing pathways, mechanistic target of rapamycin (mTOR),
AMP-activated protein kinase (AMPK), and sirtuins, are under investigation as potential targets for
aging (1, 3). mTOR is involved in key cellular processes such as sensing amino acid concentrations,
protein synthesis, and autophagy. mTOR is essential for maintaining physiological and cellular
homeostasis, and its dysregulation is associated with various metabolic disorders, cancer, and aging (4).
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mTOR kinase is involved with two complexes, mTORC1 and
mTORC2, that modulate most aspects of anabolic metabolism
(5). mTOR activity is associated with aging and longevity and is
an attractive investigational target in the aging field (6, 7). AMPK
detects low energy states by sensing high AMP levels, and
sirtuins detect low energy states by sensing high NAD+ levels
(3). These pathways are involved in detecting nutrient scarcity
and catabolism, and have age-associated dysregulation (3).
Upregulation of AMPK and sirtuins has been shown to favor
healthy aging (3). Additionally, AMPK activation has a
multitude of effects on metabolism and healthspan and
downregulates mTORC1 (8). Various pathways such as the
ones above have all been implicated in dysregulated
metabolism with aging and may be useful therapeutic targets
for age-related deficits.

Although all systems are affected, the hallmarks of aging
substantially impact the immune system. It is well known that
aging leads to progressive declines in innate and adaptive
immunity (9–12). This immunosenescence is accompanied by
chronic low-grade inflammation, or inflammaging (13, 14). This
results in increased susceptibility to infections, reduced response
to vaccination, and increased prevalence of cancers, autoimmune
and chronic diseases. These deficits are reviewed in detail
elsewhere (9–12). Not surprisingly, given that deregulated
nutrient sensing and mitochondrial dysfunction are hallmarks
of aging (1), markers of inflammaging also coincide with markers
of metabolic dysfunction (13). Recent research has highlighted
the importance of mitochondrial function and cellular
metabolism in controlling immune cell function. Indeed,
immunometabolism is critical for proper immune function
(15–17). What remains to be fully explored is how age and
age-associated factors, such as senescent cell accumulation,
impact immunometabolism and therefore immune function.
This research gap represents a potentially fruitful target for
immune modulation in older adults. Here in this mini-review,
we will provide an overview of aging, senescence, and
immunometabolism with a focus on T cells and interventions,
such as mTOR modulators and senolytics.
IMMUNOMETABOLISM

Metabolic control of the immune system provides insight into
cellular mechanisms influencing immune cell fate and function.
Six major metabolic pathways including glycolysis, fatty acid
oxidation (FAO), fatty acid synthesis, tricarboxylic acid (TCA)
cycle, amino acid metabolism, and the pentose phosphate
pathway are involved in controlling immune cell metabolism
(15–17). Cell intrinsic and extrinsic signals modulate the activity
of immune cells by altering metabolism. Metabolic signaling
helps regulate growth, proliferation, and survival needs of
immune cells while also influencing effector function. Immune
cell subtypes adopt distinct metabolic phenotypes to balance
energy requirements, biosynthesis demands, and longevity.
During an immune response, immune cells must become
activated and change their functional activities in order to
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respond appropriately (16). Additionally, immune cells must
traverse multiple tissues and microenvironments with varying
oxygen levels and nutrient availability (18). Thus, immune cells
face different metabolic requirements based on their state and
tissue environment.

Generally, resting immune cells are relatively inert, but
undergo distinct metabolic reprogramming in response to
pathogens. Pro-inflammatory immune cells are engaged in
aerobic glycolysis where glucose is metabolized into lactate in
the presence of oxygen. This glycolytic phenotype is necessary
for actively proliferating immune cells to provide biosynthetic
precursors essential for synthesis of amino acids, nucleotides,
and lipids (19). Additionally, aerobic glycolysis provides carbon
intermediates that feed into other biosynthetic pathways and
supplies components necessary to sustain proliferation and
production of inflammatory molecules (20). Cells with a
glycolytic signature can also adapt to restrictive conditions like
hypoxia (20). Conversely, immune cells can also utilize the TCA
cycle and oxidative phosphorylation (OXPHOS). This pathway is
generally employed by immune cells that are quiescent or non-
proliferative whose main requirements are energy and longevity
(18). In actuality, immune cell subsets use a combination of
OXPHOS, glycolysis, and aerobic glycolysis to regulate immune
function. The metabolism of many specific immune cell subsets
has been previously reviewed (16, 18) and is beyond the scope of
this mini-review. In short, metabolism plays multiple roles in
various immune cells to regulate immune cell function.
T CELL IMMUNOMETABOLISM

T cells are particularly influenced by metabolic signaling. T cells
develop and mature in the thymus and then enter circulation as
naïve T cells (Tnaive). Once stimulated with antigen, Tnaive

differentiate into effector T (Teff) cells and memory T (Tm)
cells. The transition from Tnaive to Teff to Tmem cells requires
distinct metabolic coordination. The metabolic events
surrounding the coordination of T cell quiescence and
activation have been reviewed previously (21, 22). Initially,
Tnaive are mostly metabolically inert and generate energy
through OXPHOS which is suited for their resting lifestyle.
Specifically, Tnaive primarily rely on glucose-derived pyruvate
from OXPHOS, or utilize FAO (23–26). During T cell activation,
there is metabolic reprogramming of antigen specific T cells
which have been stimulated via T cell receptor (TCR) ligation
and binding of costimulatory molecules. The switch from Tnaive

to an activated Teff is characterized by an overall shift in
metabolic programing favoring glycolysis over OXPHOS (20).
Despite being less efficient than OXPHOS at generating ATP,
aerobic glycolysis allows for generation of metabolic
intermediates necessary for proliferation and assists in
maintaining redox balance (20).

Additionally, CD4 T helper (Th) cell subset differentiation
and function is highly dependent on metabolism. Alterations in
glycolytic metabolism and mTOR signaling promote
differentiation of Th cells into Th1, Th2, Th17, or T regulatory
July 2021 | Volume 12 | Article 714742

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Martin et al. Immunometabolism, Senescence, and Aging
(Treg) cells (27–29). Tregs depend more FAO, whereas Th1,
Th2, and Th17 cells strongly activate glycolysis through mTOR
signaling (29). Changes to Teff cell metabolism, in both the CD4
and CD8 compartments, are critical for the transition of Teff to
Tmem, which are generally quiescent and rely on OXPHOS.
Subsequently, following antigen challenge, Tmem increase both
OXPHOS and glycolysis to facilitate recall responses (30–32).
AGING AND T CELL
IMMUNOMETABOLISM

Metabolic alterations are closely linked to the changes seen in
various immune cell populations, including T cells, with aging.
This can result in impaired function as well as compromised
effectiveness when facing infections (33). The effects of aging on
T cell immunity are broad and include both T cell intrinsic and
extrinsic effects. With aging, T cell populations shift from mainly
naïve to memory subsets (34). Additionally, aging is associated
with reduced TCR diversity (35). These phenotypic changes
result in overall compromised response to new antigen.

It’s likely that changes to T cell metabolism partially drive
these phenotypic differences seen with aging since metabolism is
a critical component of effective immune responses. Current
research supports metabolic differences between young and aged
T cells that can alter cellular function. Specifically, CD4 T cells
from older adults had higher baseline and maximal oxygen
consumption rate, extracellular acidification rate ratio, and
proton leak compared with young CD4 T cells (36).
Additionally, upon activation, CD4 T cells from aged mice had
altered metabolic reprogramming resulting in compromised
metabolic pathways such as OXPHOS and glycolysis (37).
Other studies demonstrated metabolic differences such as
altered spare respiratory capacity between young and aged
CD8 T cells (38). The mechanisms driving metabolic
differences in aging T cells are not fully understood, but
current research is investigating metabolic profiles in aged T
cell subsets and how this impacts function (39). While the
research is limited on direct alterations in immunometabolism
in aged T cells, many lines of thought support the idea that
metabolic changes with aging affect immunometabolism. Future
research will better define these changes and how they can be
targeted for immune modulation.
CELLULAR SENESCENCE AND
IMMUNOMETABOLISM

While work focused on immunometabolism has revealed
potentially intervenable deficits associated with age, indirect
mechanisms that can also contribute to immune dysfunction.
Namely, senescent cells have shown to be key players in the
exacerbation of various symptoms of aging and likely contribute
to dec l ines in immune ce l l funct ion and opt imal
immunometabolism. In the past decade, many studies have
Frontiers in Immunology | www.frontiersin.org 3
linked cellular senescence and senescent cell accumulation with
age-related phenotypes and diseases. Cellular senescence is a
mostly irreversible state of cell cycle arrest that was initially
understood as terminal replicative exhaustion (40). Years later, it
became apparent that senescent cells contribute to the overall
progression of age-related dysfunction at the organismal level. It
was also found that various stimuli induce senescence other than
replicative exhaustion. Oncogene expression, genotoxic stress,
growth factor signaling, and loss of proteostasis can also induce
senescence (41). With age, senescent cells accumulate in various
tissues and contribute to tissue dysfunction. Accumulation of
these cells also causes a systemic switch in metabolism (42).
Although proliferation is arrested, senescent cells are very
metabolically active. In general, senescent cells are more
glycolytic than their non-senescent counterparts (43).
Senescent cells require synthesis of a myriad of signaling
molecules related to their secretory program, the senescence
associate secretory phenotype (SASP). By increasing reliance on
glycolysis, senescent cells are able to support production of this
complex and destructive SASP.

The SASP is a heterogeneous, generally pro-inflammatory
mix of cytokines, chemokines, and other molecules that
contribute to the dysfunction caused by senescent cells (44).
These factors alter the tissue microenvironments and induce the
chronic, basal, and sterile inflammation, i.e., inflammaging, that
is seen with age. Senescent cells, through the SASP, can signal in
a paracrine matter to induce senescence in adjacent cells (45).
This accumulation of senescent cells will then not only increase
the deleterious effects of the SASP but also cause a significant
shift in metabolic programming within the tissues (46). Because
senescent cells rely heavily on glycolytic pathways, this results in
dramatic changes to metabolite utilization and can cause redox
stress, further inducing senescence within local environments
(47). Although little has been done to assess how this affects the
function of immune cells, it is likely that the accumulation of
senescent cells and this shift in metabolism negatively impacts
immune responses. Indeed, the effect of many different SASP
components have been shown to have individual effects on
immune cell fate and function (48).

As noted, proper T cell function requires complex
orchestration of metabolic switching. While it is controversial
if T cells themselves become truly senescent since they tend to
lose the ability to secrete cytokines (48–52), it is clear that with
age, T cells have lower proliferative capacity and altered
functionality (48–50, 53, 54). Many of the mechanisms that are
involved with coordinating their functionality are altered with
exposure to SASP factors (46). mTOR is highly active in
senescent cells for SASP production (55, 56). Aberrant mTOR
activation therefore can be described as an underlying cause and
symptom of systemic dysfunction wrought by the accumulation
of senescent cells and SASP.

Nicotinamide adenine dinucleotide (NAD+) is another key
metabolite that has dramatic changes with age. NAD+

participates in many processes of metabolic homeostasis,
including redox reaction steps in nearly every major metabolic
pathway. Glycolysis, TCA cycle, OXPHOS, and FAO all include
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NAD+. With age, however, systemic levels of NAD+ decline and
have been linked to many of the hallmarks of aging. Aging causes
increased activity of NAD+ consuming pathways including poly
(ADP-ribose) polymerases (PARP) mediated DNA-damage
repair (57) and sirtuin activity (58), which drive this systemic
decrease. CD38, a cell-surface glycoprotein that consumes NAD+

to generate ADP ribose, has emerged as the key regulator of
NAD+ decline via a sirtuin-dependent pathway (59). CD38 is
highly expressed in a variety of immune cells and participation of
immune cells in this paradigm is emerging. Recently, it was
shown that culturing macrophages with SASP factors
upregulated CD38 expression, which caused a marked decline
in systemic NAD+ levels (60). Complicating this paradigm,
NAD+ has also been shown to reinforce the secretome of
senescent cells via AMPK signaling (61). Aside from the direct
role played by macrophages in mediating the decline of NAD+,
the effects of this paucity on adaptive immune function have yet
to be fully explored. Teff rely heavily on NAD+ to support
glutaminolysis and glycolysis, thus NAD+ scarcity could play a
large role in T cell functional deficits with age.
DISCUSSION

Interventions that target dysregulated metabolism or senescence
may prove fruitful for improving aged immune responses,
leading to additional protection when dealing with infection.
In fact, Mannick et al. (62) demonstrated that low dose TORC1
inhibition in older adults decreased risk of all infections,
upregulated antiviral immunity, and improved influenza
vaccination responses. This work confirmed that metabolism is
a valuable target to improve immune responses in older adults.
Current research is investigating how metabolic regulators affect
T cell function and metabolism with aging. Indeed, metformin,
an FDA approved diabetes drug that modulates mTOR/AMPK
has been investigated as a potential therapeutic to target deficits
with T cell aging. Metformin enhances T cell autophagy,
normalizes mitochondrial function, and alleviates aging-
associated Th17 inflammation (36). Similar to rapamycin,
metformin extends healthspan and lifespan in multiple animal
models (63–66). Additionally, in young mice, metformin can
increase CD8 T cell memory formation through AMPK
activation and FAO enhancement (31). Although further
research is necessary to fully elucidate the mechanisms by
which metabolic changes with aging contribute to T cell
dysfunction, current metabolic therapeutics may prove
beneficial for targeting the aging immune system.

Furthermore, targeting senescent cells may also improve
immunometabolism with aging. Senolytics, drugs that target
senescent cells, have shown great promise with treating age-
related diseases and phenotypes. Treatment with the
combination of dasatinib and quercetin (D+Q) is the first
described and most well characterized senolytic (67) and
improves both life- and healthspan in mice (68). Also in mice,
D+Q has treated idiopathic pulmonary fibrosis (69), non-
alcoholic fatty liver disease (70), and type 2 diabetes (T2D)
Frontiers in Immunology | www.frontiersin.org 4
(42). In humans, clinical trials have shown efficacy in clearing
senescent cells while alleviating symptoms of diabetic kidney
disease (71) and idiopathic pulmonary fibrosis (72). Trials are
underway utilizing D+Q in other contexts as well as investigating
the use of other senolytics, including fisetin. Studies directly
linking senolytics and metabolism have been mostly limited to
alleviation of T2D. With age, there is increased insulin resistance
driven by dysfunction in adipose tissue (73). Senescent adipocyte
progenitor cells were found to be the root cause of dysfunction
and when cleared with D+Q insulin resistance is reversed (42).
As with most senescence associated phenotypes, SASP is the
means by which insulin resistance is likely conferred (74).
Interestingly, many immune cells (including T cells, B cells,
and NKT cells), are thought to exacerbate insulin resistance (75).
Taken together, the ablation of SASP using senolytics could possibly
reverse the deleterious activity of these immune cells which could be
beneficial beyond insulin resistance. Furthermore, senolytics may
reduce CD38 expressing macrophages and preserve NAD+ levels
with aging, offering a promising strategy to enhance metabolic
fitness with age.

Similarly, targeting the SASP directly or indirectly via
mitigation of SASP effects may be a valuable way to improve
immunometabolism and immune function. Augmentation of
NAD+ via supplementation or other indirect methods may
improve aging metabolism. Indeed, supplementation studies to
increase NAD+ to improve different aspects of metabolism and
healthspan show tremendous promise (76–78), however the
effect on immunometabolism and immune function requires
further study. Similarly, CD38 inhibitors via anti-CD38
antibodies, NAD analogs, flavonoids, or others, have shown
promise in tumor immunity, aging, and metabolic diseases
(79–81). More specifically, thiazoloquin(az)olin(on)e CD38
inhibitor can reverse age-related NAD+ decline and improve
both functional and metabolic aspects of aging (79). However, its
effect on immune function requires further investigation.

Certainly, given the impact of senescent cells on metabolic
function and the vast amount of metabolic dysfunction with aging,
it is possible that senolytics can modulate immunometabolism and
ameliorate age-related immune decline in the context of infection or
even vaccination. This strategy is being currently investigated to
improve COVID-19 outcomes in an ongoing clinical trial
investigating the use of fisetin to mitigate COVID-19 induced
cytokine storm in hospitalized patients (NCT04476953). Another
group is targeting metabolism via metformin to improve illness in
non-hospitalized COVID-19 patients (NCT04510194). Thus,
ongoing research will better define the utility of senolytics and
metabolic modulators to improve immunometabolism and
immune function in the face of infection.

Non-pharmaceutical alternatives, mainly physical exercise and
caloric restriction, have been shown to target many of the hallmarks
of aging (82–84). Exercise prevents diet-induced cellular senescence
(85, 86) and many facets of immunosenescence (87). Similarly,
caloric restriction extends lifespan and healthspan in multiple
species (83, 84, 88), improves metabolism (89), reduces T cell
immunosenescence (90), and reduces markers of senescence (91,
92). Thus, while pharmaceuticals are still under development,
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exercise and caloric restriction are well-supported modulators to
improve age-related metabolic and immune dysfunction.
CONCLUSIONS

An immune cell’s ability to modulate its metabolism is intimately
linked to optimal function. However, this can become
compromised due directly to chronological age or indirectly by
consequences of age such as accumulation of senescent cells.
While there remains much to be uncovered regarding the
mechanisms that connect these multifaceted processes,
metabolism and senescence have been shown to be
intervenable to ameliorate general age-related diseases.
Considering how integral the pathways regulating metabolism
and senescence are to immune cell function, they are emerging as
attractive and efficacious targets. This creates a new possible
Frontiers in Immunology | www.frontiersin.org 5
point of convergence between the worlds of aging, metabolomics,
cellular senescence, and immunology that could be of great
importance when pursuing strategies to promote healthy aging
and a resilient immune system throughout life.
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44. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The Senescence-Associated
Secretory Phenotype: The Dark Side of Tumor Suppression. Annu Rev Pathol:
Mech Dis (2010) 5(1):99–118. doi: 10.1146/annurev-pathol-121808-102144

45. Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, et al. A
Senescent Cell Bystander Effect: Senescence-Induced Senescence. Aging Cell
(2012) 11(2):345–9. doi: 10.1111/j.1474-9726.2012.00795.x

46. Frasca D, Saada YB, Garcia D, Friguet B. Effects of Cellular Senescence on
Metabolic Pathways in non-Immune and Immune Cells. Mech Ageing Dev
(2021) 194:111428. doi: 10.1016/j.mad.2020.111428

47. Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G, et al. A
Key Role for Mitochondrial Gatekeeper Pyruvate Dehydrogenase in
Oncogene-Induced Senescence. Nature (2013) 498(7452):109–12. doi:
10.1038/nature12154

48. Vicente R, Mausset-Bonnefont AL, Jorgensen C, Louis-Plence P, Brondello
JM. Cellular Senescence Impact on Immune Cell Fate and Function. Aging
Cell (2016) 15(3):400–6. doi: 10.1111/acel.12455

49. Akbar AN, Henson SM. Are Senescence and Exhaustion Intertwined or
Unrelated Processes That Compromise Immunity? Nat Rev Immunol
(2011) 11(4):289–95. doi: 10.1038/nri2959

50. Chou JP, Effros RB. T Cell Replicative Senescence in Human Aging. Curr
Pharm design (2013) 19(9):1680–98. doi: 10.2174/138161213805219711
Frontiers in Immunology | www.frontiersin.org 6
51. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T Cell Anergy, Exhaustion,
Senescence, and Stemness in the Tumor Microenvironment. Curr Opin
Immunol (2013) 25(2):214–21. doi: 10.1016/j.coi.2012.12.003

52. Wherry EJ. T Cell Exhaustion. Nat Immunol (2011) 12(6):492–9. doi: 10.1038/
ni.2035

53. Akbar AN. The Convergence of Senescence and Nutrient Sensing During
Lymphocyte Ageing. Clin Exp Immunol (2017) 187(1):4–5. doi: 10.1111/
cei.12876

54. Akbar AN, Henson SM, Lanna A. Senescence of T Lymphocytes: Implications
for Enhancing Human Immunity. Trends Immunol (2016) 37(12):866–76. doi:
10.1016/j.it.2016.09.002

55. Laberge R-M, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. mTOR
Regulates the Pro-Tumorigenic Senescence-Associated Secretory Phenotype
by Promoting IL1A Translation. Nat Cell Biol (2015) 17(8):1049–61. doi:
10.1038/ncb3195

56. Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, et al.
mTOR Regulates MAPKAPK2 Translation to Control the Senescence-
Associated Secretory Phenotype. Nat Cell Biol (2015) 17(9):1205–17. doi:
10.1038/ncb3225

57. Mouchiroud L, Houtkooper Riekelt H, Moullan N, Katsyuba E, Ryu D, Cantó
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