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Tumor necrosis factor-alpha (TNF-α) is a pleiotropic inflammatory cytokine produced 
mainly by activated macrophages, lymphocytes and other cell types. Two distinct forms 
of TNF-α have been identified: soluble TNF-α (sTNF-α) and transmembrane TNF-α 
(mTNF-α). mTNF-α, which is the precursor of sTNF-α, can be cleaved by the TNF-α 
converting enzyme (TACE) and is released as sTNF-α. sTNF-α binds primarily to TNF 
receptor 1 (TNFR1) and plays an important role in the inflammatory immune response, 
whereas mTNF-α interacts primarily with TNF receptor 2 (TNFR2) and mediates the 
promotion of cellular proliferation and survival and other biological effects. It has been 
reported that the interaction between mTNF-α and TNFR2 induces bi-directional  
(forward and reverse) signaling in both mTNF-α- and TNFR2-expressing cells. Increasing 
evidence shows that the forward and reverse signaling mediated by mTNF-α and 
TNFR2 might play a significant role in the tumor microenvironment. In this review, the 
role of the crosstalk between mTNF-α and TNFR2 in the tumor microenvironment will 
be discussed.

Keywords: transmembrane tumor necrosis factor-alpha, TNF receptor 2, tumor microenvironment, forward 
signaling, reverse signaling

Tumor necrosis factor-alpha is also known as cachexin or cachectin and is a potent inflammatory 
cytokine produced mainly by activated macrophages, lymphocytes, and other cell types (1, 2). It was 
first demonstrated that serum from bacillus Calmette–Guérin (BCG)-infected mice treated with 
lipopolysaccharide (LPS) could cause hemorrhagic necrosis in tumors in animals; this effect was 
mediated by a “tumor-necrotizing factor” (3). In the following years, more details about the signaling 
pathways triggered by TNF-α and the functions of TNF-α were revealed.

Although TNF-α was first described as a soluble molecule that induces hemorrhagic necrosis 
in tumor tissues in experimental animals, the following studies reported that TNF-α exerts anti-
tumor effects and pro-tumor effects in different circumstances. It has been demonstrated that there 
are two different forms of this type of cytokine, soluble TNF-α (sTNF-α) and transmembrane 
TNF-α (mTNF-α) (4, 5). mTNF-α, the precursor of soluble TNF-α, can be cleaved by TACE and 
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released as sTNF-α. Both forms of TNF-α can bind to TNFR1 
or TNFR2 and exert pleiotropic effects on various cell types (6). 
TNFR1 is expressed on most cell surfaces and mediates cytotoxic 
effects and pro-inflammatory and pro-apoptotic effects, whereas 
TNFR2 is expressed primarily on lymphocytes and is involved 
in the activation and proliferation of lymphocytes (7–9).  
It has been reported that sTNF-α binds primarily to TNFR1 
and plays an important role in inflammatory immune responses 
(10). mTNF-α, however, interacts primarily with TNFR2 (both 
soluble and transmembrane forms) and mediates effects that  
are overlapping and contrary to those of sTNF-α (7, 11). 
Notably, the crosstalk between mTNF-α and TNFR2 triggers 
bi-directional signaling in target cells and mTNF-α-expressing 
cells (12–14). Increasing evidence has shown that in the tumor 
microenvironment, the interaction between mTNF-α and 
TNFR2 plays a significant role in tumor progression (15). The 
expression of mTNF-α, its signaling pathway and the biological 
effects triggered by the interaction between mTNF-α and TNFR2 
will be discussed in this review.

mTNF-α eXPReSSeD ON DiSTiNCT CeLL 
TYPeS eXeRTS DiFFeReNT eFFeCTS

In the 1980s, the gene coding for TNF-α was cloned and expressed  
by different teams who used different methods; their results 
marked profound progress in TNF-α research (16–19). In 1988, 
Kriegler et al. (20) announced that they had identified and char-
acterized a novel, rapidly inducible cell surface cytotoxic integral 
transmembrane form of TNF-α that could explain the complex 
physiology of the molecule. mTNF-α is a stable homotrimer and 
is the precursor form of sTNF-α. mTNF-α can be cleaved by 
TNF-α converting enzyme (TACE) and then released as sTNF-α 
into the circulation to exert its biological function via type 1 and 
2 TNF-α receptors (6). The two forms of TNF-α functions in 
two fundamentally different ways. mTNF-α is mainly expressed 
on monocytes/macrophages, lymphocytes, and some other cell 
types. In addition, mTNF-α acts as a bipolar molecule that trans-
mits signals both as a ligand and as a receptor in a cell-to-cell 
contact-mediated manner, which means that mTNF-α not only 
mediates the forward signals to the target cells through cell-to-
cell contact but also transmits the reverse (outside-to-inside) 
signals back into the mTNF-α-bearing cells (5, 21).

As a ligand, mTNF-α expressed on monocytes/macrophages 
and lymphocytes exhibits stronger cytotoxic activity than 
sTNF-α, because it is cytotoxic not only to sTNF-α-sensitive 
target cells but also to sTNF-α-resistant target cells (22, 23). 
mTNF-α expressed on T cells mediates the host defense against 
intracellular pathogens and the activation of endothelial cells 
and B  cells and contributes to monocyte cytokine production 
(5). mTNF-α on dendritic cells can enhance the proliferation and 
cytotoxic activity of NK cells (24, 25). Activated CD8+ T  cells 
express mTNF-α and expand Vβ5+ regulatory T cell populations 
through the transduction of signaling via TNFR2 on the Tregs 
(26). Moreover, some mTNF-α-bearing tumor cells can recruit 
immunosuppressive cells to the tumor microenvironment via 
the interaction between mTNF-α and TNFR2 to facilitate the 

evasion of tumor cells (27). On the other hand, as a receptor, 
mTNF-α mediates reverse signals back into the mTNF-α-bearing 
cells, such as T cells, monocytes/macrophages, and NK cells, to 
regulate the immune responses of these different cell types (5). 
mTNF-α-bearing tumor cells are stimulated by TNFR2 to induce 
reverse signaling to activate the NF-κB pathway, which can 
promote tumor cell survival and apoptosis resistance (21, 28). In 
summary, the current studies indicate that mTNF-α is expressed 
on monocytes/macrophages, lymphocytes, and even tumor cells 
and exerts different effects through its interaction with TNFR2.

THe CROSSTALK BeTweeN  
mTNF-α-BeARiNG CeLLS AND  
TNFR2-eXPReSSiNG CeLLS eXeRTS 
DiSTiNCT eFFeCTS ON THe TUMOR 
MiCROeNviRONMeNT

Increasing evidence shows that in the tumor microenvironment, 
the interaction between mTNF-α and TNFR2 plays a significant 
role in tumor progression. However, the effects and mechanisms 
of mTNF-α/TNFR2 interaction in the tumor microenvironment 
are not identical. On the one hand, it has been reported that the 
mTNF-α/TNFR2 interaction could promote the progression 
of cancer by recruiting immunosuppressive cells to the tumor 
microenvironment or by enhancing survival, metastasis, and 
apoptosis resistance of tumor cells (15, 21, 27, 28). On the other 
hand, as mentioned above, the interaction between mTNF-α and 
TNFR2 causes cytotoxicity toward not only sTNF-α-sensitive 
target cells but also sTNF-resistant tumor cells (28).

mTNF-α/TNFR2 interaction Promotes 
immunosuppressive Cell Accumulation  
in Tumor Microenvironments
Myeloid-derived suppressor cells (MDSCs) are important immu-
noregulatory cells in the cancer microenvironment. MDSCs are a 
heterogeneous group of immune cells from the myeloid lineage; 
they include immature precursors of macrophages, granulocytes, 
and dendritic cells. MDSCs are characterized by Gr1 and CD11b 
expression on the cell surface in mice, while in humans, they are 
identified as HLA−DR− CD11b+CD33+ cells (27, 29). MDSCs 
possess strong immune suppressive activity, which defines their 
functions in modulating the immune response and immune 
tolerance. The expansion and suppressive functions of MDSCs 
are relevant to chronic inflammatory conditions, especially in 
neoplastic disorders. The spectrum of action of MDSC activity 
encompasses that of T cells, NK cells, dendritic cells, and mac-
rophages, which explains the ability of MDSCs to facilitate tumor 
evasion (8).

Tumor necrosis factor-alpha/TNF receptor 2 signaling is 
involved in the regulation of recruitment, differentiation, and 
suppressive activities of this cell population (29). Previous 
studies have shown that in tumor-bearing mice, multiple 
inflammatory mediators, including interleukin-1β (IL-1β), IL-6, 
and prostaglandin E2 (PEG2), produced by tumor cells induce 
the accumulation of MDSCs in the tumor microenvironment 
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of bone marrow (9, 30, 31). It has been identified that TNFR2+ 
MDSCs are recruited to tumor sites, and in addition to inflam-
matory factors, mTNF-α expressed by tumor cells can also 
promote MDSC accumulation via TNFR2 expressed by MDSCs 
(15, 27, 32). Further, in a mouse model implanted with breast 
cancer 4T1 cells expressing an uncleavable mTNF-α mutant, 
greater accumulation of regulatory T  cells was found in the 
tumor site (15). TNFR deficiency in MDSCs results in a decrease 
in CXCR4 expression and the impaired recruitment of MDSCs 
to tumor tissue (27). mTNF-α/TNFR2 signaling also promotes 
MDSC survival via the upregulation of FLICE-inhibitory protein 
(c-FLIP) leading to the inhibition of caspase-8 activity (32).  
It has been identified that mTNF-α, rather than sTNF-α, can also 
enhance the immunosuppressive activity of MDSCs via TNFR2 
(15). This action is related to the upregulation of arginase-1 and 
inducible NO synthase transcription, the promotion of NO, 
reactive oxygen species, IL-10, and TGF-β secretion, and the 
enhanced inhibition of lymphocyte proliferation. Upregulated 
expression of mTNF-α in 4T1 cells promotes tumor progression 
and angiogenesis in animal models and results in greater MDSC 
accumulation, increased NO, IL-10, and TGF-β levels, and poor 
lymphocyte infiltration. It has been demonstrated that p38  
phosphorylation and NF-κB activation triggered by mTNF/
TNFR2 are the most important mechanisms through which 
mTNF-α regulates MDSCs (15).

Although many studies have reported that mTNF/TNFR2  
can enhance tumor progression by recruiting and activating 
MDSCs, Ardestani et al. (33) reported that mTNF-α-expressing 
tumor cells induced tumor-associated myeloid cell death. In 
a mouse model implanted with Lewis lung cancer cells or 
B16F10 melanoma cells expressing mTNF-α, tumor growth was 
decreased and related to significantly reduced tumor-associated 
myeloid cell infiltration. mTNF-α triggers ROS production in 
myeloid cells and induces necrotic cell death, but the mechanism 
by which mTNF-α induces ROS production needs to be further 
studied (34, 35). In another study, the mTNF-α-producing 
transformed tumor cell line HeLa was used as a “vaccine” to 
induce tumor rejection by stimulating macrophages to exert an 
anti-tumor effect; this strategy is believed to be a promising and 
safe cytokine gene therapy (36).

mTNF-α/TNFR2 Regulates Survival, 
Apoptosis, and Metastasis of Tumor Cells 
through Forward and Reverse Signaling
In addition to regulating the accumulation and activation of 
immune cells in the tumor microenvironment, mTNF-α/TNFR2 
also affects the survival, apoptosis, and metastasis of tumor cells 
directly. It has been reported that Raji cells, a human Burkitt 
lymphoma cell line, express both mTNF-α and TNFR2, which 
could mediate forward signaling or reverse signaling to induce 
cell death or survival via the NF-κB pathway (28). On the one 
hand, when mTNF-α acts as a ligand binding to TNFR2 on tumor 
cells, NF-κB activity is downregulated, which is followed by the 
subsequent inhibition of anti-apoptotic gene transcription, such 
as cIAP-1 and Fas-associated death domain-like IL-1β-converting 
enzyme-like inhibitory protein. On the other hand, when mTNF-α 

on tumor cells acts as a receptor to trigger reverse signaling, the  
activation of NF-κB is induced, and the production of anti-apop-
totic proteins is further enhanced. Constitutive NF-κB activation 
causes Raji cells to be resistant to TNF-α-mediated cytotoxicity 
and sustains tumor cell survival (28, 37). These data indicate that 
there is a balance between forward and reverse signaling, but that 
reverse signaling is always dominant; consequently, this balance 
maintains constitutive NF-κB activation to sustain tumor cell 
viability (28). However, it was reported that the transfection of 
mTNF-α into the murine hepatic carcinoma cell line H22 upregu-
lated Fas expression and induced tumor cell apoptosis via the  
Fas/FasL pathway. Moreover, mTNF-α inhibits CD44v3 expres-
sion to suppress tumor metastasis (38). We predict that in differ-
ent types of tumor environment, the signaling pathways mediated 
by the mTNF-α/TNFR2 interaction are different, which may 
facilitate tumor survival or induce tumor cell apoptosis.

Since mTNF-α signaling influences survival and apoptosis of 
tumor cells directly, the expression of mTNF-α and its relation-
ship with clinical characteristics was analyzed in cancer patients. 
It has been reported that mTNF-α expression is much higher in 
breast cancer compared with atypical dysplasia and hyperplasia, 
but mTNF-α is absent in normal breast tissue (37). In addition, 
the expression levels of mTNF-α are increased in acute leukemia 
(AL) and leukemia stem cells (LSCs). The high levels of mTNF-α 
expression in AL and LSCs correlate with poor risk stratification, 
extramedullary infiltration, and adverse clinical parameters (39). 
Targeting mTNF-α using a mAb inhibits leukemia cell growth 
and prevents the recurrence of leukemia in secondary serial 
transplantation into NOD-SCID mice (39). The in  vivo and 
in vitro mAb experiments suggest that mTNF-α is a promising 
candidate for treating mTNF-α-positive tumors, especially in 
patients who are not sensitive to TNF antagonists (37, 39).

From the above findings, it can be concluded that different 
cell types are involved in the interaction between mTNF-α and 
TNFR2 in the tumor microenvironment and can influence 
tumor progression. On the one hand, the interaction facilitates 
tumor growth and progress. Tumor cells expressing mTNF-α 
recruit immune suppressive cells to the tumor microenviron-
ment via TNFR2, which can suppress the anti-tumor immune 
response (15). Moreover, constitutive NF-κB activation triggered 
by reverse signaling protects Raji cells from sTNF-α-mediated 
cytotoxicity and sustains tumor cell survival (28). On the other 
hand, it has been reported that the mTNF-α expressed on Lewis 
lung cancer cells or B16F10 melanoma cells is related to reduced 
tumor-associated myeloid cell infiltration and decreased tumor 
growth (33). In addition, Raji cells can induce forward signal-
ing in neighboring tumor cells through the interaction between 
mTNF-α and TNFR2, which leads to inhibition of NF-κB activa-
tion and mTNF-α-induced cell death. However, forward signaling 
is not dominant in Raji cells (28).

FORwARD SiGNALiNG  
OF mTNF-α/TNFR2

Unlike the pathways triggered by mTNF-α/TNFR1, the down-
stream signaling pathways triggered by TNFR2 have not been 
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clearly clarified. TNFR2 has no enzymatic activity by itself, 
thus any signal transduction needs the recruitment of adaptor  
proteins (40, 41). Current studies suggest that the mTNF-α/
TNFR2 interaction mediates most of the biological behaviors 
by recruiting TNFR2-associated factor (TRAF2) to bind to the 
cytoplasmic domain of TNFR2, which induces the activation 
of NF-κB, c-Jun N-terminal kinase (JNK), or AP-1 pathways  
(38, 42–44). TRAF proteins have seven members and they act as 
adaptor proteins between TNFR2 and the kinases involved in the 
activation of JNK and NF-κB (45, 46). Among the seven members, 
TRAF2 is the key mediator in the signaling pathways of TNFR2 
(42). The intracellular region of TNFR2 contains several highly 
conserved sequences, including TRAF2-binding sites (compris-
ing 402-SKEE-405 and amino acids 425–439) and module III 
(amino acids 338–379), which contains no TRAF2 binding sites 
but a region (amino acids 343–379) related to TRAF2 degrada-
tion (40, 43). Upon TNFR2 activation, TRAF2 translocates to a 
Triton X-100 insoluble compartment where TRAF2 is K48-linked 
ubiquitinated and finally degraded by the proteasome (42).

NF-κB is a transcriptional factor composed of homodimeric 
and heterodimeric complexes of related proteins from the Rel 
superfamily. The inhibitory subunit IκB-α stabilizes NF-κB  
(28, 47). IκB kinase (IKK) is activated upon the interaction 
between TNFR2 and TRAF2 (45, 46). Once phosphorylated by 
IKK, IκB-α is recognized for ubiquitination and is degraded by 
the proteosome, and the IκB-α/NF-κB complex can release NF-κB 
for translocation into the nucleus. In the nucleus, NF-κB binds to 
target gene promoters and induces the expression of these genes 
(47, 48). The activation of NF-κB can promote tumor cell sur-
vival and apoptosis resistance and MDSC activation (21, 27, 28).  
When TNFR1 and TNFR2 are co-expressed, TRAF2 degradation 
results in an enhanced TNFR1 cytotoxicity that is associated with 
the inhibition of NF-κB (43).

Jun N-terminal kinase is an important kinase that initiates a 
signaling pathway. JNK belongs to the mitogen-activated protein 
kinase family (49). In the context of TRAF2 interaction with 
TNFR2, JNK can be activated transiently by TRAF2 and prolonged 
activation can occur in a TRAF2-independent fashion. Module 
III (amino acids 338–379), which is a region on TNFR2 that con-
tains no TRAF2 binding sites, is able to activate JNK in a TRAF2-
independent manner (40, 43). Deletion of TRAF2-binding sites 
can eliminate TRAF2-induced NF-κB but not JNK activation. 
In the process of JNK activation, ASK1 interacting protein 1 
(AIP1), which is an adaptor molecule, interacts with the amino 
acids 338–355 within module III to regulate the JNK pathway 
(50). The interaction between TRAF2 and TNFR2 induces both 
NF-κB and JNK activation to transmit proliferation signals. Then, 
TRAF2 degradation induced by TNFR2 contributes to inhibition 
of NF-κB and TRAF2-dependent JNK signaling, but TNFR2 is 
still able to activate a TRAF2-independent JNK pathway, which 
is responsible for TNFR2-dependent cell death in some cell types 
(51, 52). A recent study indicated that a new adaptor molecule 
known as aminopeptidase P3 (APP3, also known as XPNPEP3) 
was identified in the TNFR2 signaling complex. One of its two 
isoforms, mitochondrial APP3 (APP3m) is recruited to TNFR2 
and induces TNF-TNFR2-dependent phosphorylation of JNK1 
and JNK2, which exerts an anti-apoptotic function (53).

During the recruitment of MDSCs to tumor sites, mTNF-α/
TNFR2 can activate both the NF-κB and p38 MAPK pathways 
(27). Research has demonstrated that both NF-κB and p38 
MAPK mediate mTNF-induced MDSC activation. In this pro-
cess, the level of p38 phosphorylation is significantly increased. 
Upon preincubation of MDSCs with a p38 MAPK inhibitor or 
NF-κB inhibitor, the immune suppressive function of MDSCs is 
abrogated. P38 MAPK activation is TRAF2-dependent as well. 
The interaction between mTNF-α and TNFR2 induces NF-κB 
and p38 MAPK activation and then CXCR4 expression increases, 
which contributes to the recruitment and activation of MDSCs 
(15, 27). Moreover, the p38 MAPK pathway regulates NF-κB 
transactivation via direct acetylation of p65 and is necessary for 
TNF-mediated NF-kB activation (54).

In addition to the signaling pathways mentioned above, the 
interaction between TRAF2 and TNFR2 induces the activation of 
the transcription factors AP-1 through MAPK3s (40). Moreover, 
tumor expressing mTNF-α can stimulate the Fas expression that 
mediates tumor cell apoptosis via the Fas/FasL pathway. However, 
the involved pathways need to be explored in greater detail (37).

ReveRSe SiGNALiNG OF mTNF-α/TNFR2

Increasing evidence suggests that mTNF-α can act as a receptor 
when interacting with sTNFR2, anti-TNF antibody, or TNFR2-
expressing cells, thus activating intracellular signaling pathways. 
The outside-to-inside signaling mediated by mTNF-α is called 
reverse signaling. Reverse signaling is proven to be profoundly 
important in the activation of immune cells and apoptosis of 
macrophages (55, 56).

Take the interaction between monocytes and T cells in rheu-
matoid arthritis (RA) for example: TNFR2 on T cells behaves as 
a ligand and binds to mTNF-α on monocytes to trigger reverse 
signaling back into the monocytes, which contributes to the acti-
vation of monocytes. The reverse signaling mediated by mTNF-α/
TNFR2 induces the activation of ERK1/2, which results in the 
dephosphorylation of the small cytoplasmic domain of mTNF-α 
and increases calcium concentrations. The reverse signaling 
transduced from mTNF-α to the nucleus activates monocytes to 
increase the production of TNF-α (57). It was reported that acti-
vated T cells in the synovial membrane of RA patients exhibiting 
a pathological phenotype that strongly induced the production of 
pro-inflammatory cytokines by monocytes through the interac-
tion between mTNF-α and TNFR2 (57–59).

In addition, mTNF-α can mediate negative regulatory signal-
ing that induces monocytes/macrophages to become resistant 
to inflammatory responses triggered by LPS (60). This negative 
regulatory response is mediated by the MAPK/ERK pathway 
(61). Pallai et al. (62) demonstrated that exposure of macrophages 
to LPS can induce the reverse signaling pathway via mTNF-α 
expressed on macrophages, after which, the reverse signaling 
activates the MAPK kinase (MKK) 4 pathway to induce TGF-β 
production. TGF-β then activates the ERK kinase pathway and 
mediates resistance to LPS-induced inflammation by inhibition 
of pro-inflammatory cytokines. In addition, the AKT pathways 
are also activated and are likely to act as a negative regulator of 
TGF-β production. However, the production of TGF-β mediated 
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by mTNF-α reverse signaling is not a universal response. For 
example, when TNFR2-expressing T cells interact with mTNF-
α-expressing monocytes/macrophages, the monocytes/mac-
rophages are induced to produce TNF-α rather than TGF-β,as 
described above (57, 62). Because of the important role of TNF-α, 
anti-TNF agents have already been used in clinical treatment. 
TGF-β, which is induced by reverse signaling, plays an essential 
role in determining the therapeutic efficacy of TNF-α antagonists 
(63–69).

CONCLUSiON

Increasing evidence indicates that sTNF-α and mTNF-α play 
an essential role in the regulation of immune responses and 
tumor progression. In the tumor microenvironment, mTNF-
α-expressing tumor cells contribute to the accumulation and 
activation of immunosuppressive cells to suppress the anti-
tumor immune responses mediated by immune cells, which 
facilitates the growth and evasion of tumor cells. In addition, 
reverse signaling triggered by the interaction between mTNF-α 
and TNFR2 also plays a significant role in maintaining tumor 
cell survival and contributing to the metastasis of tumor cells. 
Targeting mTNF-α via mAbs is a promising strategy for treat-
ing mTNF-α-positive tumors. Notwithstanding its pro-tumor 
effect, the interaction between mTNF-α and TNFR2 can cause 

anti-tumor effects in indirect and direct ways. The mTNF-α/
TNFR2 interaction suppresses tumor cells through the induc-
tion of tumor-associated myeloid cell death or the direct 
activation of the Fas/FasL pathway in tumor cells. The effects 
and mechanisms of mTNF-α/TNFR2 interaction in the tumor 
microenvironment, which include either regulating immuno-
suppressive cells or directly acting upon tumor cells, need to be 
further explored.
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