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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Skin health is influenced by the composition and integrity of the skin barrier. The healthy

skin surface is an acidic, hypertonic, proteinaceous, and lipid-rich environment that microor-

ganisms must adapt to for survival, and disruption of this environment can result in dysbiosis

and increase risk for infectious diseases. This work provides a brief overview of skin barrier

function and skin surface composition from the perspective of how the most common skin

pathogen, Staphylococcus aureus, combats acid stress. Advancements in replicating this

environment in the laboratory setting for the study of S. aureus pathogenesis on the skin, as

well as future directions in this field, are also discussed.

The skin surface environment

The skin is the largest organ of the human body and forms a protective barrier against environ-

mental hazards such as bacterial pathogens [1]. As depicted in Fig 1, skin is composed of 2

main layers: the outer epidermal layer, followed by the thicker dermal layer [1]. Keratinocytes

are generated in the stratum basale of the epidermis and then differentiate as they move toward

the skin surface. The outermost layer of mature keratinocytes, termed as “stratum corneum,”

is the primary physical barrier of the skin surface and is rich in ceramides, triglycerides, amino

acids, and free fatty acids [1].

In addition to the skin’s physical properties, the chemical environment of the skin surface

presents a challenge to colonizing microorganisms [2]. This chemical composition is largely

influenced by sweat and sebum. Sweat is an aqueous mixture composed of the excretions from

eccrine and apocrine glands, whereas sebum is a hydrophobic substance made of secretions

from the sebaceous glands. Eccrine glands are distributed throughout the skin and excrete

inorganic ions (e.g., sodium, potassium, and chloride) and metabolic by-products such as lac-

tic acid, ammonia, amino acids, and urea. Apocrine glands, which are primarily concentrated

in the axilla and groin, excrete proteins, lipids, and steroids [3]. Sebaceous glands produce

sebum, a viscous fluid composed of triglycerides, wax esters, squalene, and free fatty acids.

Together, the stratum corneum and gland secretions produce a lipid-rich, saline, acidic envi-

ronment enriched with organic acids, amino acids, and urea.

The acidic pH of human skin surface, often termed the “acid mantle,” is a key component

of healthy skin. Recent investigations measuring skin surface pH in healthy volunteers report
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an average pH between 4.1 and 5.8 [4]. Organic and fatty acids excreted from the host as well

as by-products of skin microbiota metabolic activity contribute to the acidity of the skin sur-

face [5]. Additionally, activity of skin antimicrobial peptides, a key component of innate

immunity, are optimal at acidic pH [6]. The application of cleansing agents as well as age,

genetics, and inflammatory conditions can increase the skin pH and result in skin barrier dis-

ruption, dysbiosis, and disease (reviewed in [4]). Altogether, these observations indicate that

skin pH likely represents a critical factor in maintaining a healthy skin environment and

should be considered when characterizing microbial pathogenesis on the skin.

Contribution of skin pH to Staphylococcus aureus pathogenesis

Acidic environments are associated with repression of virulence across several bacterial species

[7]. Comparative transcriptional analyses of S. aureus grown in neutral and acidic media iden-

tified that several genetic factors involved in virulence and pathogenesis are repressed by acidic

pH [8,9]. For example, transcription of several S. aureus exoprotein loci, including α-hemoly-

sin (encoded by hla), aureolysin (aur), and toxic shock syndrome toxin 1 (tst), are repressed in

Fig 1. Staphylococcus aureus response to the skin barrier environment. The skin, composed of the epidermis and

dermis, form a physical and chemical barrier against microbial pathogens. Additionally, commensals (depicted in

green) produce secondary metabolites and antimicrobial peptides that further inhibit growth of opportunistic

pathogens such as S. aureus (depicted in purple). The skin layers depicted in Fig 1 were made using BioRender. Inset:

S. aureus responds to the acid stress caused by the skin surface environment by down-regulation of organic acid

production and exotoxins and up-regulation of purine biosynthesis, stress response factors, and ammonia-producing

pathways like the ACME-Arc and urease. The dotted line indicates that, although it is up-regulated, the role of urease

in this environment has not been demonstrated. ACME, arginine catabolic mobile element.

https://doi.org/10.1371/journal.ppat.1010512.g001
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acidic media [8]. This may be explained by repression of the regulator SaeS/R at low pH, a

global regulator that controls expression of many exoproteins [8]. In a recently published

study of S. aureus colonization of an ex vivo skin explant, both SaeS/R and the quorum sensing

regulator Agr, which controls expression of phenol-soluble modulins and other virulence fac-

tors, were repressed in early stages of skin colonization [10]. This is in contrast to data col-

lected from S. aureus abscesses in pediatric patients, where many genes in the SaeR/S regulon

are up-regulated [11]. These data suggest that the environment of healthy human skin could

prevent or delay S. aureus entering a virulent physiological state. Further investigation is

needed to explore this connection between S. aureus virulence and the skin surface

environment.

Lactic acid stress elicits a shift in S. aureus metabolism and

physiology

S. aureus growth is inhibited in media supplemented with lactic acid at a pH of 4.8, which sug-

gests this acid present on the skin surface may disrupt S. aureus colonization [12]. Lactic acid

is primarily excreted by the eccrine glands in concentrations ranging from 5 to 40 mM and is a

major organic acid on the skin surface [13]. Lactic acid supplemented media induces several

notable transcriptional changes affecting the metabolism of S. aureus [12], such as increased

urease expression and rewiring central metabolic pathways away from acetate production.

This metabolic adaptation is likely a concerted effort to increase intracellular pH via (1) pro-

duction of ammonia; and (2) reduction of organic acid production [12,14]. Purine biosynthe-

sis is also up-regulated during lactic acid stress or during challenge with other organic acid

species [8,12]. Notably, hydrochloric acid results in inhibition of purine biosynthesis, demon-

strating that the method of acidification may be important to consider when translating data

collected in vitro to the host environment. Although the role of purine biosynthesis in the con-

text of acid stress and skin colonization has not been studied, observations in other S. aureus
infection models show that transcriptional increases in purine biosynthesis contribute to the

stringent response and persistence [15]. In addition to metabolic changes, expression of several

gene products with roles in mediating protein damage, such as chaperonins and Clp protease,

are highly up-regulated during lactic acid stress. This may indicate a possible mechanism for

lactic acid stress in damage of intracellular proteins, a role consistent with stress mechanisms

by other organic acids [14]. Taken together, these data suggest that a lactic acid replete, acidic

environment is metabolically and physiologically stressful for S. aureus, and this has necessi-

tated the development of complex response mechanisms within S. aureus for counteracting

lactic acid toxicity.

Production of ammonia to combat acid stress

One approach to overcoming acid stress is by production of a basic metabolite, such as ammo-

nia, which can be used to neutralize the toxic acid. Urease activity and the functions encoded

in the arginine catabolic mobile element (ACME) have both been demonstrated in S. aureus
strains to combat acid stress in this manner [16,17].

The genes encoding urease are highly up-regulated in response to low environmental pH

[8,9,12]. Urease converts urea to ammonia and carbon dioxide via a Ni(II)-dependent reaction

[18]. Urease activity is key to the pathogenesis of several microorganisms in several different

organs of the body, including Helicobacter pylori in the stomach and Staphylococcus saprophy-
ticus in the urinary tract [18]. S. aureus utilizes the ammonia produced from urea to neutralize

the pH of acidic media, and this process contributes to its survival and pathogenesis in the
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murine kidney [16]. Although human sweat contains 4 to 12 mM urea, the role of urease activ-

ity on the human skin surface for S. aureus pH homeostasis has not been described [13].

The ACME is found in coagulase-negative Staphylococci and a subset of methicillin-resis-

tant S. aureus strains, including most of the highly virulent USA300 type strains [19]. S. aureus
has its own arginine deiminase (ADI) pathway that also converts arginine into L-ornithine,

ammonia, and carbon dioxide; however, the independent transcriptional regulation of ACME

allows for higher ADI activity in conditions of skin-like acidity [17]. Additionally, the ACME

encodes a polyamine N-acetyl transferase (speG) that confers resistance to host polyamines

produced in response to infection [17]. S. aureus is not the only skin pathogen that utilizes

arginine deamination to increase the pH on the skin—this has also been shown with Strepto-
coccus pyogenes, which uses its ADI pathway to raise pH on the skin and contribute to patho-

genesis [20].

Advances in modeling human skin infections

A significant bottleneck in researching microbe–host interactions on the skin is replicating the

skin environment in a research setting [21]. The pH and metabolites present on human skin

are unique to the species, which should also be considered when investigating topical skin

infections with animal models [4]. Remarkable developments have been made in recent

years in using human skin constructs for infection modeling in the laboratory, with several

companies offering products and services using differentiated keratinocyte and fibroblast skin

models and surgical ex vivo samples [21]. However, published work utilizing these models

for S. aureus human skin colonization and pathogenesis do not recapitulate the acidity

and metabolic composition of the skin surface, as S. aureus is often inoculated onto skin in a

phosphate saline solution at a neutral pH, and the function of the secretion glands has not

been confirmed in these models. Considering the transcriptional changes discussed earlier

that respond to pH, these methodological decisions could affect S. aureus colonization and

pathogenesis. To better understand how S. aureus interacts with the skin surface and acid

mantle, researchers should consider incorporating these aspects into their model systems for

S. aureus skin colonization and pathogenesis.

Concluding remarks and future directions

During colonization and pathogenesis, S. aureus and other pathogens encounter acidic envi-

ronments that impact metabolism and physiology, including the skin surface. In conditions

mimicking the lactic acid replete, low pH skin environment, S. aureus combats acid-induced

stress by acid neutralization with ammonia, reduction of organic acid production, and

increased production of functions with possible damage repair mechanisms. Understanding

microbe–host interactions using improved models for human skin colonization and infection

will provide more insight into S. aureus physiology on the skin and provide opportunities for

therapeutic intervention to lower risk for skin infections.
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