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Introduction
Lactation is a dynamic process of milk production to pro-

vide nutrition and immune benefits to the offspring while 
ensuring maintenance requirements of the mother are met 
(Darmon, 2009; Strucken et al., 2015). In dairy farming, milk 
is also the main product marketed for human consumption 
(Darmon, 2009) which is why farmers have worked to increase 
milk production over time. Milk production of domesticated 
dairy cows can reach 30–50 L per day or 6,000 to 12,000 Lover 
a lactation compared to 8–10 L per day and <1,000 L over lac-
tation in feral cows (Webster, 1995). Milk production in cows 

follow a dynamic curve starting with an initial rapid increase 
in milk yield in early lactation (approx. 0–45  days-in-milk, 
[DIM]), followed by a peak (approx. 46–55 DIM), and then a 
slow decline in milk yield during late lactation (approx. 56–340 
DIM) (Strucken et al., 2015). Factors such as peak milk pro-
duction, persistency and lactation length determine how the 
total amount of milk produced is distributed over lactation 
(Muir, 2004).

Since 1960, the amount of  milk produced per cow has al-
most tripled (Figure 1) which is due in part to genetics (re-
viewed by Strucken et  al., 2015; Miglior et  al., 2017; Brito 
et  al., 2021). Selection for production traits in Canada ini-
tially focussed on milk yield and milk fat yield (reviewed by 
Miglior et al., 2017). However, as technology developed also 
selection started to focus on milk protein yield and the shape 
of  the lactation curve. In particular, the lactation curve, per-
sistency (e.g., persistency of  production or rate of  decline), 
week of  peak yield and peak yield were considered (reviewed 
by Miglior et al., 2017). Different milk production traits are 
now considered in selection indices worldwide to provide a 
balanced breeding goal where milk production is no longer 
the sole objective but also includes, for example, health and 
fertility traits (Miglior et  al., 2017; Cole and VanRaden, 
2018).

Modelling lactation yield

Total lactation yields.
For the purpose of  management decisions and dairy cow 

genetic evaluations, standardized lactation lengths of  are used 
to estimate lactation yield. The International Committee for 
Animal Recording (ICAR) guidelines for genetic evaluation in 
dairy cows has standardized lactation length to 305-d (ICAR, 
2021), and has adopted guidelines and approved methods for 
computing 24-h yield and accumulated lactation yield (ICAR, 
2022). For example, in Canada the production traits that are 
used in national indices include 305-d fat yield, 305-d fat per-
centage, 305-d milk yield, 305-d protein yield, 305-d protein 
percentage (Oliveira Junior et al., 2021). With most breeding 

Implications

• Genetic selection to increase milk yield has been very 
successful.

• Genetic selection can be used to alter the shape of the 
lactation curve, manufacturing properties of milk, and 
composition associated with human health.

• Mid-infrared spectral data has potential for enabling 
low-cost, high-throughput phenotyping.

• There remains a disconnect between farmers’ invest-
ments in improved milk properties and payment for 
that milk.
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values estimated using a 305-day lactation, breeders are 
making selection decisions based on static values (Strucken 
et al., 2015).

Genetic evaluation of  lactation yield is based on the use 
of  models that incorporate relationships from pedigree in-
formation to predict the genetic merits of  animals using the 
best linear unbiased prediction (BLUP). Nowadays, these 
evaluations use both pedigree and genomic information (i.e., 
genomic selection) that better accounts for the realized re-
lationships. Lactation yield evaluations were first obtained 
by analyzing 305-d yields (Voelker, 1981; Pander and Hill, 
1993), which were accumulated from the linear interpolation 
of  few weekly or monthly test-day (TD) records (Olori and 
Galesloot, 1999). Test-day records provide information on 
daily lactation yield (including milk, fat and protein pro-
duction) collected from lactating cows by an official milk re-
cording officer. These TD records form the official records 
of  the cows and are usually obtained at monthly intervals 
through the lactation period; hence, a cow ends up with an 
average of  ten records per lactation. Predicted total lactation 
yield (305-d) from TD records assumes that the records are 
representative average of  each cows’ production in the sam-
pled period, which may not always be the actual case (Swalve, 
1995). Therefore, the true yield of  a cow might be different 
from the accumulated 305-d yield predicted from TD records 
(Anderson et al., 1989). Despite the differences between the 
true yield and 305-d yield, several statistical methods have 
been used to model 305-d yield predicted from TD records 
(Wiggans and Van Vleck, 1979). These statistical models typ-
ically treat 305-d yield as a single trait, resulting in relatively 
simple models with modest computational requirements. The 
principal drawback of  this statistical model is that it only 
accommodates a common environmental effect associated 
with all the records despite the fact that different lactation 
stages (i.e., trimester of  lactation) could be subjected to spe-
cific environmental effects and it assumes that the lactation 
curve is constant for all cows (Shanks et al., 1981). However, 
during the different stages of  lactation, a cow’s yield can 
be influenced by metabolic disease, climate variability, feed 

changes and stage of  pregnancy. Accounting for these spe-
cific effects in the model for each individual yield analysis 
representing the different lactation stages could allow for 
improved models.

Several authors have suggested the use of a multiple-trait 
model, in which each lactation record is classified as a different 
trait (Pander and Hill, 1993; Misztal et al., 2000). Alternatively, 
lactation records could be considered as repeated record on the 
same traits and analyzed using a repeatability model (Ptak and 
Schaeffer, 1993; Swalve, 1995). One of the weaknesses of the re-
peatability model is that it assumes lactation records collected 
at different times have a genetic correlation of unity (Jensen, 
2001). In addition, for the multiple-trait model where lacta-
tions are treated as different traits, the model could be over-
parameterized and pose computational challenges. To address 
the disadvantages presented by the repeatability and multiple-
trait models, a random regression model was proposed for 
longitudinal traits like lactation yield that are modeled by TD 
records over the course of lactation (Schaeffer and Dekkers, 
1994). Random regression models accommodate the structured 
covariance pattern that exists among the repeated records, ad-
equately adjust for the specific environment effect of the cows 
over the stages of lactation (using days in milk) and are less 
over-parameterized when compared to multiple-trait models. 
The main drawback of this methodology; however, include the 
large number of records required and the complexity of the 
models.

Persistency of lactation.
 Persistency, which can be measured based on ratios of 

partial and total yields, variation of  yields during lactation 
or the shape of  the lactation curve (Gengler, 1996), could 
give a more accurate representation of  the dynamic nature 
of  the lactation. Furthermore, it has been suggested that 
cows may benefit from extended lactation lengths to reduce 
the risk of  challenging transition periods (e.g., van Knegsel 
et  al., 2022); cows with a high persistency may be better 
suited to these longer lactations. Furthermore, with the 

Figure 1. The size of the US (left) and Canadian (right) national dairy herds in millions of cows (left y-axes) and the average milk production per cow in 
kg/y (right y-axes) between 1970 and 2020 for US and Canadian herds (data from United States Department of Agriculture, Economic Research Service & 
Agriculture and Agrifood Canada, respectively). Canadian data reflects only animals on herd recording.
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increased use of  sexed semen resulting in many more female 
replacements available (>50% of  calves born are female in 
such herds), a rapid turn-around time from lactation to lac-
tation is no longer necessary in nongrazing systems. Longer 
voluntary waiting periods have been reported to improve 
overall reproductive success without reducing the number of 
replacements available (e.g., Ma et  al., 2022). Cows with a 
high persistency tend to produce less milk than expected in 
early lactation but more milk than expected during later lac-
tation (Cole and Null, 2009). Selection for increased persist-
ency could flatten and extend the lactation curve (Muir et al., 
2004), reducing the need to dry off  high-producing animals 
and ultimately reducing the amount of  nonproductive time 
an animal spends in a herd. Consequently, persistency is of 
economic importance as well as it impacts fertility, health, 
and feed costs (Dekkers et  al., 1998). Genetic variation in 
persistency also reduces the accuracy of  genetic evaluations 
for 305-d lactation yield (Arendonk et al., 1995). However, 
while genetic evaluations have been developed for lactation 
persistency, providing separate estimated breeding values 
for persistency is not common in all countries (Jamrozik 
et al., 1997; Cole and VanRaden, 2006; Cole and Null, 2009; 
Strucken et al., 2015).

According to Gengler (1996), heritabilities for various def-
initions of persistency range between 0.01 and 0.30. Others 
have reported heritabilities ranging from 0.09 to 0.30 (Jamrozik 
et al., 1998; Muir et al., 2004; Cole and Null, 2009). However, 
it is important to recognize that not all definitions of persist-
ency have the same interpretation. Test-day models of persist-
ency are typically estimated as the difference in yield between 
two arbitrary lactation days, one near the peak and one where 
the lactation curve flattens out in late lactation. If  an adjust-
ment for level of production is not made, this can result in high 
phenotypic and genetic correlations of yield with persistency 
(Dekkers et al., 1998; Swalve, 2000; Jakobsen et al., 2003; Muir 
et al., 2004). This presents a challenge due to the difficulty of 
altering yield without altering the shape of the lactation curve. 
Cole and VanRaden (2006) demonstrated that values produced 
by the best prediction of persistency have low genetic correl-
ations with milk, fat, protein, and somatic cell score and are 
phenotypically uncorrelated with yield. Selection for milk pro-
duction later in lactation (changing the shape of the lactation 
curve) also may provide an opportunity to increase milk pro-
duction during a time in an animal’s life when energy allocation 
is possible.

Research efforts have focused on predicting lactation curves 
using different statistical models and, more recently, machine 
learning approaches (Silvestre et al., 2006; Ehrlich, 2011; López 
et al., 2015; Liseune et al., 2021). Cole et al. (2009) reported 
that it can be challenging to compute curves with satisfactory 
properties when the number of available records is limited, 
for example, when working with numerically small breeds or 
when calculating curves for very specific situations (e.g., breed-
parity-region). Appuhamy et al. (2009) showed that persistency 
is influenced by diseases, such as mastitis, in both the current 
and successive lactations.

Energy, Metabolism, Milk Composition, 
Fertility, and Sustainability Traits

Energy and metabolism traits.
Energy is required for lactation and other life func-

tions, including growth, reproduction, and health (Friggens 
and Newbold, 2007). These energy requirements and their 
partitioning changes throughout pregnancy, lactation and re-
turn to estrus cycling (Friggens and Newbold, 2007). During 
early and peak lactation cows typically experience an energy de-
ficiency as they cannot meet the high energy requirements for 
milk production because of physiological restraints on feed in-
take and mobilization of body energy reserves (Strucken et al., 
2015). This negative energy balance can affect large numbers of 
cows with between 52% and 75% of cows in excessive negative 
energy balance reported (Macrae et al., 2019). While there have 
been improvements in dairy cattle nutrition management (van 
Knegsel et al., 2007; Esposito et al., 2014), strong genetic selec-
tion on mainly one aspect, lactation, has changed how energy 
is allocated for other functions (Friggens and Newbold, 2007). 
This has led to challenges with metabolic disorders, fertility, im-
munity, and heat tolerance. These antagonistic relationships be-
tween lactation and functional traits have been explained in part 
by unfavorable genetic correlations, which means that including 
them in a selection index allows for continued, although slower, 
genetic progress in milk production, while simultaneously 
maintaining the resilience of animals (Pryce and Harris, 2006).

Energy mobilization can be observed in dairy cattle through 
the recording of an indicator trait, body condition score. In 
Canada, this score is categorical ranging from 1 to 5, where 
animals with the lowest score are thin with no fat reserves and 
animals with the highest score are over-conditioned (Mongeon 
et al., 2020). The drop in body condition score is indicative of 
the mobilization of energy reserves, which can be seen, for ex-
ample, at the beginning of a lactation period. Several studies 
have observed that heifers and cows that produced more milk at 
the beginning of a lactation period, often had larger decreases 
in body condition scores during this same period (Pryce and 
Harris, 2006; Manríquez et al., 2021; Tribout et al., 2022). This 
rapid mobilization of energy reserves can result in debilitating 
metabolic disorders in the short-term and have long-term ef-
fects on fertility and immunity.

Researchers have investigated the relationship between body 
condition score and female fertility, finding that genetic selection 
on higher milk production in early lactation likely exacerbates 
the already existing negative energy balance, seen in the larger 
decrease in body condition score, and having a negative effect on 
fertility (Van Arendonk et al., 1991; Dechow et al., 2002; Berry 
et al., 2003). With larger decreases in body condition score and 
body weight shortly after calving being associated with meta-
bolic disorders, including ketosis, displaced abomasum and 
metritis, milk fever, ketosis, and fatty liver (Frigo et al., 2010; 
Koeck et al., 2012; Stevenson et al., 2020). In addition, higher 
milk yield was associated with hyperktonemia, and fat and pro-
tein production were associated with ketosis and displaced abo-
masum (Koeck et al., 2013). Greater body weight and a smaller 
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change in body weight were favorably genetically correlated 
with infectious diseases and other diseases (Frigo et al., 2010) 
and milk yield was unfavorably correlated with ovarian cysts 
and clinical mastitis (Gernand et al., 2012; Koeck et al., 2014), 
likely because of the negative energy balance too. Even more 
far-reaching effects were observed in a study of the effect on 
females born to mothers lactating while pregnant, where the 
greater the milk yield of mothers, the larger the negative effects 
of prenatal programming on milk production, metabolic effi-
ciency and lifespan (González-Recio et al., 2012). Muir et al. 
(2004) estimated genetic correlations between persistency and 
reproductive traits that ranged from −0.17 to 0.43.

Technical properties of milk.
 In addition to increasing the overall amount of milk, fat, and 

protein, selection for desirable milk composition and quality is 
also possible. Some aspects of this selection are subject to funda-
mental laws of biochemistry—the osmotic properties required for 
milk secretion in the alveoli of the mammary gland are fixed—
but others are not. For example, many desirable isoforms of milk 
proteins are under single-gene control (e.g., A2 β-casein), and are 
associated with both human health and desirable manufacturing 
properties for cheese. It is also possible to manipulate the fatty 
acid profile of milk to more closely align it with human nutri-
tional needs (Soyeurt et al., 2009; Knutsen et al., 2022). Finally, 
milk quality traits, such as somatic cell count, provide an indi-
cator of the quality of the milk, but also the health of the animal, 
and have been included in most genetic selection programs.

However, phenotyping for advanced traits is often limited 
by cost, access to appropriate equipment, and throughput. 
Traditional milk recording programs are based on relatively 
simple analyses of milk composition: typically, fat content, true 
protein, lactose, other solids not fat, and somatic cell count. 
Some milk testing laboratories also have the equipment needed 
to record mid-infrared (MIR) spectral phenotypes. Precise fatty 
acid composition typically is determined using gas chromatog-
raphy, which is expensive and has low throughput. Detailed in-
formation about milk protein composition is usually obtained 
through mass spectroscopy, which has similar limitations. 
While MIR has been proposed as an indirect phenotype that 
is low-cost and high-throughput, it often has limited predictive 
power (Table 1). To overcome these challenges, a small number 
of direct phenotypes could be combined with a larger number 
of indirect measurements using bivariate models (Rutten et al., 
2011). The use of these tools in breeding programs will allow 

breeders to produce more milk and solids with a more desirable 
distribution of specific characteristics over time. Furthermore, 
it will allow production of milk that has more desirable prop-
erties for both manufacturers and consumers, making selection 
for peripherally associated traits like reduced methane emis-
sions possible (e.g., Shadpour et al., 2022).

Fertility and reproductive performance.
 Genetic selection for improved heifer and cow fertility re-

mains a challenge because the traits commonly used today 
focus on days open and pregnancy rate (e.g., VanRaden et al., 
2004, 2014), both of which have low heritabilities. While these 
phenotypes are easy to measure on a large-scale basis, they 
are likely to be poor proxies for the actual biology of fertility. 
Emerging traits, such as reproductive tract size and position 
score (Martin et  al., 2022), anti-Müllerian hormone levels 
(Mossa and Ireland, 2019), and endocrine fertility parameters 
(Tarekegn, 2019), may help produce faster rates of genetic 
gain than conventional fertility traits because they have higher 
heritabilities. Bull fertility remains a challenge; many aspects 
of sperm production do show a genetic component (Butler 
et al., 2020), but field fertility, commonly measured as concep-
tion rate, has a heritability near 0 (Kuhn and Hutchison, 2008). 
However, correlations of male with female fertility traits also 
are low, and there is no biologically plausible mechanism by 
which a cow’s lactation performance can directly influence the 
reproductive performance of her male offspring.

Sustainability and climate change.
Finally, to help mitigate climate change and other emerging 

challenges, this must also be considered for selection as it has 
been shown that production selection reduces heat tolerance 
(e.g., Ravagnolo and Misztal, 2000; Campos et al., 2022) while 
changes in milk yield, lactation length, or persistency may also 
alter greenhouse gas emissions (Wall et al., 2012). It might be 
argued that the ability to resist heat stress is not per se related to 
sustainability, but there are lots of cows in hot climates that are 
relatively inefficient, and even modest increases in their ability 
to breed back and produce good-quality milk may lead to de-
creases in cattle numbers, reductions in environmental impacts, 
and increased quality of life for farmers.

Greenhouse gas emissions from ruminants are complex, and 
are influenced by diet, the rumen microbiome, the host genotype, 
and interactions among all these systems (Difford et al., 2018). 

Table 1. Ability of milk mid-infrared spectra to predict fine milk composition.
Trait Correlation Application Reference 

β-Casein proteins - Differentiation between A1 and A2 β-casein proteoforms with al-
leged benefits for human health

Daniloski et al. (2022)

Fatty acids 0.43–0.93 Detailed profiling of milk fatty acids (4:0, 6:0, 8:0, 10:0, 12:0, 14:0, 
cis-14:1, 16:0, cis-16:1, 17:0, and 18:0)

Maurice-Van Eijndhoven 
et al. (2013)

Lactoferrin 0.71 Resistance to mastitis Soyeurt et al. (2012)

Milk acidity - Milk acidity is important in cheesemaking (milk coagulation prop-
erties, titratable acidity, and pH)

De Marchi et al. (2009)
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Methane emissions are highly correlated with milk fat produc-
tion, so selection for reduced greenhouse emissions is also likely 
to affect milk composition. This can be addressed through use 
of uncorrelated phenotypes (Manzanilla-Pech et al., 2021), but 
it may not be possible through genetics alone to produce high-
yielding cows with low total methane emissions. However, the 
amount of methane emitted by dairy cows per unit of milk, fat, 
and protein produced continues to decrease. While current dis-
cussions are focused on methane because of the ruminant’s role 
in its production, there also may be opportunities to reduce the 
amount of nitrogen excreted in faeces and urine (Table 2).

Discussion

Breeding goals.
Selection indices continue to evolve rapidly, with focus 

shifting away from production and fertility towards a broader 
perspective on cow profitability. Ideally, selection goals should 
be constructed with input from all sectors of the industry (Cole 
et al., 2021), but private entities sometimes construct their own 
indices for commercial exploitation (e.g., Fessenden et al., 2020). 
However, the milk recording sector has not been as flexible in 
evolving to meet current needs. Figure 2 shows the flow of infor-
mation between different sectors in the US milk improvement 
sector. The portion shaded in blue describes the current providers 

and processors of data, but that represents only one source of 
original data, on-farm testing. As technologies evolve and the 
value proposition of milk recording changes, genetic evaluation 
centers will need to be open to accepting data from more sources. 
An example of such information providers is shown in red, and 
includes milk processing plants (e.g., manufacturing properties), 
on-farm systems that do not transmit information to a central 
database (e.g., automated calf feeders), and farms that do not 
participate in milk recording programs. While supervised data 
collection from calibrated meters is the gold standard for milk 
data, factors can be applied to down-weight records that are col-
lected under less-rigorous schemes.

Novel traits.
Historically, selection for lactation-related traits has focused 

mostly on milk volume and fat and protein yields, with occa-
sional attention paid to persistency of lactation. This has been 
very successful, although some challenges have been encoun-
tered, principally the antagonism of yield with fertility. Looking 
forward, however, much more is possible. Progress is being made 
in developing fertility traits that are closer to actual biology than 
conception rates or days open, and there are opportunities to pro-
duce milk with better manufacturing properties and nutritional 
properties. However, if farmers are going to breed for traits that 

Table 2. Traits included in US genetic selection indices and the relative emphasis placed on each 
(1971—2022).

Trait1 

Relative emphasis on traits (%)
PD$  
(1971) 

MFP$  
(1976) 

CY$  
(1984) 

NM$  
(1994) 

NM$  
(2000) 

NM$  
(2003) 

NM$  
(2006) 

NM$  
(2010) 

NM$  
(2014) 

NM$  
(2017) 

NM$  
(2018) 

NM$  
(2021) 

Milk 52 27 –2 6 5 0 0 0 –1 –1 –1 0

Fat 48 46 45 25 21 22 23 19 22 24 27 22

Protein … 27 53 43 36 33 23 16 20 18 17 17

PL … … … 20 14 11 17 22 19 13 12 15

SCS … … … –6 –9 –9 –9 –10 –7 –7 –4 –3

UC … … … … 7 7 6 7 8 7 7 3

FLC … … … … 4 4 3 4 3 3 3 1

BWC … … … … –4 –3 –4 –6 –5 –6 –5 –9

DPR … … … … … 7 9 11 7 7 7 5

SCE … … … … … –2 … … … … … …

DCE … … … … … –2 … … … … … …

CA$ … … … … … … 6 5 5 5 5 3

HCR … … … … … … … … 1 1 1 1

CCR … … … … … … … … 2 2 2 1

LIV … … … … … … … … … 7 7 4

HTH$ … … … … … … … … … … 2 2

RFI … … … … … … … … … … … –12

EFC … … … … … … … … … … … 1

HLIV … … … … … … … … … … … 1
1Trait abbreviations are: PL = productive life, SCS = somatic cell score, UC = udder composite, FLC = foot and leg composite, BWC = body weight com-
posite, DPR = daughter pregnancy rate, SCE = sire calving ease, DCE = daughter calving ease, CA$ = calving ability dollars, HCR = heifer conception rate, 
CCR = cow conception rate, LIV = cow livability, HTH$ = health dollars, RFI = residual feed intake, EFC = early first calving, and HLIV = heifer livability.
2Index abbreviations are: PD$ = Predicted Difference Dollars, MFP$ = Milk-Fat-Protein Dollars, CY$ = Cheese Yield Dollars, NM$1994 = 1994 Lifetime Net 
Merit, NM$2000 = 2000 Lifetime Net Merit, NM$2003 = 2003 Lifetime Net Merit, NM$2007 = 2007 Lifetime Net Merit, NM$2010 = 2010 Lifetime Net Merit, 
NM$2014 = 2014 Lifetime Net Merit, NM$2017 = 2017 Lifetime Net Merit, NM$2018 = 2018 Lifetime Net Merit, and NM$2021 = 2021 Lifetime Net Merit.
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have added value for the milk processing sector then there needs 
to be a way for them to capture some of the added value of that 
milk. This challenge exists around many novel traits, including 
those that have high recording costs, and it is not reasonable that 
farmers bear all the cost of data collection while capturing none 
of the additional value of the milk and its components.

Milk in leading dairy countries is commonly priced on com-
ponent schemes that consider not only volume but also compos-
ition. In many emerging markets, however, farmers are paid only 
for volume. Regardless of the specific payment scheme used, many 
emerging schemes for precision management and breeding call 
for investments in on-farm and milk laboratory equipment (e.g., 
Koltes et al., 2019). This leads inevitably to the conclusion that 
there is frequently a disconnect between farmers’ investments in 
improved milk properties and payment for that milk. Growing 
consumer interest in milk components that are perceived as 
“healthy”, such as the A2 variant of β-casein, has not led to pre-
mium payments to farmers; rather, the consumer pays a premium 
to the process that they capture for themselves. This makes it diffi-
cult for farmers to invest in new feed additives, genetics, and other 
tools because there is no marginal value that they can capture.

Robustness.
It also is important to note that the environment in which 

the cow is performing, and the management available in that 
environment, are also crucial factors: high-quality genetics re-
quire high-quality management. In this context, management 
includes all nongenetic aspects of animal husbandry, including 
housing, feeding, and handling. Most notably, effects of heat 
stress—which include decreased water and dry matter intake, 
impaired fertility, and reduced productivity—have been studied 
for decades (Kadzere et  al., 2002). It is also well-established 
that environmental conditions have life-long effects on ani-
mals that begin during gestation (e.g., Cattaneo et  al., 2022). 
It is possible to identify bulls whose daughters can resist the ef-
fects of heat stress on milk production (Aguilar et al., 2009), 

and some research has focused on robustness in the context of 
genotype-by-environment (e.g., Collier et al., 1982; De Rensis 
and Scaramuzzi, 2003; Rauw and Gomez-Raya, 2015), but 
there are physical limitations that are unlikely to be improved by 
breeding alone. In particular, to realize the potential of excellent 
genetics lactating cows must be capable of shedding excess heat, 
maintaining dry matter and water intake to support lactation, 
and producing high-quality oocytes to support optimal fertility. 
Selection for greater robustness can support these goals, but 
it cannot eliminate the impact of the environment on produc-
tion. One implication of this is that there is likely no ideal cow 
for every situation; in the future, genetics will be more closely 
tailored to the locations in which they’ll be used.

Conclusions
Genetic selection to increase milk yield has been very suc-

cessful, and there is no reason to believe that selection limits are 
being reached. While most selection has focused on improving 
yield, there are also opportunities for changing the shapes of lac-
tation curves, manufacturing properties of milk, and composition 
associated with human health. Mid-infrared spectral data has 
potential for enabling low-cost, high-throughput phenotyping, 
and new genetic evaluations based on that technology are now 
entering the market. However, there remains a disconnect be-
tween farmers’ investments in improved milk properties and pay-
ment for that milk that may limit the potential of these new tools.
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