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Abstract

Aortic dissection is a life-threatening event that is responsible for significant morbidity and 

mortality in individuals ranging in age from children to older adults. A better understanding of the 

complex hemodynamic environment inside the aorta enables clinicians to assess patient-specific 

risk of complications and administer timely interventions. In this study, we propose to develop 

and validate a new computational framework, warm-start physics-informed neural networks (WS-

PINNs), to address the limitations of the current approaches in analyzing the hemodynamics inside 

the false lumen (FL) of type B aortic dissection vessels reconstructed from apolipoprotein null 

mice infused with AngII, thereby significantly reducing the amount of required measurement 

data and eliminating the dependency of predictions on the accuracy and availability of the inflow/

outflow boundary conditions. Specifically, we demonstrate that the WS-PINN models allow us 
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to focus on assessing the 3D flow field inside FL without modeling the true lumen and various 

branched vessels. Furthermore, we investigate the impact of the spatial and temporal resolutions 

of MRI data on the prediction accuracy of the PINN model, which can guide the data acquisition 

to reduce time and financial costs. Finally, we consider the use of transfer learning to provide 

faster results when looking at similar but new geometries. Our results indicate that the proposed 

framework can enhance the capacity of hemodynamic analysis in vessels with aortic dissections, 

with the promise of eventually leading to improved prognostic ability and understanding of the 

development of aneurysms.

IN BRIEF

Aortic dissection poses significant health risks across all age groups. This study introduces a 

new computational framework, warm-start physics-informed neural networks (WS-PINNs), to 

improve the hemodynamic analysis of type B aortic dissections in mice models. WS-PINNs 

significantly reduce the need for extensive measurement data and eliminate reliance on precise 

inflow/outflow boundary conditions. By focusing on the false lumen without modeling the true 

lumen and branched vessels, the WS-PINN models enable detailed 3D flow field assessment. We 

evaluate WS-PINNs on noisy examples and run an analysis on computational efficiency, finding 

that WS-PINNs can handle expected levels of MRI measurement noise and are generally more 

efficient than traditional CFD approaches, especially when using transfer learning. Importantly, 

WS-PINNs avoid the cumbersome preprocessing and mesh generation required by CFD. Our 

findings demonstrate that WS-PINNs enhance hemodynamic analysis, potentially leading to better 

prognostic capabilities and understanding of aneurysm development.

INTRODUCTION

Thoracic aortic dissection (AD) is a cardiovascular pathology caused by a tear or rupture in 

the intimal layer of the aortic wall, allowing blood to flow in and dissect the intimal and 

medial layer of the arterial wall.1,2 These dissections often propagate within the media and 

connect with the original aortic lumen or “true lumen” (TL) to form a so-called false lumen 

(FL) within the aortic wall, as illustrated in Figure 1A. The dissected aortas are susceptible 

to rupture due to the weakened vessel wall, potentially leading to a life-threatening crisis 

responsible for up to 15,000 deaths per year in the United States.3 In contrast to type A 

ADs, which often require urgent surgery upon diagnosis, acute type B ADs (TBADs) might 

either stabilize to an uncomplicated form that can be treated with optimal medical therapy or 

progress into a complicated form that demands immediate medical intervention,4 including 

thoracic endovascular aortic repair (TEVAR) or, less frequently, open surgical repair. 

Although TEVAR has demonstrated its effectiveness in improving clinical outcomes by 

promoting aortic remodeling and FL thrombosis,5–7 its use to patients with uncomplicated 

TBAD remains controversial because of excess cost and procedural risks. Since up to 65% 

of acute uncomplicated TBAD will eventually progress to a complicated state within 5 years, 

an accurate prognosis of the evolution of TBAD is essential to identify patients with a high 

risk of developing complications to optimize the far-reaching therapeutic consequences.2,8

Morphological factors of dissected aorta derived from anatomic imaging (eg, maximal 

thoracic aortic diameter; the initial FL size; the number, size and location of entry tears) 
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have traditionally been used to assess the risk of FL growth and subsequent rupture in 

patients with TBAD.9–13 Specifically, systematic studies on the morphological factors of 

TBAD suggest that aortas with a diameter >40 mm and an FL diameter >22 mm at diagnosis 

are associated with adverse events.14 Moreover, a higher number of re-entry tears had a 

protective effect against FL expansion,13,15 whereas a shorter distance between the primary 

tear and the left subclavian artery offspring was linked to aortic growth in uncomplicated 

TBAD.16 Despite these promising findings, identifying the disease progression solely based 

on the geometric features is likely insufficient for prognosis. For example, previous clinical 

evidence showed that FL can remain patent, partially thrombosed, or fully filled with 

thrombus, leading to variable clinical outcomes.17–19 Specifically, patients with completely 

thrombosed dissections are reported to show a better prognosis, as complete thrombosis of 

the residual FL might be a sign of healing and remodeling of the aortic wall, while patent 

and partially thrombosed FLs appear to be susceptible to further dissection or eventual 

rupture.20–22 As hemodynamics plays an essential role in dictating thrombus formation, 

quantification of blood flow in the dissected aorta is required to assess the extent of FL 

thrombosis and the risk of FL rupture.

With the recent advances in magnetic resonance (MR) technology, the volumetric phase-

contrast MRI, also known as four-dimensional (4D) flow MRI, has increasingly been used 

for hemodynamic analysis in cardiovascular diseases as it enables the quantification of 

three-dimensional (3D) blood flow field in the heart and large vessels.23–33 However, its 

limited spatial and temporal resolutions (0.7–1.2 mm spatial and 40–80 ms temporal) and 

reduced effectiveness in analyzing sluggish flow compromise its performance in quantifying 

the hemodynamics in the near-wall region inside FL.34–36 Other diagnostic modalities, such 

as ultrasound and transesophageal echocardiography, only measure partial flow data on 

planes or at a given point of view and thus cannot provide a complete description of the 

complicated 3D flow field inside FL for thrombotic propensity evaluation.37

However, computational fluid dynamics (CFD), which simulates the blood flow based on 

Navier-Stokes equations, has been broadly employed to illustrate the complex blood flow 

patterns in macro- and micro-blood vessels with pathological alterations.38–45 Informed by 

patient-specific inflow/outflow boundary conditions (BCs), referred to as flow BCs in this 

study, measured by either ultrasound or MRI, CFD simulations can provide a high-resolution 

assessment of hemodynamics inside FL of TBAD vessels reconstructed based on computed 

tomography (CT) angiography imaging.46–53 Moreover, CFD can evaluate the pressure and 

shear stress that are difficult to measure in vivo. Notwithstanding these advantages, the 

reliability of CFD simulations primarily depends on the patient-specific flow BCs for all the 

inlet and outlet vessels, as illustrated in Figure 1B, which are often not accessible due to 

practical and ethical constraints.

Given the lack of availability of patient-specific flow BCs to inform CFD simulation and 

the limited accuracy of 4D MRI in predicting FL hemodynamics and thrombogenesis, there 

is a pressing need to explore new data assimilation algorithms to overcome the limitations 

of these two approaches. Recently, scientific machine learning models, which combine 

measurement data with the laws of physics using neural networks (NNs), have emerged as 

a novel tool for solving inverse or illposed engineering problems.54–61 In particular, physics-
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informed NNs (PINNs), which integrate Navier-Stokes equations into the loss function of 

the NN,62–66 could assimilate the low-resolution patient-specific MRI data and laws of 

physics to the current capability of assessing hemodynamics in vessels with TBAD for better 

prognosis of disease progression. Several attempts67–70 have demonstrated the feasibility of 

employing PINNs to inform hemodynamics within aneurysmal or stenosed channels with 

noisy data, sparse data, or even without measurement data. However, these prior studies 

only test the performance of PINNs on two-dimensional (2D) or 3D idealized geometries, 

which cannot characterize the complexity of the realistic patient-specific TBAD vessels. 

Thus, the capability and applicability of PINN models in clinical applications remain to be 

investigated.

In this paper, we employ warm-start PINNs (WS-PINNs), as illustrated in Figure 2, to 

predict hemodynamics in realistic 3D dissected aortas reconstructed from apolipoprotein 

null mice infused with angiotensin II (AngII),71–73 a well-established animal model for 

studying the parthenogenesis and pathology of ADs. WS-PINNs are trained with data first 

without considering the constraints from the laws of physics to achieve faster convergence 

(warm-up stage). Once WS-PINNs converge, physics constraints will be imposed to enhance 

the interpolation among the measurement data. We demonstrate that WS-PINNs models 

allow us to focus only on assessing the 3D flow field inside FL without modeling the TL 

and various branched vessels (Figure 1C), thereby considerably reducing the amount of 

required measurement data and eliminating the dependency of predictions on the accuracy 

and availability of the flow BCs. We also systematically evaluate model performance on 

the temporal and spatial resolution of the measurement data (i.e., from 4D MRI), aiming 

to determine the minimum data acquisition from MRI scanning while preserving the 

accuracy of the model predictions for assessing the hemodynamic metrics associated with 

thrombus formation and FL evolution. Furthermore, we demonstrate that by employing 

transfer learning, the trained transfer learning-WS-PINNs models can be used to predict 

hemodynamics in the evolved FL with few new data and minimal retraining, thus reducing 

the expense of data acquisition in the follow-up examinations of patients with TBAD.

RESULTS

WS-PINNs provide flow field predictions comparable to the CFD simulations

Here, we examine the performance of the proposed WS-PINNs model in inferring the 3D 

flow field inside the FL without considering the TL and other branches of the examined 

three mouse geometries. We use the results of CFD as ground truth (reference) to assess the 

accuracy of the predictions of WS-PINNs. The spatial resolution of the MRI data used in the 

WS-PINNs is determined to be 39, 59, and 45 slices of data along the longitudinal direction 

of the aorta, while the temporal resolution is determined to be 29 snapshots per cardiac cycle 

for all three geometries. These selections are made based on the conservative assumption 

of a maximum spatial resolution of 3.0 mm and a maximum temporal resolution of 40 

ms74 on human aortas and convert to the size of mouse aortas, which are approximately 20 

times smaller than the human aortas. We note that the computational domain of PINNs only 

includes the aneurysm (Figure 1C) without the blood vessel, and we do not have the BC at 

the interface between the blood vessel and the aneurysm.
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Figure 3 illustrates the prediction of the flow field on four slices along the entry of the FL of 

aneurysm 1, where the complex flow pattern is observed. We note that the magnitude of the 

w component of velocity overwhelms the other two components within the FL. As a result, 

the relative errors of the predictions of u and v are slightly larger than the w, particularly 

around the entry of the FL. This increased prediction error is likely attributed to the complex 

flow pattern at the connection of TL and FL, as illustrated by the flow streamline plotted 

at peak systole in Figure 3. In addition, as we did not consider the TL and other branch 

vessels in the WS-PINNs model, we did not specify the flow BC around the entry, which 

could also lead to a prediction error. Despite the errors around the entry, the overall model 

predictions are in good agreement with CFD simulation results (reference), with an L2

relative error of 2.78%. As illustrated in the insets of Figure 3, good agreement is achieved 

in the region close to the vessel wall, which is essential for computing the hemodynamic 

metrics associated with disease progression and thrombus formation, such as wall shear 

stress. This finding demonstrates the capacity of WS-PINNs to infer hemodynamics within 

the FL of dissected aortas without prior knowledge of the inlet and outlet BCs.

Next, we examine the predictions of the flow field in the other two aneurysms, and 

the results are represented in Figures 4 and 5 using flow streamlines at peak systole to 

understand the pattern and strength of flow that might contribute to the geometries of FL 

and the size of its entry. The patterns of the vortical zones differ markedly in aneurysms 

2 and 3, which are affected mainly by the size of the opening of the FL to the TL. The 

small entry of the small FL (Figure 5) leads to the smallest vortex in FL, whereas the large 

entry size in the large FL (Figure 4) causes the flow to break into two vortices located at 

the proximal and distal sites of inside the FL. These results show the significant discrepancy 

of flow patterns within the FL of dissected aortas. The predictions of WS-PINNs at four 

selected slices around the entry and the corresponding reference are plotted in the insets of 

Figures 4 and 5. It is noted that WS-PINNs demonstrate superior performance in capturing 

the key features of the complex flow pattern at the opening of FL to the TL, considering the 

flow BCs at the opening are not provided. The L2 relative errors of the WS-PINNs are 2.05% 

and 2.71% for aneurysms 2 and 3, respectively, which are comparable to the prediction error 

for aneurysm 1, demonstrating the robustness of WS-PINNs for inferring hemodynamics in 

dissected aortas with various geometries. We also observed increased errors near the entry 

of the FL due to the lack of information on the flow BCs. These findings demonstrate the 

feasibility and capacity of WS-PINNs to infer the flow field within the FL by incorporating 

the sparse measurement data without the knowledge of inlet and outlet BCs.

Impact of spatial and temporal resolutions of measurement data on the accuracy of WS-
PINNs predictions

In this section, we systematically examine how the spatial and temporal resolutions of 

measurement data impact the prediction of the WS-PINNs by gradually reducing the amount 

of measurement data provided to WS-PINNs for inferring the flow field. The spatial and 

temporal resolutions will be reduced to 80%, 60%, 40%, and 20% of the original dataset 

used in the last section, respectively. We use these measurement data to train a fully 

connected neural network (FNN) without incorporating the laws of physics into the loss 

function of the FNN. L2 relative error of the predictions of the velocity magnitude with 
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respect to various numbers of slices and snapshots for the three examined aneurysms are 

summarized in Figure 6A. These three panels show a notable trend of increases in prediction 

errors as the spatial and temporal resolutions are reduced. In particular, the increases in error 

are more pronounced for aneurysms 1 and 3 compared to aneurysm 2. This discrepancy is 

likely attributed to the different shapes of the FL. As illustrated in Figure 1C, the shape 

alterations of aneurysms 1 and 3 along the direction of the aorta are more significant, leading 

to more drastic flow field changes that require more measurement data to infer the 3D flow 

field within the FL. Conversely, aneurysm 2 exhibits a more uniform shape, as indicated by 

comparable cross-sectional areas along the longitudinal axis of the aorta. As a result, the 

flow patterns within the FL are less variable, leading to a reduction in the amount of data 

necessary for reconstructing the hemodynamics inside the FL.

Next, we predict the flow field within the FL by integrating the laws of physics into the 

loss function of the FNN. The resultant L2 relative error of the predictions of the velocity 

magnitude with respect to various numbers of slices and snapshots for the three examined 

aneurysms are summarized in Figure 6B, where we observe no notable improvement for 

predictions in case of high spatial and temporal resolutions. As for the predictions based on 

relatively low spatial and temporal resolutions, the errors have been greatly reduced after 

the laws of physics are considered, demonstrating the significant role of the laws of physics 

in facilitating the interpolation of the flow velocities within regions without measurement 

data. The average reductions in the prediction errors for aneurysms 1–3 are 34%, 30%, and 

38%, respectively. These results indicate the superior capability of WS-PINNs in inferring 

the hemodynamics within the FL than NNs, particularly in cases where the measurement 

data are sparse in spatial and temporal spaces. We also note in Figure 6C, which depicts the 

relative difference described in Equation 1,

Relative Difference =
L2data only − L2ws−PINN

L2data only

(Equation 1)

that for aneurysms 1 and 3, the error escalates more rapidly when the temporal resolution is 

decreased solely compared to the scenario where only the spatial resolution is reduced. In 

contrast, the predictions for aneurysm 2 are more sensitive to the temporal resolution. This 

difference is probably linked to the more complex flow patterns within aneurysms 1 and 3 

that demand a greater amount of measurement data to accurately capture the complete flow 

patterns within the fluid domain, while the more uniform flow inside aneurysm 2 requires 

less measurement data.

Performance of WS-PINNs on processing noisy data

The 4D flow MRI data acquired from clinics often is contaminated by measurement noise 

originating from various sources such as imperfections in the imaging equipment, motion 

artifacts, and other environmental factors. To allow for a more realistic representation of 4D 

flow MRI data, we modified the velocity data by introducing Gaussian white noise with an 

SD denoted as α to simulate the measurement noise inherent in MRI data. The added noise is 

relative to the largest velocity value and thus has a more significant impact on low-velocity 
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data. The parameter α is adjusted within the range of 0%–25%, reflecting different degrees 

of acquisition noise associated with MRI scan data, as informed by earlier experimental 

evaluations.75,76 The impact of the noise on the L2 relative errors of predictions of V  is 

summarized in Figure 7. Each noise level was run three times, and error bars indicate SDs 

of the predictions. We consider two resolution cases in aneurysm 1, one at the maximum 

resolution and one at 60% spatial and temporal resolution, denoted as high and medium, 

respectively. For both resolutions, we compare the data only and WS-PINNs models.

At 5% noise, the high-resolution cases nearly double their L2 relative errors, with an average 

127% increase for data only and an 82% increase for WS-PINNs. The medium resolution 

errors for data only and WS-PINNs increase by 28% and 38%, respectively. As the noise 

level increases, the high-resolution models grow at nearly the same rate, seeing WS-PINNs 

remain at an average of 39% lower L2 relative error. Compared to the initial error reduction 

of 24%, WS-PINNs have an obvious advantage over data-driven methods for this case. 

Considering the medium resolution, the error difference decreased at 15% noise, but this 

seems an outlier as the other four noise levels see lower errors on the order of 77%, 

compared to the 50% lower error at 0 noise. Overall, WS-PINNs appear more robust to noise 

than the standard data-driven model.

Transfer learning accelerates the training of WS-PINNs for hemodynamic predictions in 
evolved aneurysm geometries

Next, we consider the effect of transfer learning applied to evolved aneurysms, mimicking 

the growth of an aneurysm over time. Here, we use aneurysm 1 as an example and stretch 

the original geometry along the z-axis up to 40% of its original length with an increment of 

10%. The new geometries will be solved via CFD to serve as ground truth for comparison 

with the predictions of WS-PINNs. Transfer learning is conducted by loading the previous 

model’s weights and biases into the model before training for the new geometries begins. 

We propose the dubbed boundary warmup strategy to ensure that the previous model was 

prepared appropriately for the new stretched boundary, as discussed in the section “transfer 

learning WS-PINNs.” Once the boundary warmup is completed, it is found that the data 

warmup stage converges much more quickly, on the order of 10,000 iterations, as opposed 

to the 20,000–50,000 required for WS-PINNs. Finally, the transfer learning-WS-PINNs 

training time is shortened from 20,000 to 50,000 iterations required for WS-PINNs to 

3,000 to 5,000 iterations. Figures 8A and 8B depict the difference in iterations and errors 

for different resolutions in aneurysms with varying extents of FL evolution, and Figure 8 

summarizes the prediction errors for cases with/without using transfer learning. It is noted 

that the speedup is significant, with more than 20,000 fewer iterations required for training 

with transfer learning-WS-PINNs than that of WS-PINNs. In particular, the majority of 

these iterations occur at the more computationally costly stage, where both data and the 

laws of physics are considered in training. As a result, the employment of transfer learning 

reduces the overall computational time by 50% for high resolutions and upward to 80% for 

low-resolution cases when comparing the time for training WS-PINNs from scratch.
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DISCUSSION

4D MRI has been used increasingly to assess hemodynamics inside dissected aortas, but 

its limited spatial and temporal resolutions compromise its effectiveness in analyzing the 

blood flow within FL. CFD can provide an accurate estimation of the hemodynamics 

inside dissected aortas, but the accuracy of CFD simulations relies on the knowledge 

of the patient-specific BCs at all inlet and outlet vessels, which are often unavailable in 

clinical practice. In this study, we have proposed a new computational framework that can 

incorporate low-resolution MRI data and leverage the laws of physics for fluid mechanics 

to address these issues. In contrast to the conventional CFD simulations, WS-PINNs do 

not require patient-specific flow BCs to infer the high-resolution 3D flow field thanks 

to the superior capability of PINNs for solving inverse and ill-posed problems in fluid 

dynamics. WS-PINNs only require knowledge of partial MRI measurements at regions of 

interest (i.e., velocities on the transverse planes along the dissected aortas [Figure 1C]) 

to resolve flow fields, thereby significantly reducing the time for processing the data for 

entire aortas. In particular, we show that the WS-PINNs can characterize the flow within 

the FL of the dissected aorta without mesh generation and knowledge of flow BCs, thus 

overcoming the challenges encountered by conventional CFD simulations. Here, we note 

the interdisciplinary nature of this study as constructing the WS-PINNs requires significant 

effort from data science and machine learning domain experts, while data measurements 

need to be performed by biomedical engineers (synthetic data) or radiologists (MRI data). 

The final clinical decision will be made by cardiovascular surgeons.

The training process of WS-PINN and transfer learning-WS-PINN involves gradually 

providing various pieces of knowledge (Figure 9) to the PINN in a certain order to 

achieve better results rather than using PINN directly. This process is similar to that used 

by Xu et al.,77 in which different rules are automatically adjusted for embedding order 

based on importance. In addition to reconstructing the 3D flow field based on sparse 

measurement data, WS-PINNs are proficient in handling measurement noise by integrating 

the laws of physics into the loss function, which is a feature critical to process clinical data 

characterized by measurement noise. Integration with physical models in the WS-PINNs 

can also loosen the requirements of MRI data acquisitions, reducing the time and financial 

cost of MRI scanning. Specifically, in the case of FL with drastic shape changes, the 

model predictions are more sensitive to the spatial resolution of the measurements, while 

the prediction errors are more dependent on the temporal resolution for FL, with more 

uniform shapes. As a result, the proposed WS-PINNs model can guide data acquisition 

from MRI scanning while preserving the accuracy of the model predictions for assessing the 

hemodynamic metrics associated with thrombus formation and FL evolution.

Computational efficiency is vital for gauging the practical implications of our PINN 

approach. PINN training was run on one NVIDIA GeForce RTX 3090 graphics processing 

unit. The average training time and SD over all three aneurysms for WS-PINN is 21.61 

± 0.32 min, and for transfer learning-WS-PINN, it is 10.32 ± 0.40 min. As a comparison, 

CFD simulations were run on one Intel Xeon Gold 6230 central processing unit by using 

32 threads. CFD runtimes have greater variability across three aneurysms. CFD simulations 

on aneurysm 1 took 15.26 min, 85.35 min on aneurysm 2, and 63.33 min on aneurysm 
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3. The variance in CFD runtime stems from differences in the generated meshes among 

the three aneurysms. While WS-PINN is slower than CFD in aneurysm 1, our method is 

faster for the other two aneurysms and has more consistent runtimes. Additionally, transfer 

learning-WS-PINNs are faster than their CFD counterparts for all three cases. It is important 

to note that the provided runtimes do not include the extensive time for pre-processing and 

mesh generation in CFD—at least a few hours for a trained CFD researcher.

It is also noted that WS-PINNs provide an alternate way of storing hemodynamic data 

in NNs to boost storage capacity and promote data sharing. Hemodynamics analysis of 

dissected aortas using 4D MRI or CFD simulations involves generating a massive amount 

of data from either volumetric data scanned for 4D MRI or the velocity data computed on 

the high-density mesh. For example, data obtained from CFD simulations for one cardiac 

cycle for one geometry of the dissected aorta is approximately 10 GB. Such large data pose 

significant challenges to data transport and sharing for large cohort studies. The employment 

of WS-PINNs enables the storage of hemodynamic data in light-weighted NNs, which 

occupy less than 900 kB after compression, facilitating the model transport and sharing on 

Open Data Hub to reproduce the simulation results. This critical feature could significantly 

promote large cohort studies of the association of geometric and hemodynamic factors with 

the disease progression of patients with aortic aneurysms and AD.

We note several limitations of the current work. While we have successfully demonstrated 

the effectiveness of WS-PINNs in synthetic data generated on multiple realistic geometries, 

their accuracy and efficiency in real flow MRI data remain an area requiring additional 

investigations. Real clinical data can introduce complexities and variations that may 

impact the model performances compared to the controlled in vitro or synthetic data. 

Further research and development efforts along these lines will be essential to harness the 

full potential of WS-PINNs. In addition, the suitability and practicality of the proposed 

framework are demonstrated by utilizing a model of mouse AD in current research. 

Nevertheless, the proposed method will be equally applicable to predict the hemodynamics 

of other dissections, artery stenosis, and diverse aneurysms. As long as the development 

of the alterations of vessel geometries and partial information of the hemodynamics can 

be measured, they can be seamlessly integrated into the WS-PINNs framework for a 3D full-

flow field assessment. The proposed method represents a robust and adaptable framework 

that can leverage artificial intelligence-based models to merge the laws of physics with 

multi-modal in vivo data (i.e., CT and MRI), thus improving personalized prognosis for 

patients with TBAD or other aortic diseases.

Conclusion

Despite recent technical developments, surgery on the thoracic aorta remains challenging 

and is associated with significant mortality and morbidity. Decisions about when and 

whether to operate are based on a balance between surgical risk and the hazard of 

aortic rupture. These decisions are sometimes difficult in elective cases of thoracic aortic 

diseases, including aneurysms and dissections. Abnormal hemodynamics derived from the 

deterioration of the aortic wall influences disease progression. In this study, we propose 

developing and validating a new computational framework, WS-PINNs, to address the 
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limitations of the current approaches in analyzing the hemodynamics in dissected aortas. 

WS-PINNs are trained with data first without considering the constraints from the laws of 

physics to achieve faster convergence (warm-up stage). Once WS-PINNs converge, physics 

constraints are imposed to enhance the interpolation among the measurement data.

Using apolipoprotein null mice as a disease model, we demonstrate the effectiveness and 

efficiency of WS-PINNs through the following four aspects: (1) We systematically examine 

the performance of the PINN model in inferring the hemodynamics inside FL of dissected 

aortas and demonstrate that PINN models allow us to focus only on assessing the 3D flow 

field inside FL without modeling the TL and various branched vessels, thereby considerably 

reducing the amount of required measurement data and eliminating the dependency of 

predictions on the accuracy and availability of the flow BCs. (2) We investigate the impact 

of the spatial and temporal resolutions of the measurement data on the model performance. 

(3) We utilize transfer learning to the trained WS-PINN models to track and record patient-

specific hemodynamics data during disease progression, thus reducing the measurement data 

acquired for the follow-up examinations. (4) Our results show that employing PINNs for 

hemodynamic data storage can significantly decrease the storage demands associated with 

saving the massive amount of data generated from either volumetric data scanned for 4D 

MRI or the velocity data computed on the high-density mesh, thereby boosting storage 

capacity and promote data sharing for large cohort studies.

In summary, our results show that the proposed computational framework can enhance 

the capacity of hemodynamics analysis in TBAD, with the promise of eventually leading 

to improved prognostic ability and interventional planning. Furthermore, the proposed 

computational framework can be equally applicable to other aortic diseases, such as artery 

stenosis and diverse aneurysms, and thus could have a much broader impact.

Data and methods

Geometries of AD

The geometries of examined dissected aortas were extracted from apolipoprotein null mice 

undergoing standard subcutaneous infusion of AngII at a rate of 1,000 ng/kg/min.71–73 The 

computational domains for blood flow simulations (Figure 1A) were reconstructed using 

combined 3D ultrasound and optical coherence tomography (OCT), while the flow BCs at 

the inlet, outlet, and four branches of the aorta were measured by pulsed-wave Doppler 

and anatomic 3D ultrasound (Figure 1B). These BCs will inform the CFD simulations, 

as introduced in the next section. As illustrated in Figure 1C, we employ WS-PINNs to 

predict the full 3D velocity field within the FL of three dissected aortas—one with a 

medium-size FL (left), one with a large-size FL (center), and one with a small-size FL 

(right)—based on the sparse cross-sectional velocities data without considering the TL and 

multiple branch outlets. More detailed information about the experiments and geometry 

reconstruction process can be found in the prior work of Phillips et al.72 and Bersi et al.78

To mimic the growth of the dissecting aneurysm during the progression of TBAD, we alter 

aneurysm 1 by stretching the original geometry along the z-axis up to 40% of its original 
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length, with an increment of 10%. These new geometries are solved via CFD to serve as 

ground truth for comparison with the predictions of WS-PINNs.

CFD simulation for data generation for training and testing WS-PINNs

We perform CFD simulations to generate data for training and testing the proposed WS-

PINNs. We utilize the incompressible velocity-pressure form of the Navier-Stokes equation 

and the incompressible continuity equation

ρ ∂V
∂t + (V ⋅ ∇V) = − ∇p + μ∇2V,

(Equation 2)

∇ ⋅ V = 0,

(Equation 3)

where t is time, V(x, t) = u, v, w T  is the velocity vector, p x, t  is the pressure field, x ∈ Ω
is the spatial coordinate, ρ is the density of the fluid, and μ is the dynamic viscosity of the 

fluid. The blood is assumed to be an incompressible Newtonian fluid with a density of 1,050 

kg/m3 and dynamic viscosity of 3.675 × 10−3 Pa s.

The flow BCs used in the CFD simulations are illustrated in Figure 1B, where the mouse-

specific inlet flow rate waveforms are prescribed at the level of the proximal suprarenal 

aorta as a Dirichlet BC using a Womersley velocity profile79 following pulsed-wave (PW) 

Doppler measurements taken at the same location.72 Two-parameter (also known as RC) 

Windkessel models match PW Doppler measurements in the major outlet vessels.80 Taking 

advantage of flow waveforms at the outlets, we compute time-dependent R(t)C values to 

reproduce the flow waveforms more effectively. A zero-flux Neumann BC for velocity was 

considered at each outlet. More detailed information on the calculation of the inlet and 

outlet BCs can be found in our prior work.81 Additionally, the CFD simulations consider the 

no-slip BC at the vessel walls. We solve Equations 2 and 3 using the open-source, parallel 

CFD code NEKTAR.82 We have generated 20 time frames per cardiac cycle from CFD 

simulations and extract the velocity data from each time frame by using point clouds with a 

uniform grid of 0.7-mm spacings projected into multiple planes based on the temporal and 

spatial resolutions of the MRI measurements. Three velocity images are created for each 

time frame, representing three velocity components: Vx, Vy, and Vz. The CFD simulation 

results are used as ground truth to examine the performance of the proposed WS-PINNs 

models as well as in the generation of the MRI data used by our PINN models, which is 

represented as 2D slices of velocity data across the different snapshots.

PINNs

As illustrated in Figure 2A, the employed PINN model takes four variables as inputs, 

consisting of three spatial components x, y, z  and one temporal component t, and outputs 

three components of the velocity u, v, w  and the pressure p . To facilitate the training of 

the NN, all input variables are scaled to −1 and 1 based on the geometry of the dissected 
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aorta and simulation time before being input into networks. The NN in WS-PINNs consists 

of 8 hidden layers with a width of 128. We use the Adam optimizer in all training stages 

with a learning rate of 10−3 for data only and 10−4 for PINN. Step decay is used with a 

decay rate of 0.5 and step size of 10,000. The sin activation function is used, and network 

parameters are initialized using the Xavier scheme. Here, we choose the sin activation 

function as it is a periodic activation function that helps model the oscillatory nature of the 

Womersley velocity profile. This approach was successfully implemented by Wang et al.83 

to model partial differential equation (PDE) systems with a periodic nature. Additionally, 

it is a continuously differentiable function that facilitates the computation of derivatives for 

evaluating the PDE residual required for computing the loss function.

It is noted that the loss function of the PINN model (Figure 2A) comprises three terms: 

(1) no-slip BCs on the walls of the dissected aortas whose geometry was gathered from 3D 

ultrasound and OCT; (2) the synthetic MRI measurement data; and (3) the laws of physics, 

including the Navier-Stokes and continuity equations, in the form of PDEs. When training 

our models, the no-slip BC on the boundary of the dissected aortas and the synthetic MRI 

measurement data are considered to be the supervised data, whereas the PDE residuals 

behave like a regularization term that ensures the model is physically constrained by the 

governing equations and prevents overfitting. In particular, incorporating these PDEs into the 

loss function of the network enhances the interpolation capability of PINNs when making 

predictions in the regions between the available MRI data. As a result, the total loss of our 

PINN models is defined as

ℒ θ = ℒpde θ + ℒbc θ + ℒdata θ ,

where θ is the parameters of the network. We consider Npde points in the dissected 

aorta domain, with corresponding network predictions u, v, w, p  represented as Tpde.ℒpde

represents the loss computed from the employed PDEs and can be expressed by

ℒpde(θ) = 1
Tpde ∑(x, t) ∈ Tpde wpde1ℒpde1 + wpde2ℒpde2

+ wpde3ℒpde3 + wpde4ℒpde4 |(x, t) ,

where

ℒpde1 = ∂u
∂x + ∂v

∂y + ∂w
∂z

2
,

ℒpde2 = ρ ∂u
∂t + u ∂u

∂x + v∂u
∂y + w∂u

∂z + ∂p
∂x − μ ∂2u

∂2x
+ ∂2u

∂2y
+ ∂2u

∂2z

2
,
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ℒpde3 = ρ ∂v
∂t + u ∂v

∂x + v∂v
∂y + w∂v

∂z + ∂p
∂y − μ ∂2v

∂2x
+ ∂2v

∂2y
+ ∂2v

∂2z

2
,

ℒpde4 = ρ ∂w
∂t + u∂w

∂x + v∂w
∂y + w∂w

∂z + ∂p
∂z − μ∂2w

∂2x
+ ∂2w

∂2y
+ ∂2w

∂2z

2
.

ℒbc represents the loss contributed from the no-slip BCs at Nbc points on the boundary, Tbc. 
Boundary loss can be computed as

ℒbc(θ) = wbc 1
∣ Tbc

(x, t) ∈ Tbc
u2 + v2 + w2 |

(x, t)

.

There are NMRI MRI measurement data with values uMRI, vMRI, wMRI , denoted by 

TMRI. ℒdata denotes the discrepancies between the model predictions, and it is computed 

by

ℒdata(θ) = wdata 1
TMRI

(x, t) ∈ TMRI
uMRI − u 2 + vMRI − v 2

+ wMRI − w 2
(x, t)

.

The weights (wpde1, wpde2, wpde3, wpde4, wbc, wdata) are used to adjust the contributions from 

different loss terms such that their impact on the total loss function of the network would 

be of the same order of magnitude. The continuity equation is weighted at 10. Other terms 

are weighted at 1, except for the z-axis velocity (w) terms, which are at a higher order of 

magnitude and set to a weight of 0.2 to compensate. Scaling, losses, and training procedures 

for WS-PINNs and transfer learning-WS-PINNs are depicted in Figure 9.

WS-PINNs

The training procedure of the proposed WS-PINNs models is divided into two stages. The 

network is trained using only synthetic MRI data without considering the constraints from 

the laws of physics for 20,000–50,000 iterations. We call this step “data warm-up.” By 

completing the data-warming step, the network converges more quickly, as the derivatives 

and additional loss terms do not need to be computed while simultaneously nearing the 

solution provided by the data. The range of iterations is dependent on the dataset. For 

cases with very low resolution, it was found that more iterations are required due to initial 

overfitting, which is corrected as the network trains. For higher-resolution cases, too much 

training can lead to overfitting, compromising PINN performance in the second step. Once 

the network is trained on the data and warmed up, we add the physics losses. Next, the 

network is trained with MRI data and the laws of physics. We confirm that the network 
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has converged by visually analyzing the loss function. Convergence occurs between another 

20,000 and 50,000 iterations.

Transfer learning-WS-PINNs

For stretched cases where transfer learning is employed, the two-stage learning process 

described in the previous section is not sufficient. Although our algorithms will optimize 

the initial geometry, when trying to employ transfer learning with new geometry, there is no 

guarantee that the solution outside our original geometry can provide useful hemodynamics 

information since that region was not trained on. Thus, we propose an additional step before 

the data warm-up called “boundary warm-up” occurs, where we first let the model learn 

the difference in the boundaries between the old and new geometries. Specifically, we add 

training points sampled from the area, differentiating the old and new geometries to the 

BC loss. Then, we use a copy of the model trained on the original geometry and resume 

training the entire model using the new BCs and the old MRI data. This ensures that the area 

outside the initial geometry is zero and prepares said area for training. A detailed graphic 

of boundary warm-up is provided in Figure 9. It was found that 3,000 iterations are long 

enough for transfer learning-WS-PINNs to learn this boundary difference, which is evident 

from a desired error comparable to the standard WS-PINNs.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact—Further information and requests for resources should be directed to and 
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Data and code availability—The data and code for this work is publicly available on the 

GitHub repository: https://github.com/lu-group/pinn-thrombus-mri.
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BROADER CONTEXT

Aortic dissection (AD) is a life-threatening event responsible for significant morbidity 

and mortality across diverse age groups. Quantitative assessments of hemodynamics 

within aneurysmal and dissected aortas have improved the prognosis of AD and aortic 

aneurysms. In this work, we introduce warm-start PINNs (WS-PINNs), a computational 

framework leveraging transfer learning, physics modeling, experimental data, and NNs, 

to address the limitations of existing approaches for hemodynamic analysis. WS-PINNs 

reduce reliance on extensive measurement data and mitigate dependencies of model 

prediction accuracy on inflow/outflow boundary conditions, potentially leading to an 

improved predictive capacity and interventional planning. Moreover, the proposed 

computational framework has the potential to be utilized to address various other aortic 

conditions, including artery stenosis and a range of aneurysms. Thus, its impact could 

extend significantly across diverse medical scenarios.
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Figure 1. Assessment of hemodynamics in dissecting aortic aneurysms
(A) Three realistic geometries of dissecting aortic aneurysms reconstructed from ApoE−/− 

mice are employed to examine the accuracy and efficiency of the proposed PINN model.

(B) Assessment of hemodynamics in dissecting aortic aneurysms using a conventional CFD 

approach requires the knowledge of the flow BCs at all the inlets and outlets as well as the 

vessel boundaries for aneurysm, aorta, and its different branches.

(C) Assessment of hemodynamics in dissecting aortic aneurysms using PINNs only needs 

partial information of the flow field provided by MRI or other modalities (i.e., the velocities 

on the slices highlighted in the figure).
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Figure 2. WS-PINNs for inferring the hemodynamics within the FL of the dissected aorta
(A) The proposed model comprises an input layer containing 4 neurons, which read the 

coordinates, x, y, z, and time t, as the model’s inputs. These 4 input quantities are scaled 

before input into the NNs to facilitate the training process. The proposed model also consists 

of 8 hidden layers with 128 neurons per layer and 1 output layer to output the velocity 

components, , v, and w, and pressure p. WS-PINNs can integrate the multi-modality data, 

such as (1) vessel boundaries from CT images (purple box), (2) blood flow measurements 

from MRI or ultrasound (purple box), with 3 laws of physics (green box) by assimilating 

this information into the loss function of the NNs for assessing the high-resolution 3D 

hemodynamics without the knowledge flow BCs.

(B) Transfer learning is performed by refining the existing WS-PINNs model (trained using 

the initial examination (T0)) using the newly acquired geometries and measurement data 

T1 − T3 .
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Figure 3. 3D velocity field in aneurysm 1 predicted by the proposed WS-PINNs model
The streamline of the blood flow within the aneurysm is illustrated. (A–D) Four randomly 

selected cross-sections are selected for comparison between the model prediction and CFD 

simulations on the 3 velocity components. w represents the velocity component along the 

longitudinal flow direction along the aorta, while u and v represent the flow direction within 

the cross-section of the planes perpendicular to the aorta.

Daneker et al. Page 22

Nexus. Author manuscript; available in PMC 2025 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 3D velocity field in aneurysm 2 predicted by the proposed WS-PINNs model
The streamline of the blood flow within the aneurysm is illustrated. (A–D) Four randomly 

selected cross-sections are selected for comparison between the model prediction and CFD 

simulations on the 3 velocity components.
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Figure 5. 3D velocity field in aneurysm 3 predicted by the proposed WS-PINNs model
The streamline of the blood flow within the aneurysm is illustrated. (A–D) Four randomly 

selected cross-sections are selected for comparison between the model prediction and CFD 

simulations on the 3 velocity components.
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Figure 6. Performance of NN and WS-PINNs using synthetic MRI data with various spatial and 
temporal resolutions
(A and B) L2 relative error of the examined aneurysms 1–3, (A) when only measurement 

data are used for training the NNs, and (B) when both data and the laws of physics are 

considered for training the WS-PINNs.

(C) Relative percentage decrease in L2 relative error (see Equation 1) with the inclusion of 

physics compared to the data-drive approach. The x-axis denotes the number of snapshots 

extracted from 1 cardiac cycle for training the model, while the y-axis represents the number 

of slices of synthetic MRI data used for training. The color highlights the magnitude of 

prediction errors.
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Figure 7. Noise effect on L2 relative error

We consider the effect of noise on the L2 relative error in aneurysm 1 for high and medium 

resolutions in data only and WS-PINNs models. Noise is white Gaussian noise, and the 

noise level is measured with respect to the maximum velocity. Error bars are SDs from 3 

trials, except for 0 noise levels, where only 1 trial is used.
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Figure 8. L2 relative error of WS-PINNs and transfer learning-WS-PINNs

(A and B) Transfer learning-WS-PINNs (solid lines) significantly reduce the training time 

by reducing the number of iterations required for training. With the advent of boundary 

warm-up (green lines) in transfer learning, the data warm-up (blue lines) and PINN stage 

(black lines) converge much more quickly, as opposed to WS-PINNs (dotted lines), leading 

to faster convergence, with examples provided for (A) the 10% stretched case and (B) the 

40% stretched case.

(C and D) While using transfer learning reduces the training time of our WS-PINNs models 

by approximately 50%, the accuracy of model predictions is sustained. The L2 relative error 

is approximately the same for multiple resolutions and stretching cases for both models, 

indicating no major negatives in using the proposed transfer learning-WS-PINNs.
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Figure 9. The workflow for utilizing WS-PINNs and transfer learning-WS-PINNs
The training of WS-PINNs is completed via a data warm-up step, followed by adding the 

physics constraints. These steps take fewer than 50,000 iterations to complete and produce 

a model with the error reported in Figure 6B. The trained WS-PINNs model can be used in 

transfer learning via a boundary warm-up step by using the new boundary of the evolved 

FL with old flow data for 3,000 iterations, followed by a data warm-up with the new data 

and new boundary for, at most, 10,000 iterations. The training is completed by adding the 

physical constraints for another 5,000 iterations.
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