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Abbreviations used

BNP: B-type natriuretic peptide

COVID-19: Coronavirus disease 2019

CRP: C-reactive protein

CXCL9: C-X-C motif chemokine ligand 9

CXCL10: C-X-C motif chemokine ligand 10

EM: Effector memory

HC: Healthy control

HLH: Hemophagocytic lymphohistiocytosis

KD: Kawasaki disease

MIS-C: Multisystem inflammatory syndrome in children

PDGF: Platelet-derived growth factor

ROC: Receiver-operating characteristic

sIL-2R: Soluble IL-2 receptor

TMA: Thrombotic microangiopathy

VEGF-A: Vascular endothelial growth factor A
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MIS-C differs from that of well-characterized
hyperinflammatory syndromes such as hemophagocytic
lymphohistiocytosis (HLH).
Objectives: We sought to compare the qualitative and
quantitative inflammatory profile differences between patients
with MIS-C, coronavirus disease 2019, and HLH.
Methods: Clinical data abstraction from patient charts, T-cell
immunophenotyping, and multiplex cytokine and chemokine
profiling were performed for patients with MIS-C, patients with
coronavirus disease 2019, and patients with HLH.
Results: We found that both patients with MIS-C and patients
with HLH showed robust T-cell activation, markers of
senescence, and exhaustion along with elevated TH1 and
proinflammatory cytokines such as IFN-g, C-X-C motif
chemokine ligand 9, and C-X-C motif chemokine ligand 10. In
comparison, the amplitude of T-cell activation and the levels of
cytokines/chemokines were higher in patients with HLH when
compared with patients with MIS-C. Distinguishing
inflammatory features of MIS-C included elevation in TH2
inflammatory cytokines such as IL-4 and IL-13 and cytokine
mediators of angiogenesis, vascular injury, and tissue repair
such as vascular endothelial growth factor A and platelet-
derived growth factor. Immune activation and
hypercytokinemia in MIS-C resolved at follow-up. In addition,
when these immune parameters were correlated with clinical
parameters, CD81 T-cell activation correlated with cardiac
dysfunction parameters such as B-type natriuretic peptide and
troponin and inversely correlated with platelet count.
Conclusions: Overall, this study characterizes unique and
overlapping immunologic features that help to define the
hyperinflammation associated with MIS-C versus HLH. (J
Allergy Clin Immunol 2022;149:1592-606.)

Key words: MIS-C, COVID-19, HLH, T-cell activation, hyperin-
flammation, cardiac dysfunction

Coronavirus disease 2019 (COVID-19) is less likely to result in
hospitalization and death in children as compared with adults and
older individuals1,2; however, children can develop a life-
threating complication following exposure to severe acute
respiratory syndrome coronavirus 2 (SARS-COV-2) known as
multisystem inflammatory syndrome in children (MIS-C).3,4

MIS-C is characterized by a prominent cardiac dysfunction
with elevation of both B-type natriuretic peptide (BNP) and
troponin. In addition to the heart, MIS-C affects multiple organs
including the gastrointestinal tract, lungs, kidneys, brain, skin, or
eyes.5,6 Because of prominent cardiac complications and
hemodynamic instability, initial studies focused on
differentiating MIS-C from Kawasaki disease (KD) or toxic
shock syndrome. Systematic studies identified unique cardiac
phenotypes in MIS-C characterized by more global cardiac
dysfunction and myocarditis than in KD.7,8 Furthermore, KD is
more commonly seen in children younger than 5 years,9 whereas
MIS-C is observed more frequently after age 5 years.1

Further studies focused on immunobiology comparing the patho-
physiology of MIS-C and KD revealed that MIS-C differs from
KD. Lower frequency of T follicular helper cells was found in
patients with MIS-C10 and more IL-17A–mediated inflammation
in KD.11
Another pathognomonic manifestation of MIS-C is the sys-
temic hyperinflammation.12 Some features such as hyperferritine-
mia, cytopenia, and elevated liver enzymes are reminiscent of
hemophagocytic lymphohistiocytosis (HLH).12-14 In addition,
management with high-dose steroids and biologics overlaps
with themanagement of HLH.15,16 Thus far, limited data differen-
tiating the immune signatures of MIS-C and HLH are available to
provide insights into pathogenesis and ultimately patient manage-
ment. Also, quantitative comparison of the T-cell activation state
in MIS-C versus HLH has not been previously evaluated.

Using T-cell immunophenotyping and multiplex cytokine and
chemokine profiling, we evaluated the immune signatures of
children hospitalized for MIS-C and COVID-19 and compared
themwith those of childrenwith HLH and healthy controls (HCs).
We also evaluated how inflammatory markers correlated with
cardiac dysfunction. Our findings could help understand the
unique inflammatory milieu that contributes to the clinical
manifestations observed in MIS-C.
METHODS

Human subjects
Children with MIS-C and COVID-19 were enrolled between April 2020 and

April 2021atChildren’sHealthcare ofAtlanta.PatientswithMIS-Cwere enrolled

on the basis of case definition as described by the Centers for Disease Control and

Prevention.17 Patients with HLH and age-matched HCs were included as a com-

parison cohort forMIS-C andCOVID-19. PatientswithHLHhadmainly primary

HLH, or EBV infection–associated HLH, and all of them fulfilled HLH-2004

diagnostic criteria.13 All patients were enrolled following informed consent,

with approval by the Emory University Institutional Review Board.
Flow cytometry and analysis
PBMCs were used for immunophenotyping. Antibody information is

provided in this article’s Online Repository at www.jacionline.org. Flow cy-

tometry data were acquired on BD FACSymphony A5 (BD Biosciences,

Franklin Lakes, NJ) and analyzed using FlowJo software v10 (BD, Ashland,

Ore). T-cell activation was defined by coexpression of HLA-DR1 and

CD381 on effector memory (EM) CD41 and CD81T cells.18-20 Coexpression

of PD-11 and Tim31 on EMCD41 and CD81 T cells was defined as a marker

for exhaustion.21 T-cell senescence was assessed by expression of CD571 on

the EM population of CD41 and CD81 T cells.22-25 Definitions of T-cell pop-

ulations analyzed in this study are presented in Table E1 in this article’s Online

Repository at www.jacionline.org.
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TABLE I. Description of demographic characteristics and clinical parameters of patient cohorts

Parameters n MIS-C n COVID-19 P value

Demographic data

Age (y), median (range) 69 11 (2-19) 24 11.5 (2-17) .13

Sex (male:female) 69 50:19 24 9:15 .003

Clinical data

WBC* (cells/mL), median (range) 69 14,340 (4,140-47,240) 21 12140 (5,260-65,720) .083

ANC* (cells/mL), median (range) 69 12,040 (2,620-34,020) 21 7,200 (2,410-22,450) .009

ALC� (cells/mL), median (range) 69 648 (140-2,706) 20 996 (200-6,776) .024

Platelet counts� (3 103 cells/mL), median (range) 69 140 (18-726) 22 226 (19-447) <.0001

Creatinine* (mg/dL), median (range) 69 0.66 (0.32-7.49) 20 0.59 (0.25-1.11) .1

ALT* (U/L), median (range) 69 47 (12-2,109) 19 47 (16-205) .98

BNP* (pg/mL), median (range) 69 690.1 (19.8-6,995) 15 24.5 (10-852) <.0001

Troponin* (ng/mL), median (range) 69 0.15 (0.015-13.8) 15 0.02 (0.015-1.92) .002

Ferritin* (ng/mL), median (range) 67 594.7 (89.73-4,744) 16 137.66 (9.1-982.39) <.0001

sIL-2R (U/mL), median (range) 48 4792 (525.6-20,816) 21 1091 (328.5-6,106) <.0001

CRP* (mg/dL), median (range) 69 15.7 (3.9-43.7) 18 8.3 (0.3-23.9) <.0001

ICU admission 69 49 24 14 .31

Low flow O2 69 31 24 12 .81

High flow O2 69 24 24 8 >.9999

Values in parentheses represent observed range of each parameter.

ALC, Absolute lymphocyte count; ALT, alanine transaminase; ANC, absolute neutrophil count; ICU, intensive care unit; WBC, white blood cell count.

*Maximum values recorded.

�Minimum values recorded.
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Plasma cytokine/chemokine profiling
Cytokine/chemokine profiling of plasma samples from patients with

COVID-19 (n 5 10), HLH (n 5 8), MIS-C (n 5 19), and MIS-C follow-up

(n 510) and from HCs (n 5 19) was performed on a luminex platform. The

plasma samples for cytokine/chemokine profiling were chosen randomly

from a cohort of 69 patients with MIS-C and 24 patients with COVID-19.

A list of these analytes is provided in Table E2 in this article’s Online Repos-

itory at www.jacionline.org. Soluble IL-2 receptor (sIL-2R) and ferritin levels

were done in clinical lab as standard of care. Plasma levels of sCD163 were

measured using human CD163 ELISA kit (Abcam, ab274394; Boston,

Mass) as per manufacturer’s instructions.
Statistics
Cytokine/chemokine data were represented as dot plots showing all the

data points using Graphpad Prism version 9 (GraphPad Software, San Diego,

Calif). One-way ANOVA with multiple comparison test was used for

calculating significant differences between groups. Frequencies of immune

parameters were representedwith median and interquartile range. Fisher exact

test was used to compute significance for categorical data. We applied a

principal-component analysis on all the cytokines showing differences among

patient groups based on principal-component 1 and principal-component 2

and created using Factoextra R package. Heatmap of all the reported cytokines

was generated in pheatmap R package. Spearman correlation was used to find

the correlation between clinical and flow-based parameters; correlation

coefficients andP values were reported. Correlationmatrix wasmade in ‘‘corr-

plot’’ package in R.
RESULTS

Cohort description and clinical characteristics
We enrolled 69 patients with MIS-C (age, 2-19 years; median,

11 years), 24 patients hospitalized with COVID-19 but without
MIS-C (age, 2-17 years; median, 11.5 years), 13 patients with
HLH (age, 1 day-19.3 years; median, 1.2 years), and 22 HCs (age,
8-25 years; median, 17 years).

The demographic characteristics, clinical parameters, and
standard of care laboratory tests for patients with MIS-C,
COVID-19, and HLH are detailed in Table I and in Table E3 in
this article’s Online Repository at www.jacionline.org.
A follow-up immune evaluation was performed for 31 patients
with MIS-C, median follow-up of 2 months postdiagnosis of
MIS-C (range, 1-7months) (see Fig E1 in this article’s Online Re-
pository at www.jacionline.org).

Seventy-one percent of patients with MIS-C required intensive
care unit care, whereas 58.3% of patients with COVID-19 were
admitted to intensive care unit. Most patients with MIS-C were
treated with steroids and intravenous immunoglobulin (see Fig E2
in this article’s Online Repository at www.jacionline.org). In our
cohort, children with MIS-C had higher ferritin, C-reactive pro-
tein (CRP), neutrophil count, and thrombocytopenia compared
with those with COVID-19 (Table I), consistent with the previ-
ously published reports.6,11,26,27
Inflammatory milieu reveals differences and

similarities between MIS-C and HLH
To investigate how qualitatively the inflammatory response of

patients with MIS-C differs from that of patients with HLH in
plasma, we performed multiplex cytokine/chemokine profiling of
66 analytes in MIS-C (n 5 19), MIS-C follow-up (n 5 10),
COVID-19 (n 5 10), HLH (n 5 8), and HCs (n 5 19) (Fig 1,
A). Principal-component analysis of all these cytokines showed
that both patients with HLH and patients with MIS-C formed
distinct clusters in comparison with patients with COVID-19,
HCs, and follow-up MIS-C patients (Fig 1, B).

We observed a cluster of 17 cytokines, that is, IFN-g, C-X-C
motif chemokine ligand 9 (CXCL9), C-X-C motif chemokine
ligand 10 (CXCL10), TNF, IL-6, IL-8, IL-10, IL-15, IL-18, IL-
27, IL-1a, IL-1RA, CXCL13, FLT-3L, M-CSF, MIP-1b, and
MCP-2, that were significantly elevated in both patients with
MIS-C and patients with HLH. A decreased level of
macrophage-derived chemokine or CCL22 was observed in pa-
tients with HLH and patients with MIS-C. Of these cytokines,
concentrations of CXCL9, IL-6, IL-8, IL-18, and M-CSF were

http://www.jacionline.org
http://www.jacionline.org
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FIG 1. MIS-C and HLH display both unique and shared inflammatory signature. A, Heat map showing

expression of cytokines and chemokines in HCs (n 5 19), COVID-19 (n 5 10), HLH (n 5 8), MIS-C (n 5 19),

and MIS-C follow-up (n 5 10) samples. B, Multidimensional cytokine/chemokine data were represented

as 2-dimensional PCA space showing clusters for HCs, COVID-19, MIS-C, HLH, and MIS-C follow-up sam-

ples. Individuals are shown by small-size colored circles, whereas overall group is shown by large-size

colored circles. PC, Principal component; PCA, principal-component analysis.
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higher in patients with HLH as compared with patients with MIS-
C.

Next, we also looked at the unique cytokine signature in
patients with MIS-C. Importantly, significant elevation in
vascular endothelial growth factor A (VEGF-A), sCD40L, IFN-
a2, IL-4, IL-13, platelet-derived growth factor (PDGF)-AA, and
TARC was found only in patients with MIS-C but not in patients
with HLH. However, eotaxin, GRO-a, MCP-1, RANTES, I309,
cutaneous T-cell–attracting chemokine, MIP-1d, and IL-12p40
were significantly increased in patients with HLH but not in pa-
tients with MIS-C. Cytokines such as MIP-1a, TGF-a,
lymphotoxin-alpha, eotaxin-2, eotraxin-3, and IL-16 were signif-
icantly elevated in patients with MIS-C as compared with con-
trols, but we did not find a significant difference between
patients with HLH and patients with MIS-C. Similarly, fractal-
kine, G-CSF, and TPO were significantly elevated in patients
with HLH as compared with HCs but did not show differences
with respect to patients with MIS-C. In children with COVID-
19, a limited number of cytokines such as IL-1RA, IL-6,
PDGF-AA, MIP-1b, and MCP2 were significantly elevated.

Next, we sought to investigate the cytokine families that were
differentially regulated in these cohorts. In general, patients with
MIS-C showed prominent elevations in different cytokine
families (Fig 2, A-F). Cytokines and chemokines related to
T-cell activation such as IFN-g, IL-6, TNF, CXCL9, and
CXCL10 were significantly elevated in both MIS-C and HLH
groups. However, the amplitude of these cytokines was higher
in patients with HLH when compared with the amplitude in pa-
tients with MIS-C (Fig 2, A). Interestingly, cytokine mediators
responsible for angiogenesis, vascular injury, and tissue repair
such as VEGF-A (P < .0001), PDGF-AA (P < .05), PDGF-AA/
AB (P 5 .07), and FGF-2 (P 5 .06) were elevated in patients
with MIS-C when compared with HCs but not in patients with
HLH (Fig 2, E). Increased levels of these cytokines were also
observed in some patients with COVID-19, although overall we
did not find significance between COVID-19 and HC cohorts
except for PDGF-AA (P 5 .04). TH2 inflammatory cytokines
(ie, IL-4, IL-13) were significantly elevated in patients with
MIS-C but not in patients with HLH. All the remaining cytokines
are shown in Fig E3 in this article’s Online Repository at www.
jacionline.org. As previously reported, we also evaluated whether
the values of TNF and IL-10 in combination can differentiate be-
tween MIS-C and COVID-19 in our cohorts.28 We found similar
observations where the sum of the plasma levels of TNF and IL-
10 was significantly elevated in patients with MIS-C versus pa-
tients with COVID-19 (Fig E3 extended).

Overall, these data demonstrate that patients with MIS-C and
patients with HLH have some overlap in the inflammatory milieu;
however, the amplitude of the inflammation is much higher in
patients with HLH. In addition, differential expression of certain
inflammatory cytokines and chemokines in patients with MIS-C
suggests unique inflammatory pathways that are active in patients
with MIS-C but not in patients with HLH.
T-cell activation is higher in MIS-C and overlaps

with HLH
Increased T-cell activation has been reported in both pediatric

COVID-19 and MIS-C.29-31 A profound elevation of IFN-g and
its induced chemokines, that is, CXCL9 and CXCL1032-34 and
other inflammatory markers such as IL-6 and TNF, in patients
with HLH when compared with patients with MIS-C suggests
higher T-cell activation in HLH in comparison to MIS-C. To
further strengthen these observations and to investigate how
T-cell activation in MIS-C and COVID-19 compares with that
of HLH, we assessed the expression of activation markers on
CD41 and CD81 T-cell subsets. The gating strategy for these an-
alyses is shown in Fig E4 in this article’s Online Repository at
www.jacionline.org. We first evaluated HLA-DR1 CD381

expression in the EM compartment of CD41 and CD81 T cells.
CD81 EM T-cell activation was noted in both patients with
COVID-19 and patients with MIS-C. In COVID-19, the T-cell
activation was modest (5-fold; P 5 .0022), whereas MIS-C
showed higher activation (13-fold; P < .0001) when compared
with the median for HCs. Quantitatively, the amplitude of
CD81 EM T-cell activation in patients with HLH was 2-fold
greater than that in patients with MIS-C. Although CD81 EM
T-cell activation was significantly higher in patients with HLH
than in patients with MIS-C, we observed that a subset of patients
with MIS-C had similar CD81 EM T-cell activation as of patients
with HLH (Fig 3, A and C). Similarly, although the CD41 EM T
compartment was activated in both patients with MIS-C and pa-
tients with HLH (Fig 3, B and D), CD41 EM T-cell activation
was 6 times higher in patients with HLH than in patients with
MIS-C. Using receiver-operating characteristic (ROC) statistics,
we calculated the optimal threshold value for CD81 EM T-cell
activation that can differentiate patients with MIS-C from HCs,
patients with COVID-19, and patients with HLH with high sensi-
tivity and specificity (see Fig E5, A-C, in this article’s Online Re-
pository at www.jacionline.org). We observed that CD81 EM
T-cell activation more than 79.9% can differentiate patients
with HLH from patients with MIS-C with high area under the
ROC curve (0.99) along with high sensitivity (100%) and speci-
ficity (98.6%). Similarly, cutoff of CD81 EM T-cell activation
more than 15.9% (area under the ROC curve, 0.98; sensitivity,
89.9%; specificity, 95.5%) and more than 27.4% (area under the
ROC curve, 0.79; sensitivity, 72.5%; specificity, 75%) could
help differentiate MIS-C from HC and COVID-19, respectively.
To provide amore global picture of T-cell activation, we also eval-
uated HLA-DR1 CD381 expression on central memory and
TEMRA populations of CD41 and CD81 T cells and also on total
CD41 and CD81 cells. A similar trend of activation was observed
as seen previously in the EM compartment (see Fig E6 in this ar-
ticle’s Online Repository at www.jacionline.org).

T-cell activation measured by the expression of HLA-DR1 PD-
11 on the EM compartment of CD41 and CD81 T cells also
showed similar trends noted with HLA-DR1 and CD381 expres-
sion. The expression of HLA-DR1 PD-11 was significantly
elevated in both CD41 and CD81 T cells in patients with MIS-
C as well as patients with HLH; however, the expression of
HLA-DR1 PD-11 was much higher in patients with HLH as
compared with patients with MIS-C (Fig 3, E and F). Because
we observed increased activation in CD81 T EM compartment
inMIS-C cohorts, we aimed to further evaluate whether increased
activation in CD8 EM compartment resulted in relative expansion
of CD81 EM compartment. Therefore, we calculated the ratio of
the frequencies of EM and naive compartments. Interestingly, we
found a relative expansion of the EM compartment in patients
with HLH but not in patients with MIS-C (see Fig E7, A, in this
article’s Online Repository at www.jacionline.org). The CD41/
CD81 ratiowas similar between patients withMIS-C and patients
with HLH. When compared with patients with MIS-C, patients
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with COVID-19 had overall higher CD41/CD81 ratio, although
nonsignificant (Fig E7, B). Next, we also evaluated CD41 and
CD81 TEMRA populations. Although TEMRA populations
were similar among different patient cohorts, we found an in-
crease of this subset in MIS-C follow-up patients when compared
with onset MIS-C patients (Fig E7, C and D).
Patients with MIS-C are marked by high surface

markers of T-cell exhaustion and senescence
Patients with MIS-C have been reported to have prolonged

presence of severe acute respiratory syndrome coronavirus 2 in the
gastrointestinal tract35; thus, we hypothesized that chronic anti-
genic exposure in MIS-C and associated T-cell activation could
potentially lead to a postactivation exhaustion state of T cells and
show features of proliferation-induced senescence. To test these
hypotheses, we evaluated the expression of T-cell exhaustion and
senescence surface markers in CD41 and CD81 EM T cells for
these patient cohorts. T-cell exhaustionwas evaluated by coexpres-
sion of PD-11 and Tim31 on EMCD41 and CD81 T cells. Signif-
icant increase in T-cell exhaustion markers was observed in both
patients with MIS-C and patients with HLH in both CD41 and
CD81 EM T cells; however, the frequency of cells expressing
exhaustion markers was much higher in patients with HLH when
compared with patients with MIS-C (Fig E7, E and F). We also
observed a modest increase in exhaustion markers in patients
with COVID-19 when compared with HCs in both CD41 and
CD81 T EM compartments. Also, patients with MIS-C displayed
significantly higher CD571 expression on CD81 EM cells
(Fig E7, G). Interestingly, we did not find any difference in
CD571 expression for COVID-19 and HLH cohorts when
compared with HCs. Similarly, we found a significant increase in
the expression of CD571 on CD41 EM T cells in patients with
MIS-C (Fig E7, H). Although patients with COVID-19 did not
show any difference, patients with HLH showed a marked increase
in CD571 expression when compared with HCs. These phenotypic
markers of exhaustion and senescence on T cells reassuringly re-
turn to HCs range at follow-up in patients with MIS-C.
Clinical parameters of MIS-C and COVID-19 overlap

with HLH
To understand where patients with MIS-C and patients with

COVID-19 fall into the clinical spectrum of HLH, we evaluated
patients withMIS-C and patients with COVID-19 based on clinical
laboratory parameters defined in the 2004 HLH criteria.13 We
compared some important clinical and laboratory features such
as cytopenias, ferritin, fibrinogen, and sIL-2R in patients with
MIS-C and patients with COVID-19. About 83.3% and 33.3% of
patients with MIS-C and patients with COVID-19, respectively,
had sIL-2R levels greater than or equal to 2400 U/mL; 61.2%
and 18.8% of patients with MIS-C and patients with COVID-19,
respectively, were noted to have ferritin levels greater than or equal
to 500 ng/mL. In patientswithMIS-C, 16.7%had platelets less than
1003 109/L, 3.4% had absolute neutrophil count less than
1.03 109/L, 3.3% had hemoglobin less than 90 g/L, and 1.8%
had fibrinogen less than or equal to 1.5 g/L. However, none of
the patients with COVID-19 had low platelets, absolute neutrophil
count, hemoglobin, and fibrinogen as per 2004 HLH criteria (see
Table E4 in this article’s Online Repository at www.jacionline.
org). Recent publications have evaluated overlap of MIS-C and
COVID-19 with HLH, and our cohort validates some of these find-
ings.36 Although we compared important parameters of HLH 2004
criteria, a formal application of these criteria was not possible
because all the clinical and lab parameters needed for evaluation
were not obtained in all patients. However, individual laboratory
parameters that were consistently available for these patients
were assessed. A direct comparison of standard parameters of
HLH such as ferritin, sIL-2R, and sCD163 revealed that patients
with HLH had significantly higher plasma levels of ferritin, sIL-
2R, and sCD163 when compared with patients with MIS-C,
whereas patients with COVID-19 had lower levels of ferritin,
sIL-2R, and sCD163 when compared with patients with MIS-C
(Fig 4, A-C). These findings validate the T-cell activation and in-
flammatory signature as seen in our previous observations.

Neutrophil to lymphocyte ratio has been proposed as a
distinguishing parameter in MIS-C and COVID-19 illness.26,37

As reported previously, neutrophil to lymphocyte ratio was higher
in patients withMIS-Cwhen comparedwith patients with COVID-
19, with a trend toward significance (median, 8.2 vs 3.8; P5 .06).
However, this ratio was significantly lower in patients with HLH
compared with patients with COVID-19 (median, 0.34 vs 3.8;
P 5 .005) and patients with MIS-C (median, 0.34 vs 8.2; P <
.0001) (Fig 4, D). In addition, to determine whether the neutrophil
counts differ with respect to T-cell activation in these patient co-
horts, we assessed the ratio of ANC with CD81 and CD41 EM
T-cell activation. We observed that these ratios could easily distin-
guish these clinical entities because these were higher in patients
with COVID-19 when compared with patients with MIS-C (P 5
.08) and patients with HLH (P < .001), whereas patients with
HLH had significantly lower ratios when compared with patients
with MIS-C and patients with COVID-19 (Fig 4, E and F).
Inflammatory markers resolve at follow-up in

patients with MIS-C
Although previous studies describing immunophenotypic

differences in MIS-C have only focused on the acute disease
state at onset, follow-up studies are limited.26 In our study, we as-
sessed T-cell–based immune markers as well as cytokine/chemo-
kine profile during follow-up. Immune evaluation of patients with
MIS-C at follow-up revealed a significant decrease in both CD41

and CD81 EM T-cell activation with return to HCs (Fig 3, C-F;
see Fig E8 in this article’s Online Repository at www.
jacionline.org). In addition, we observed a decrease in T-cell
exhaustion as well as senescence markers at follow-up in both
CD4 and CD8 EM subsets (Fig E7, E-H, and Fig E8). In a subset
of patients with MIS-C, we also assessed the levels of cytokines
and chemokines at follow-up. Almost all of the elevated cytokines
had resolved to normal levels in patients with MIS-C (Fig 2, G).
We also assessed some clinical inflammatory markers such as
ferritin and CRP at hospital admission and after 7 days of
follow-up in some patients with MIS-C for whom longitudinal
data were available and found a significant decrease in their levels
on follow-up, suggesting rapid response of systemic inflamma-
tion with treatment (Fig E8, F).
T-cell activation correlates with cardiac

inflammatory markers in patients with MIS-C
MIS-C and severe COVID-19 have been found associated

with rise in acute myocardial markers such as BNP and

http://www.jacionline.org
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FIG 4. Comparison of different laboratory parameters in patients with COVID-19, HLH, and MIS-C. Dot plots

showing the plasma levels of ferritin (A), sIL-2R (B), and sCD163 (C) in different patient cohorts. Dotted lines

represent ferritin cutoff levels of 500 ng/mL and sIL-2R cutoff levels of 2400 U/mL. D, Plots showing NLR in
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troponin.26,38-40 To investigate whether T-cell activation corre-
lates with the cardiac inflammatory markers and disease severity
in COVID-19 and MIS-C, we first compared the BNP and
troponin levels in patients with COVID-19 and patients with
MIS-C. In our cohort, we found that both BNP and troponin are
significantly higher in patients with MIS-C as compared with pa-
tients with COVID-19, validating the high occurrence of cardiac
dysfunction and cardiac injury in patients with MIS-C (see Fig
E9, A and B, in this article’s Online Repository at www.
jacionline.org). We next checked whether there is an association
of cardiac dysfunction markers with T-cell activation in patients
with MIS-C and patients with COVID-19. We found a correlation
of troponin levels with CD81 and CD41 EM T-cell activation
(Fig 5, A and B). Similarly, BNP levels correlated with CD81

EM T-cell activation as well as CD41 EM T-cell activation
(Fig 5, C and D). We found that patients with T-cell activation
greater than the threshold value of more than 15.9% CD81 EM
activation (threshold determined on the basis of ROC between
MIS-C and HCs) have significantly high BNP and troponin levels
as compared with patients with T-cell activation lower than the
cutoffs values (Fig E9, C and D). Next, we chose cutoff values
for BNP (200 pg/mL; 2 times the upper limit of normal) and
troponin (0.09 ng/mL; 2 times the upper limit of normal) for
calculating the odds ratio of finding high BNP or troponin in pa-
tients with high CD81 EMT-cell activation. Our data showed that
patients having higher CD81EMT-cell activation (>15.9%) were
9.1 times (95% CI, 2.7-30.1) more likely to have elevated BNP
levels (>200 pg/mL) than patients with low T-cell activation.
Similarly, patients with high CD81 EM T-cell activation were
6.2 (95% CI, 1.8-21.3) times more likely to have high troponin

http://www.jacionline.org
http://www.jacionline.org
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(>0.09 ng/mL) levels than the patients who had lower T-cell acti-
vation. This suggests that T-cell activation might directly or indi-
rectly contribute to cardiac pathology with elevation of BNP and
troponin levels in these children with MIS-C.

We also correlated other inflammatory markers with cardiac
dysfunction markers in patients with MIS-C and COVID-19.
Ferritin and CRP levels correlated with both BNP and troponin
levels (Fig 5, E-H). Ferritin and CRP levels also correlated with
CD81 EM T-cell activation (Fig 6, C). Thrombocytopenia was
frequent in MIS-C. We observed in patients with MIS-C and
COVID-19 platelet counts were inversely correlated with CD41

and CD81 EM T-cell activation (Fig 6, A and B). In addition to
T-cell activation, other inflammatory markers such as ferritin
levels correlated with elevation of liver enzyme alanine transam-
inase and creatinine, but inversely correlated with platelet count
in these patients (Fig 6, C). We also compared these parameters
separately in patients with MIS-C and patients with COVID-19.
Because steroid treatment might affect some of activation readout
and laboratory features over time, we evaluated patients with
MIS-C in whom sampling was done either presteroids or within
the first 48 hours of steroid initiation. We found similar correla-
tions in patients with MIS-C as observed in patients with
MIS-C and COVID-19. However, because of the limited number
of patients with COVID-19, we observedmuch lesser correlations
between these variables (Fig E10).
DISCUSSION
MIS-C is an immune dysregulation state characterized by

hyperinflammation, with multisystem manifestations including
myocarditis, cardiac dysfunction, respiratory failure, acute kid-
ney injury, or gastrointestinal, dermatologic, or neurological
involvement.1,17,26,41 Initially, MIS-C was identified in children,
but later a similar presentation was also reported in adults.42-44

Although several groups have demonstrated an increase in inflam-
matory markers and T-cell activation in MIS-C,11,28,31,45,46 the
exact nature and amplitude of hyperinflammation is still poorly
defined. Hence, a comparison with an established hyperinflam-
matory state such as HLH offers additional insight into the immu-
nopathogenesis of MIS-C. A number of similarities exist, but
there are also qualitative and quantitative differences in clinical
presentation and management of patients with MIS-C and pa-
tients with HLH. For example, hyperinflammation in MIS-C
has been treated with steroids, and anakinra.16,47 Similar cytokine
blockade and steroids are used for the management of patients
with secondary forms of HLH.48 Although there are similarities
between MIS-C and HLH, they differ in some clinical manifesta-
tions such as presence of myocarditis leading to cardiac dysfunc-
tion, and gastrointestinal manifestation such as acute abdomen or
inflammatory bowel disease–like presentations, which are com-
mon in MIS-C but usually not a part of the disease process in
HLH.14,48 In addition, pancytopenia and liver function test ab-
normities are more commonly seen in HLH but are infrequent
in MIS-C. We hypothesized that despite certain clinical similar-
ities, the amplitude and nature of hyperinflammation might be
different in MIS-C when compared with HLH.

We found several similarities as well as striking differences
between MIS-C and HLH. High T-cell activation was found in
both MIS-C and HLH; however, the degree of T-cell activation
was lower in MIS-C when compared with HLH. Despite the
higher T-cell activation in HLH, we found some patients with
MIS-C having CD81 EM T-cell activation comparable to that
seen in patients with HLH. Although CD4 versus CD8 ratio
was similar in MIS-C and HLH, high CD81 EM/naive ratio
was observed in HLH, but not in MIS-C, suggesting more dra-
matic EM T-cell expansion in HLH. Children with COVID-19
had a modest increase in T-cell activation, this finding was not
universal in all hospitalized children with COVID-19. In fact,
most of these children had only modest T-cell activation when
compared with controls, suggesting that unlike in MIS-C, T-cell
activation may not be an important driver of disease morbidity
in COVID-19 in children. Though we have shown upregulation
of surface markers of exhaustion and senescence in T cells, the
fact that they resolve during follow-up could suggest that a post-
activation state induced transient upregulation of exhaustion
markers rather than true exhaustion of T cells.49 Similarly, tran-
sient proliferative stress in the EM compartment of T cells could
be the cause of upregulation of senescence marker.

Despite increased T-cell activation in MIS-C, the qualitative
nature of T-cell activation is still poorly understood. Hence, we
performed additional evaluation of plasma cytokines and chemo-
kines in all patient cohorts. We found elevated plasma IFN-g and
associated chemokines (ie, CXCL9, CXCL10) in bothMIS-C and
HLH. Interestingly, differences in the degree of T-cell activation
were also seen at the cytokine levels where median values for
IFN-g, CXCL9, and CXCL10 were high in HLH when compared
with MIS-C. In addition to these cytokines, elevated IL-6 and
TNF might be responsible for amplifying the cytokine storm in
patients with MIS-C. Innate inflammation can also be a driver
of T-cell activation.50,51 Elevated innate inflammatory cytokines
such as IL-18, IL-15, IL-1a, and IL-1RA in MIS-C suggest that
innate inflammatory pathways upregulation could play a role in
modulating the T-cell activation noted in MIS-C.

Steroids and intravenous immunoglobulin remain the mainstay
of therapy for MIS-C.15,16,52 However, additional biologics were
needed for a subset of severely ill patients. Anakinra, tocilizumab,
and infliximab are among the common biologics used in the
steroid-refractory settings.27,53-55 Increase in plasma IL-1RA56

and IL-1857,58 in patients withMIS-C suggest the significant auto-
inflammatory component of this disease and reinforces the use of
IL-1–blockade therapies such as anakinra inMIS-C.59 Increase in
innate inflammatory signature and elevation of IL-6 and TNF in
children with MIS-C noted in our study and previous reports
could support the use of IL-6 and TNF blockade.28,45,46,55,60

Because these biologics are broadly used even in adults with se-
vere COVID-19,61-63 medication shortages have become a
concern. In this context, expanding our armamentarium of drugs
available to manage MIS-C hyperinflammation would be advan-
tageous. Agents such as Janus kinase and signal transducer and
activator of transcription inhibitors have been used in both HLH
and severe COVID-19.64-68 Given the overlapping hyperinflam-
mation with HLH, similar strategies might be beneficial in pa-
tients with MIS-C and further studies are warranted. Similarly,
IFN-g–neutralizing antibody emapalumab has demonstrated effi-
cacy in the management of HLH,69 and it is currently being eval-
uated for the management of severe COVID-19 (NCT04324021).
Based on our data and previous findings of elevated INF-g and its
chemokines,28,55 emapalumab might also be another potential
agent of interest to evaluate in the management of severe or re-
fractory MIS-C.

We found some unique disease-defining markers in both MIS-
C and HLH. For example, cytokines responsible for elevated TH2
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inflammation, IL-4 and IL-13, were uniquely elevated in theMIS-
C cohort but not in patients with HLH. Similarly, VEGF-A,
PDGF-AA, PDGF-AA/AB, and FGF-2, which mainly contribute
to angiogenesis, vascular injury, tissue repair, and healing, were
found elevated in MIS-C and not in HLH. Elevated VEGF-A
levels and angiogenesis have been shown to be involved in
cardiovascular diseases.70,71 Thrombotic microangiopathy
(TMA) has been reported as an important part of pathophysiology
in patients with COVID-19 and MIS-C,72-76 and its etiology is
likely multifactorial. Complement dysregulation characterized
by IFN-g signature, elevated soluble C5b9, and TMA is noted
in both HLH and MIS-C.75-77 In addition to complement
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dysregulation, elevated VEGF levels might contribute to TMA-
like phenotype in MIS-C. Previous literature from other systemic
inflammatory diseases showed that increase in VEGF might
contribute to TMA.78,79 Elevated VEGF might be related to
high angiotensin II (AngII) from dysregulation of physiological
balance of angiotensin-converting enzyme 2-angiotensin II
pathway caused by SARS-COV-2 infection. Increased AngII is
known to increase VEGF expression and levels80,81; together,
they could contribute to endothelial activation and dysfunction.
It is possible that angiotensin-converting enzyme 2-angiotensin
II dysregulation persists in MIS-C after initial infection of
SARS-COV-2, hence contributing to microangiopathy and organ
injury. In addition to complement dysregulation and VEGF
contributing to TMA, platelet activation as evident by increase
in plasma PDGF levels82 may lead to platelet aggregation
and consumption and contribute to thrombocytopenia and
microangiopathy.83

Despite higher T-cell activation in HLH, significant cardiac
dysfunction is uncommon. Elevation of troponin as well as
VEGF-A in MIS-C but not in HLH suggests increased angioge-
netic inflammation. Also, cardiac dysfunction along with TH2
phenotype might drive an antibody-driven vasculitis-like process
in patients with MIS-C. The observation of concomitant TH2 acti-
vation and increase in angiogenic inflammatory markers might
explain why most patients with HLH do not develop this degree
of myocarditis and gastrointestinal vasculopathy when compared
with patients with MIS-C. This suggests that although the nature
of T-cell activation in HLH is overwhelmingly TH1 biased, in
MIS-C, it is both TH1 and TH2.Moreover, the tropism of activated
T cells might be different. In HLH, the tropism might be directed
more to the bone marrow, liver, and other lymphoid organs, lead-
ing to more pancytopenia, liver dysfunction, and organomegaly,
whereas in MIS-C, it might be directed more toward the heart,
the gastrointestinal tract, and vascular inflammation.

Our correlation data revealed that global markers of inflam-
mation such as ferritin and CRP are predictive markers of cardiac
morbidity. In addition, more specific T-cell activation was shown
to significantly correlate with cardiac inflammatory markers,
suggesting a role of T-cell activation in cardiac and systemic
manifestations in MIS-C. Such global markers of inflammation
can also be used to track the disease course in these patients.
Furthermore, most patients with MIS-C even at 2-month follow-
up were found to have T-cell activation and cytokine and
chemokine milieu comparable to that in HCs, suggesting that
hyperinflammation in MIS-C caused by cytokine storm is
transient, amenable to be controlled by therapies, and almost
universally resolves with time.

Our study had a few limitations, and future studies are needed
to further strengthen these observations. Because of its rarity, we
could include only a limited number of patients with HLH. In
future studies, these observations can be compared with a larger
cohort of patients with HLH. Many patients with MIS-C had
received some immunosuppressive intervention such as steroids
before study enrollment. However, the high acuity of clinical
presentation of patients with MIS-C and need to start immuno-
modulatory interventions immediately precludes access to bio-
logical samples of truly treatment-naive patients. These practical
limitations were noted in other MIS-C and HLH studies
describing immune activation and dysregulation.20,31 To mini-
mize the effect of these interventions, most patients in our study
were enrolled either pretherapy or within the first couple of
days of steroid initiation, thus minimizing the effect of
therapy on the research observations. Nonetheless, future studies
focused on treatment-naive cohorts with MIS-C would be more
desirable.
CONCLUSIONS
In this study, we characterized the similarities and differences

in hyperinflammatory states of MIS-C and HLH. We found high
T-cell activation and TH1-type inflammation in both MIS-C and
HLH; however, the amplitude of T-cell activation and TH1 cyto-
kines was higher in HLH versusMIS-C. In addition to TH1, eleva-
tion of TH2-type and angiogenic cytokines and chemokines was
unique to MIS-C. We also found that T-cell activation as well
as other clinical parameters such as ferritin and CRP correlated
with cardiac dysfunction markers. Importantly, the hyperinflam-
mation inMIS-Cwas transient and resolved at follow-up. Overall,
our data revealed a comprehensive comparison elucidating both
shared features and differences in immune signatures that might
help guide treatment strategies for these distinct clinical entities.

Emory1 Children’s (Pediatric) Flow Cytometry Core facility was used for

flow cytometry studies.

Clinical implications: Although the hyperinflammatory profiles
of MIS-C and HLH overlap, they differ in amplitude and qual-
itative nature of immune activation. Global markers of inflam-
mation and CD81 EM T-cell activation markers correlate with
cardiac morbidity in MIS-C. The inflammatory milieu in MIS-
C resolves during follow-up.
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ANTIBODIES USED IN THIS STUDY
CD3-PerCP/Cy5.5 (Biolegend, Cat. #300430; San Diego,

Calif), CD4-PE-Cy7 (BD Biosciences, Cat. #560649; Franklin
Lakes, NJ), CD8-BUV395 (BD Biosciences, Cat. #563795),
CD45RA-APC (Biolegend, Cat. #304112), CCR7-PE (Bio-
legend, Cat. #353204), HLA-DR-BV711 (BD Biosciences, Cat.
#563696), CD38-BUV496 (BD Biosciences, Cat. #612947), PD-
1-BV421 (BD Biosciences, Cat. #562516), CD57-BB515 (BD
Biosciences, Cat. #565285), and Tim-3-BV650 (Biolegend, Cat.
#345028) antibodies were used for staining cells. Live/dead
fixable aqua dead cell stain (Thermofisher, Cat. # L34957;
Waltham, Mass) was used to exclude dead cells in the analysis.
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FIG E3. Comparison of serum levels of selected cytokines in different patient groups. Dot plots showing

serum concentrations of selected cytokines/chemokines in HCs and patients with COVID-19, patients with

HLH, and patients with MIS-C. Conc., Concentration; ns, not significant. Kruskal-Wallis 1-way ANOVA fol-

lowed by Dunn’smultiple comparison test for nonnormally distributed samples and ordinary 1-way ANOVA

followed by Tukey’s multiple comparison test for normally distributed samples were used for statistical

comparison. *P < .05, **P < .01, ***P < .001; ****P < .0001.
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FIG E6. Comparison of T-cell activation in different subsets of CD81 and CD41 T-cell populations. Dot plots

showing HLA-DR1 CD381 coexpression in CM (A and B) and TEMRA (C and D) subsets of CD81 and CD41 T

cells and also on total CD81 and CD41 T-cell populations (E and F). CM, Central memory; ns, nonsignificant.
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FIG E7. Quantitation of T-cell perturbations among different patient cohorts. (A) Plots showing ratio of

CD81 EM vs naive compartment and (B) CD41 vs CD81 ratio in different patient cohorts. Dot plots showing

frequencies of CD81 and CD41 TEMRA populations (C and D). Plots showing percentage coexpression of

PD-11 and Tim31 (E and F) and expression of CD571 in the EM compartment of CD81 and CD41 T cells

(G and H) in HCs (n 5 22) and COVID-19 (n 5 24), HLH (n 5 6), MIS-C (n 5 69), and MIS-C follow-up

(n 5 31) patients. ns, Nonsignificant.
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FIG E8. Follow-up analysis of patients with MIS-C displays decrease in activation, exhaustion, and

senescence markers on T cells along with improvement in clinical markers of inflammation. A-E, Dot plots

showing paired analysis of different states of T cells and its subsets in patients with MIS-C at onset and

follow-up (n 5 18). F, Paired analysis of patients with MIS-C showing levels of CRP and ferritin at patient

admission and 7 days postadmission. ns, Nonsignificant.
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FIG E9. Quantitation of BNP and troponin levels in MIS-C and COVID-19. Plots showing serum levels of BNP

(A) and troponin (B) in patients with COVID-19 (n5 15) and patients withMIS-C (n5 69). Based on% optimal

threshold value of CD81 T activation, patients with MIS-C and patients with COVID-19 were categorized into
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between BNP (C) and troponin (D) levels in groups having low and high CD81 T-cell activation. Act.,
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J ALLERGY CLIN IMMUNOL

VOLUME 149, NUMBER 5

KUMAR ET AL 1606.e11



FIG E10. Correlation of laboratory features and immune markers in MIS-C

and COVID-19. Correlation matrix showing positive and inverse correla-

tions between different laboratory and immune parameters in patients with

COVID-19 (n 5 13) and patients with MIS-C (n 5 40). Positive correlation is

shown as blue-colored circles, whereas inverse correlation is shown in red-

colored circles. Size and intensity of colored circles show the strength of

correlation. Only significant correlations with P less than .05 are shown

as colored circles. ALC, Absolute lymphocyte count; ALT, alanine transam-

inase; ANC, absolute neutrophil count; WBC, white blood cell.
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TABLE E1. Definitions of different T populations used in this study

Population Markers References

CM CD41 T CD41 CCR71 CD45RA2 E1

CM CD81 T CD81 CCR71 CD45RA2 E1

EM CD41 T CD41 CCR72 CD45RA2 E1

EM CD81 T CD81 CCR72 CD45RA2 E1

TEMRA CD81T CD81 CCR72 CD45RA1 E1

TEMRA CD41T CD41 CCR72 CD45RA1 E1

Naive CD41 T CD41 CCR71 CD45RA1 E1

Naive CD81 T CD81 CCR71 CD45RA1 E1

Activated CD41 EM CD41CD45RA2CCR72 HLA-DR1CD381 E2-E4

Activated CD81 EM CD81CD45RA2CCR72 HLA-DR1CD381 E2-E4

Senescent CD41 T CD41 CD45RA2CCR72 CD571 E5-E8

Senescent CD81 T CD81 CD45RA2CCR72 CD571 E5-E8

Exhausted CD41 CD41 CD45RA2CCR72 PD-11 Tim31 E9

Exhausted CD81 CD81 CD45RA2CCR72 PD-11 Tim31 E9

CM, Central memory.
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TABLE E2. List of cytokine and chemokines used for this study

MCP-1 EGF

MCP-3 Eotaxin

M-CSF FGF-2

CCL22 FLT-3L

MIG/CXCL9 Fractalkine

MIP-1a G-CSF

MIP-1b GROa

PDGF-AA IFN-a2

PDGF-AB/BB IFN-g

RANTES IL-1a

TGF-a IL-1b

TNF IL-1RA

LT-a IL-4

VEGF-A IL-5

Eotaxin-2 IL-6

MCP-2 IL-8

CXCL13 IL-9

MCP-4 IL-10

I-309 IL-12p40

IL-16 IL-12p70

TARC IL-13

6CKine IL-15

Eotaxin-3 IL-17A

LIF IL-17E/IL-25

TPO IL-17F

TSLP IL-18

IL-33 IL-22

IL-20 IL-27

IL-21 IP-10/CXCL10

IL-23 MIP-1d

TRAIL IL-28A

CTACK ENA-78

SDF-1a1b

sCD40L

CTACK, Cutaneous T-cell–attracting chemokine; LT-a, lymphotoxin-alpha.

J ALLERGY CLIN IMMUNOL

MAY 2022

1606.e14 KUMAR ET AL



TABLE E3. Demographic characteristics and clinical information of patients with HLH

Patient ID Age Sex

Causal factor

(gene defect)

WBC

(cells/mL)

ALC

(cells/mL)

ANC

(cells/mL)

Hemoglobin

(g/L)

Platelets

(cells 3 103/mL)

Ferritin maximum

(ng/mL)

sIL-2R

(U/ mL)

1 5 mo M p-HLH (STXBP2) 4,140 2,649 890 79 81 40,000 37,874

2 3 mo M p-HLH (UNC13D) 6,370 4,650 1,210 82 40 13,672 47,474

3 1 d F p-HLH (STXBP2) 10,370 6,222 2,177 117 63 12,488 11,165

4 3 mo M p-HLH (RAB27a) 3,520 2,675 180 72 <10 14,855 44,256

5 2 mo M p-HLH (RAB27a) 2,600 1,508 390 72 23 5,473 22,268

6 2 y 8 mo M Suspected p-HLH* 4,130 950 2,740 81 70 5,753 7,125

7 1 y 4 mo M Suspected p-HLH* 890 480 400 112 80 5,067 13,625

8 1 y M EBV-HLH 200 160 10 47 <10 150,000 46,723

9 1 y M EBV-HLH 1,930 1,022 870 85 82 170,000 10,426

10 19 y 4 mo F EBV-HLH 2,390 1,888 300 84 47 29,094 11,849

11 7 y 4 mo F EBV-HLH 1,260 441 720 79 10 40,000 15,132

12 3 y 2 mo M EBV-HLH 5,720 4,347 1,020 83 85 28,410 5,422

13 12 y 6 mo F Infection-HLH� 100 70 30 88 34 38,408 6,917

F, Female; M, male; p-HLH, primary HLH; RSV, respiratory syncytial virus.

*Suspected p-HLH, but negative workup for classical cytotoxic pathway gene defects.

�Presumed triggered by RSV.

J ALLERGY CLIN IMMUNOL

VOLUME 149, NUMBER 5

KUMAR ET AL 1606.e15



TABLE E4. Evaluation of HLH-2004 criteria for patients with MIS-C and patients with COVID-19

Laboratory parameters in HLH 2004 criteria MIS-C* Percentagey COVID-19* Percentagey
Fibrinogen <_1.5 g/L 1 (57) 1.8 0 (15) 0

Platelets <1003 109/L 10 (60) 16.7 0 (18) 0

ANC <1.03 109/L 2 (59) 3.4 0 (19) 0

Hemoglobin <90 g/L 2 (60) 3.3 0 (18) 0

Ferritin >_500 ng/mL 41 (67) 61.2 3 (16) 18.8

sIL-2R >_2400 U/mL 40 (48) 83.3 7 (21) 33.3

*The number of subjects who had abnormal lab parameters, and the values in parentheses represent the total number of subjects for whom the data were available.

�Percentage of subjects who had abnormal lab parameters as defined in HLH 2004 criteria.
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