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Abstract

Background: The responses to behavioral, pharmacological, or surgical obesity treatments are 

highly individualized. ADOPT provides a framework for how obesity researchers, working 

collectively, can generate the evidence base needed to guide the development of tailored, and 

potentially more effective, strategies for obesity treatment.

Objective: The objective of the ADOPT Biological Domain subgroup is to create a list of high 

priority biological measures for weight loss studies that will advance understanding of individual 

variability in response to adult obesity treatments. This list includes measures of body 

composition, energy homeostasis (energy intake and output), brain structure and function, and 

biomarkers, as well as biobanking procedures, which could feasibly be included in most, if not all, 

studies of obesity treatment. The recommended high priority measures are selected to balance 

needs for sensitivity, specificity, and/or comprehensiveness with feasibility to achieve a 

commonality of usage and increase the breadth and impact of obesity research.

Significance: The accumulation of data on key biological factors, along with behavioral, 

psychosocial, and environmental factors, can generate a more precise description of the interplay 

and synergy among them and their impact on treatment responses, which can ultimately inform the 

design and delivery of effective, tailored obesity treatments.
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INTRODUCTION

Weight loss provokes coordinated changes in multiple energy homeostatic systems, which 

culminate in disproportionately increased energy intake and decreased energy expenditure 

(1, 2). The extensive inter-individual variability in responses to weight loss (3) and 

treatments differentially targeting these systems (4, 5) suggests that treatment could be 

improved via better understanding of the biological factors mediating energy balance (6, 7).

The NIH-sponsored Accumulating Data to Optimally Predict obesity Treatment (ADOPT) 

Core Measures Project (8) aims to advance adult obesity medicine in the face of this 

individual variability in treatment responses (9). ADOPT is designed to provide investigators 

with tools to generate an evidence base consisting of common measures across four 

domains: Behavioral, Biological, Environmental, and Psychosocial, that can enhance 

interdisciplinary research and advance understanding of the sources of response variability, 

depicted in the ADOPT working model.

The biological domain subgroup of the ADOPT Working Group was tasked with 

recommending core measures relevant to the “constructs” of body composition, energy 

homeostasis, biomarkers, brain structure and function, and biobanking, as previously 

designated by the full ADOPT Working Group. The uniform reporting of common measures 

can increase the impact and generalizability of the combined research body. Further 

information regarding each construct and measure described below is available at the 

ADOPT Core Measures Workspace in the Grid-Enabled Measures (GEM) database 

(www.gem-measures.org), which is also a venue for discussions that help to build consensus 

around common measures.

IDENTIFICATION OF BIOLOGICAL MEASURES

Selection Criteria.

In an effort to create a list of measures of relevant biological constructs that could be 

employed across most, if not all, clinical human obesity studies, several factors were 

considered in the selection of the methods (designated as “measures”) best designed to 

evaluate each construct, given the constraints of human weight loss trials. These included: 1) 

the strength of the current evidence relating each measure to relevant constructs and weight 

loss outcomes; 2) the measure’s validity and reliability; 3) the feasibility of widespread use 

of the measure; 4) the measure’s burden to investigators (cost, administration, availability) 

and subjects (time and invasiveness); and 5) the measure’s applicability to small (<50 

participants), moderate (50–200 participants), and large (>200 participants) studies.

In many cases, the “gold standard” measures were not the most practical, within the 

feasibility constraints of many weight loss trials. Recognizing the frequent dichotomy 

between precision and practicality, we provide two classifications of measures within 

constructs. “Recommended” measures, highlighted in bold, are those that should be 

feasible and cost-effective in all obesity-related clinical trials. “Suggested” measures, 
italicized, are those that should be feasible and cost-effective in many, if not most, clinical 

trials and, if possible, should be performed in addition to the recommended measures. 
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Except as otherwise noted (e.g., for targeted genetic studies), all measures outlined below 

should be obtained at baseline and at other time points (e.g., during and after an 

intervention) in each study.

ADOPT CORE MEASURES FOR THE BIOLOGICAL DOMAIN

Construct: Body Composition

Within the construct of body composition, we included both anthropometric and 

bioelectrical impedance measures to allow assessment of body fat content, central versus 

peripheral, and visceral versus subcutaneous fat distribution, in a manner that can be 

integrated across previous and future studies (10). It is likely that this recommendation will 

change going forward, as more investigators use recommended measures of body fat 

content (see below).

Anthropometry—Anthropometry includes assessment of height, weight, and calculated 

body mass index (BMI), as well as central fat mass and of the relative distribution of fat in 

central and peripheral fat depots by waist and hip circumferences and calculated waist-to-
hip ratio (WHR). The feasibility of anthropometry permits easy frequent measurement (at 

least every 1–3 months in the initial phases of weight loss trials), which is necessary to 

document early responses (1–2 months) to surgical (11, 12) and non-surgical (13, 14) 

interventions as predictors of long-term success.

However, together, BMI, sex, and age, explain approximately 50–60% of the variance in 

percent body fat, as measured by dual energy x-ray absorptiometry (DXA), which is the 

“gold standard” (15) and anthropometry is clearly less accurate than bioelectric impedance 

spectroscopy (BIS), DXA, MRI, and BodPod (see below). The accuracy of BMI is further 

diminished in participants with increased fractional lean body mass, such as athletes with 

very high muscle mass, (e.g., weightlifters) (16), or increased fractional fat mass, such as the 

elderly. BMI does not assess fat mass (FM) and fat-free mass (FFM), both of which are 

important determinants of energy expenditure (EE) and intake (EI), and different 

interventions may differentially affect body composition (fat mass and fat-free mass) and 

weight (16).

It is recommended that both waist circumference and WHR are collected in all adult 

studies (17), since both the absolute amount of central fat (17, 18) and the relative amount of 

fat distributed in central vs. peripheral fat depots (19, 20) have been shown to be predictive 

of multiple adiposity-related co-morbidities and may affect intervention response (21–23). 

Both these measures have been reported to correlate closely with visceral and subcutaneous 

adipose tissue measured by DXA or MRI (24, 25). To minimize variability in WHR, it is 

critical that investigators utilize uniform landmarks, with waist circumference measured at 

the iliac crest and hip circumference measured at the level of the trochanters as utilized by 

the National Center for Health Statistics in NHANES studies (26). It should be noted the 

abdominal circumference measured at the midpoint between the inferior border of the 

ribcage and the superior aspect of the iliac crest has been reported to be a better correlate of 

central adiposity in some studies (27). However, the NIH method is recommended to allow 

better comparisons with existing NHANES and other data.
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Anatomic Fat Storage—Anthropometry fails to distinguish subcutaneous from visceral 

fat, which has been reported to be correlated with risk of metabolic syndrome, 

cardiovascular disease, and several malignancies (28), and the relative distribution of 

visceral and subcutaneous fat varies significantly by gender and between ethnic/racial 

groups (29), Specifically, it is recommended that all studies include more direct measures of 

fat mass by Bioelectrical Impedance Spectroscopy (conventionally denoted as BIS) (30), 

which is a non-invasive and inexpensive type of bioimpedance to assess body composition 

that can be utilized in studies of any size or duration. BIS is comparable to the single 

frequency devices used in Bio-impedance Analysis (conventionally denoted as BIA) in 

terms of subject burden and cost. The multi-segmental, multi-frequency BIS device allows 

identification of more components of bioimpedance (capacitance, resistance, etc.,.) than 

single frequency BIA devices and BIS measures of extracellular/intracellular resistance have 

been reported to be significantly correlated with intraabdominal fat mass measures by CT 

scan (31). BIS has also been reported to correlate better with fat mass than BMI and better 

with visceral/intraabdominal fat (measured by MRI) than waist circumference or WHR (32). 

Overall, BIS has been reported to explain 80–90% of the variance in fat mass and visceral 

fat and 50–55% of the variance in intraabdominal fat by DXA and/or magnetic resonance 
imaging (MRI) (32, 33). Despite the advantages of BIS, it has been reported to 

underestimate FM and overestimate FFM, especially in males (33), and BIS can be less 

reliable when hydration status of FM and FFM are uncertain (e.g., in children, individuals 

with edema, and post-bariatric surgery patients). In addition, there are multiple BIS systems 

available which have not been cross-validated. It is therefore essential to always report the 

exact BIS system utilized.

The addition of BIS will allow for integration of data from multiple studies and further 

validation of this approach. While BIS provides the best option for the assessment of body 

composition, when balancing the value of the data with the cost and participant burden in 

large clinical trials, this recommendation does not preclude the use of more accurate or 

precise suggested measures of body composition such as DXA, MRI, or quantitative 
magnetic resonance spectroscopy (QMRS). It is anticipated that the acquisition of BIS data 

along with other suggested measures of body composition in some studies will provide a 

large dataset that can be utilized to better define the precision of BIS in different 

populations.

Construct: Energy Homeostasis

The relative long-term constancy of body weight and overall lack of success of non-surgical 

interventions in long-term weight reduction suggests that, at usual weight, energy intake and 

output are “coupled” and vary directly to maintain energy stores; once weight is perturbed, 

this coupling is lost, and energy intake and output now vary inversely to “defend” previous 

body energy stores (2, 34).There is large inter-individual variability in energy intake (EI) and 

expenditure (EE) (including cardiorespiratory fitness, which is an important determinant of 

exercise recommendations) and, of course, adherence before, during, and after weight 

change (3, 23, 35–37). A better understanding of this variability is likely to identify certain 

energy homeostatic phenotypes that are predictive of individualized best practice 

recommendations.
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Energy Expenditure—Total energy expenditure (TEE) is comprised of resting energy 

expenditure (REE), the thermic effect of feeding (TEF), and non-resting energy expenditure 

(NREE) (38), each of which is likely to change in weight loss studies. Direct and indirect 

objective measures for these variables presents challenges for large clinical weight loss trials 

because of their expense, participant burden, and feasibility. Because of these limitations, it 

is recommended that measures of TEE and its components be calculated.

Calculated REE should be acquired with the Mifflin St.-Jeor equation (39), which is best 

correlated (R2=0.80–0.85) with calorimetric measures of REE (39) and superior to other less 

studied or more population-specific equations (40). The Mifflin St.-Jeor equation is provided 

below:

Males :REE kcal/day = 10 × weight kg + 6.25 × height cm − 5 × age y + 5

Females :REE kcal/day = 10 × weight kg + 6.25 × height cm − 5 × age y − 161

It should be noted that the Mifflin-St. Jeor equation may also have limitations in its 

generalizability. Equations for individuals who are transgender, intersex, have abnormal 

numbers of X or Y chromosomes, or who have undergone or are undergoing surgical or 

hormonal therapy relevant to gender have not as yet been derived (41). The increasing 

attention to gender medicine and gender-specific biological variation in human metabolic 

disease should yield an expanded list of calculations going forward.

In lieu of directly measuring NREE, it is recommended that a questionnaire-based 

assessment of Physical Activity Level (PAL) be acquired (42). PAL is defined as TEE/REE, 

and the questionnaire-derived PAL was chosen because of its simplicity, its validation by 

correlation with PAL measured by calorimetry, and its applicability across multiple studies. 

This questionnaire provides a self-evaluation of physical activity during work and leisure 

activities. The calculated REE and PAL can then be used to derive a Calculated TEE: TEE 

= PAL × REE.

The working group readily acknowledges that other direct and indirect measures can provide 

more accurate and precise measures of TEE, its components, and metabolic adaptation in 

response to treatment (43) but are not feasible in many weight loss trials due to the expense 

and required specialized equipment (38, 44). If possible, calorimetric measurement of REE 
in the overnight fasted state using a metabolic cart or room indirect calorimeter to measure 

rates of carbon dioxide production (VCO2) and oxygen consumption (VO2) is suggested. 

The VCO2/VO2 ratio provides an index of the relative mixture of metabolic fuels being 

utilized. Similarly, doubly-labeled water can be used to measure TEE in the free-living 

environment, and whole-room indirect calorimetry chambers can be used to provide robust 

objective estimates of TEE, NREE, and REE. While these approaches can also be utilized to 

acquire TEF with the appropriate feeding study design, TEF is neither recommended nor 

suggested across all studies because of the necessary complexity of these designs coupled 

with the relatively small contribution of TEF to TEE and adaptive thermogenesis (3).
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Energy Intake: Under static conditions of body weight and composition stability, EI must 

be equal to TEE. Energy Intake – Steady State refers to energy intake when body 

composition and mass are not changing over time and can be presumed equal to calculated 

TEE (45). It should be noted that this does not include or account for variations in diet 

composition or the possible effects on partitioning of stored calories (see Construct: Body 

Composition) that might occur for example, as a result of weight loss with a resistance 

training component (increased partitioning of stored calories as FFM) versus aerobic 

training (46). During dynamic periods of weight change (EI≠EE), measuring EI is more 

difficult. Self-reported EI measures have been shown to be inaccurate (47) but Changes in 
EI during such periods can be mathematically modeled with measures of EE and body 

composition dynamics (33). This model has recently been validated against the intake-

balance method in a two-year calorie restriction experiment in 140 people of varying age 

and BMI (48) and requires only baseline anthropometric and demographic information along 

with repeated body weight measurements over the course of the intervention. There are 

assumptions underlying this model, such as the stability of REE and PAL. More frequent 

body weight measurement increases the precision of the calculated changes in EI over time, 

and physical activity time course data (e.g., from actigraphy measurements) can also be 

incorporated to account for changes in NREE. The full description of this calculation, 

including MatLab Code information, can be found at the GEM measures Biological Domain 

website (https://www.gem-measures.org/Public/wsmeasures.aspx?cat=8&aid=1&wid=25).

Estimation of the average EI over an extended duration is ideally calculated using the intake-

balance method involving body composition measurements, along with repeated TEE 

measurements using doubly labeled water (49); these procedures are, unfortunately, 

impractical for larger weight loss studies. Depending upon the duration and types of weight 

loss intervention, and participant age and gender, calculated EI based on TEE and weight or 

body composition change has been reported to account for between 20 and 60% of the 

variance in EI calculated using the intake-balance method as described above (48).

Cardiorespiratory Fitness—Cardiorespiratory fitness (CRF) varies significantly 

between individuals and may modify response to obesity treatment either directly or via 

compliance with exercise recommendations (50). CRF is also significantly correlated with 

mortality and co-morbidity risk, independent of body fatness (51). While the gold standard 

for cardiorespiratory fitness is an ergometric VO2max test, an approximation can be made 

from resting heart rate (RHR) or an alternative submaximal fitness test. RHR was selected 

as a recommended measure because it is easy and inexpensive to perform and has been 

reported to explain about 20% of the variance in CRF (52), using multiple different 

equations and calculations. The 3-minute step test has been reported to explain 50–90% of 

the variance in fitness by treadmill testing but may not be practical for larger studies and so 

is suggested rather than recommended (53, 54). For subjects who are unable to perform the 

step test, due to orthopedic or fitness issues, a simpler version using a corridor walk may be 

substituted (55).
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Construct: Brain Structure and Function

Obesity-associated alterations in brain structure and function (56, 57) are correlated with 

weight loss and regain in behavioral and bariatric surgery trials (56, 58), with limited data 

regarding other treatments. Incentive motivation, reward learning, and executive function 

(including working memory) (58) are the neurocognitive constructs most predictive of 

treatment outcomes. These functions are largely mediated by the dopaminergic fronto-

striatal (reward/motivation), fronto-parietal (executive function), and hippocampal-amygdala 

(learning and memory) systems, which operate as both independent and interdependent 

networks (59). Emerging data also indicated related neural systems (interoceptive and 

salience networks) could be important for weight outcome prediction (60).

This manuscript focuses on brain structure and function rather than the affected 

neurocognitive constructs discussed in the ADOPT Psychosocial Domain (61). The current 

gold standard measures are magnetic resonance imaging (MRI) to assess structure and blood 

oxygen-dependent functional MRI (fMRI) to assess function. FMRI can identify the 1) 

neural substrates that execute behaviors in response to environmental demands and 2) 

functionally-linked intrinsic neural networks that can be assessed in the absence of external, 

environmental demands (i.e., resting state fMRI). Measurement of resting state connectivity 

is feasible in large multi-site studies and, when integrated with other measures (e.g., 

cognitive, psychosocial, other biomarkers), can define mechanisms and neuropsychological 

subtypes that may predict response to treatment (62) even though correlations of resting 

state fMRI in specific single brain regions with behaviors are relatively low (63–69).

Because of the cost and burden to both the participants and researchers, resting state fMRI 
scans are only only suggested when feasible. Analyses of these fMRI data should include the 

assessment and comparison across several networks representing the neural systems 

described above. The suggested MRI/fMRI protocol includes: 1) anatomical MRI for 

structure (volume, density, shape, cortical thickness) and to aid in preprocessing of the fMRI 

data, 2) diffusion MRI (white matter tractography or structural connectivity), and 3) resting 

state functional connectivity (RSFC) MRI. Given that RSFC MRI may be sensitive to 

internal state, collecting data about the participant’s last meal and the subjective experience 

of internal state (hunger, satiety) is suggested (61). Resting state studies in fasting and fed 

states will provide insights into brain areas related to meal initiation and cessation. The 

value of fMRI is significantly increased through integration with neurocognitive and 

psychosocial measures (61) and biomarkers of energy intake (e.g., gut peptides) and 

expenditure (e.g., leptin and thyroid hormones) described below.

Construct: Biomarkers

Biomarkers can provide information about the potential mechanisms by which information 

regarding nutreint availability, energy stores, and energy balance are communicated to 

central nervous system tracts regulating energy homeostasis, as well as providing valuable 

insights into adiposity-related comorbdities. Biomarker significance is influenced by 

whether subjects are at weight homeostasis, are weight-reduced, or in the process of weight 

gain or loss. Some of the recommended biomarkers (e.g., leptin) predictably and 

coordinately change in response to calorie-restricted weight loss in a manner that would 
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elevate appetite and suppress energy expenditure (1). Baseline measures for some 

recommended biomarkers (e.g., leptin, total ghrelin) are predictive of weight regain (70, 71) 

in some, but not all studies (72). The potential value/cost of these measures at baseline, after 

weight loss, and after a period of weight maintenance, is considered high, given the low 

subject burden (i.e., a blood draw) and commercial availability of the assays.

Biomarkers – Energy Homeostasis.—A number of adipocyte-derived hormones yield 

valuable data regarding factors that may affect or represent energy stores and balance. As 

exemplified by leptin (73), response to any intervention may depend upon whether the 

participant is being treated to promote weight loss or prevent weight regain. Therefore, 

biochemical assessments relevant to energy balance and/or affecting energy intake and 

output are extremely relevant,

Leptin is secreted by adipose tissue, reflects both adipose tissue stores and energy balance, 

and is recommended. At baseline weight, circulating leptin concentrations are directly 

proportional to FM, while during caloric restriction, the leptin/FM ratio may be severely 

decreased, versus only mildly diminished, following weight loss (73). A low ratio of leptin-

to-fat mass may therefore be an indicator of undernutrition, while an unusually high ratio 

may suggest leptin resistance.

Measurement of fasting levels of the pancreatic peptide amylin is recommended not only 

for its effects on nutrient utilization by inhibition of post-prandial glucagon but also because 

it reduces energy intake by promoting satiation and attenuates the disproportionate decline in 

energy expenditure that typically occurs during and following weight loss and thus serves as 

a marker of weight response (74). In rodent studies, amylin receptors are located within the 

brainstem, as well in multiple other organs, and exogenous amylin acts synergistically with 

leptin as well as GLP-1, PYY3–36, and other anorexiant molecules (75) and in human studies 

co-administration of amylin with leptin has been shown to enhance weight loss during 

caloric restriction (76)..

Adiponectin, particularly high molecular weight (HMW) adiponectin, is recommended 
because of its positive association with cardiovascular fitness and insulin sensitivity and its 

negative association with secretion of multiple pro- inflammatory cytokines. During caloric 

restriction, adiponectin levels increase disproportionately to the decrease in fat mass. The 

multi-functional nature of adiponectin and its potentially pivotal role in mediating co-

morbidity risk, make it a worthwhile and relatively inexpensive test to perform; analyses of 

HMW and low molecular weight adiponectin is recommended in all studies (77, 78).

Measures of key components of thyroid hormones (thyroid stimulating hormone (TSH), 
thyroxine (T4), the free T4 Index (fT4I) are recommended because of their known role in 

regulating energy balance. Diet-induced weight loss is accompanied by a decline in TSH, T3 

and T4 similar to “sick euthyroid syndrome” (79, 80), and thyroid hormone repletion in 

weight-reduced individuals has recently been reported to resolve some of the peripheral 

adaptive responses thought to drive weight regain (81) in a manner similar to what is seen 

following thyroid repletion in hypothyroid individuals (82, 83). Other factors commonly 

measured when assessing thyroid status (T3, rT3) present a significant burden for 
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researchers because of the expense of these assays and are suggested only when resources 

are available.

Hunger/satiety hormone levels change in response to meals and collectively provide 

surrogate signals for nutrient availability. A number of gut-derived peptides, including 

ghrelin, GLP-1, PYY3–36, affect appetite (84) and coordinately change in response to 

calorie-restriction (1). Baseline total ghrelin levels are predictive of weight loss (70), and 

meal responses of PYY3–36 and GLP-1 have been associated with successful reduced weight 

maintenance (85). Such studies provide examples of how these peptides could be valuable in 

modeling treatment outcomes. While postprandial responses of these hormones are 

considered to provide the most pertinent information for predicting treatment responses, 

meal challenges were judged too great a burden on both participants and the researchers. 

Measurement of fasting total ghrelin, GLP-1, and PYY3–36 is recommended for all weight 

loss studies as the best compromise between feasibility and informational value. Other gut 

peptides with similar actions were considered for predicting treatment outcomes, including 

cholecystokinin (CCK) and glucagon inhibitory peptide (GIP) but the added value was 

deemed insufficient because of the greater assay difficulty and expense and the likelihood of 

collinearity with those already recommended. Plasma AgRP has been suggested as a 

biomarker of hypothalamic melanocortin activity, which could reflect downstream activity of 

the hunger and satiety signals though there is only limited evidence for it as a biomarker. 

AgRP is linked to insulin sensitivity during and after weight loss (86), suggesting that this 

molecule may provide insights relevant to other biomarkers as well as brain function. For 

these reasons, measures of CCK, GIP, AgRP, and postprandial responses of total ghrelin, 
GLP-1, and PYY3–36 were suggested only when it is feasible and resources are available. It 

should also be noted that properly processed and stored samples can be biobanked (see 

below) for future analyses if cost limitations are prohibitive in a given study.

Nutrient sensing systems in peripheral tissues and in specific regions of the hypothalamus 

exist that convey signals of nutrient availability for appetite regulation and therefore serve as 

indices of nutrient status – fasting levels of glucose, non-esterified fatty acids (NEFA), 
and triglycerides (TG) are recommended at baseline, during weight loss and after weight 

loss. Glucose, non-esterified free fatty acids (NEFA), and triglycerides (TGs) are the primary 

nutrients in circulation, and all three respond to calorie-restricted weight loss (1). TGs are 

also thought to affect the sensitivity of the brain to peripheral hormones through their effects 

on blood brain barrier transport. These metabolites consistently change with diet-induced 

weight loss in a manner that could elevate appetite (1), and the assays are relatively 

inexpensive and commonly used in clinical research. As with the gut peptides, of measuring 

postprandial responses of these molecules is not feasible in all studies. For these reasons, 

acquiring postprandial responses in glucose, NEFAs, and TGs is suggested only when 

resources are available.

Metabolic (anabolic and catabolic) function, insulin sensitivity, and glucose control 

could serve as mediators or moderators of treatment responses and have been shown to 

influence patterns of weight loss and weight loss maintenance (71, 87). Some studies 

suggest that diet macronutrient content may influence weight loss intervention efficacy 

according to the level of insulin sensitivity (88). The group recommends that fasting levels 
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of insulin, glucagon, and glycosylated hemoglobin (Hba1C) be measured before, during, 

and after weight loss. Along with the metabolite data, these measures can be utilized to 

calculate indices of insulin sensitivity and secretion (HOMA-IR and HOMA-B) (89). 

There was some discussion that an oral glucose tolerance test (OGTT) should also be 

included to provide a more accurate assessment of glucose control. However, there was 

insufficient evidence that the OGTT would provide sufficient added value over the other 

surrogate biomarkers of metabolic function for weight loss outcomes, and it is 

suggested_only when resources are available. There are more invasive measures of insulin 

secretion and sensitivity (hyperinsulinemic-euglycemic clamp, intravenous glucose tolerance 

test, etc.) and more comprehensive measures of key aspects of metabolic flexibility, but 

these tests are not feasible for all large scale clinical weight loss trials.

We also recommend assessment of the inflammatory markers tumor necrosis factor-alpha 
(TNF-α), C-reactive protein (CRP), and interleukin 6 (IL-6) in the fasted state before, 

during, and after weight loss. These inflammatory factors could mediate or moderate the 

impact of metabolic dysfunction on treatment outcomes. TNF-α is a true adipokine and is 

elevated in obesity (90). CRP is made in the liver, largely in response to IL-6, which is 

produced in liver and skeletal muscle. These molecules represent three different sources of 

inflammatory markers and all are associated with the subsequent risk of type 2 diabetes (91) 

and cardiovascular disease (92). Using network modeling that combined biological, gut 

microbiota, and environmental factors relevant to weight trajectories, baseline levels of IL-6 

and plasma insulin most accurately classified individuals who did or did not lose weight and 

maintain weight loss (93). Global inflammatory status could be assessed by larger panels, 

but these biomarkers should be sufficient at present to examine the strength of the link 

between inflammation and treatment outcomes.

Biobanking Tissues

The molecular mechanisms underlying the physiological opposition to weight loss and 

reduced weight maintenance (2), and the possibility that they mimic the “pre-obese” state in 

which someone is genetically and physiologically “at risk” for weight gain, have not been 

comprehensively elucidated. A uniform methodology across weight loss studies for 

collecting and storing biological samples to measure RNA and DNA from cells in the blood 

as well as exosomal and free RNAs would provide a valuable resource for interrogating the 

molecular underpinnings of weight gain, weight loss, and weight regain. For reasons 

discussed below, biobanking of whole blood and its components (plasma, serum, etc.,) with 

appropriate stabilization (e.g., protease inhibitors) is recommended as the best balance of 

feasibility, cost, participant burden, expertise/equipment needed to collect and process the 

samples, and relevance to weight loss physiology.

Though many different kinds of bodily fluids and tissues can be collected with varying 

degrees of difficulty, expense, and value (Figure 1), whole blood gives the greatest 

advantages for ease and the potential amount of relevant information it can provide. Though 

sample collection is invasive and can be challenging for individuals with obesity, participant 

burden and the need for expertise to collect whole blood samples is offset by the ability to 

use samples to interrogate circulating proteins, metabolites, and noncoding RNAs, which 
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have been identified as relevant to energy homeostasis or which may one day be identified. 

In addition, both red and white cells can be used to examine cellular processes related to a 

host of outcomes, including glycosylation, immune response, and metabolism.

In addition to the assessment of the biomarkers described above, both RNA and DNA can be 

extracted from whole blood for a global assessment of genomic variation, gene expression, 

and epigenetic modification to ultimately allow a uniform characterization of the 

contribution of genes across weight loss studies. This genetic screening would comprise a 

powerful resource for understanding the genetic and epigenetic molecular underpinnings of 

variability in weight loss. This type of screening is suggested at present due to resource 

limitations but, as its feasibility and cost becomes more reasonable, we fully expect that it 

will become a recommended assessment. The biobanking recommendation of whole blood 

will ensure that tissues will be available to pursue future genetic studies, even if resources 

are not immediately available. Sequence variations in multiple genes have been tied to 

energy balance and treatment outcomes in weight loss studies, which could serve to focus 

the analysis. These genes include BDNF, DRB3, FTO, GNPDA2, LYPLA, MC4R, MTCH2, 
and MTIF3, while other less-studied genes (NEGR1, PLIN, and RANK. LEP and LEPR) 

may also provide relevant information about the variability in treatment response. Studies 

demonstrating significant intra-pair correlations (r=0.75–0.85) in response to weight loss 

interventions among identical twins (94) and genetic predictors of weight loss response to 

various interventions in large clinical trials (95, 96) suggest that different SNPs may be 

predictive of the magnitude of weight loss versus regain depending upon the nature of the 

intervention and subject population. In the future, the use of array-based chips with highly-

informative, dense single nucleotide polymorphism (SNP) content, including genome-wide 

tag SNPs found across diverse world populations and customizable markers for use in large 

weight loss studies, can be used as a cost-effective means of creating a well-powered cohort 

of individuals in which the genetic underpinnings of weight loss can be examined for 

multiple traits and outcomes.

Biobanking of other tissues is also suggested depending upon resource availability. Buccal 
(cheek) cells are easy and inexpensive to collect via cytobrushes, which involves simply 

swabbing the cheeks and gutters of the mouth to collect sloughed cells. Both DNA and RNA 

can be extracted from buccal cells (97), though there is a limited range and relevance of 

markers that can be measured (97). Similar limitations are inherent in the use of saliva 
samples. Urine and stool samples are relatively easy and inexpensive to obtain; though the 

relevance of urinary biomarkers to weight loss may be limited. Stool (98) can be used to 

examine the gut microbiome, gut absorption, and markers of metabolism. While 

transplantation of the microbiome from obese or lean mice or humans to gnotobiotic (germ-

free mice) clearly affects somatotype, the role of the microbiome as a cause or potential 

therapeutic target in human obesity is not clearly established (99). Current research in the 

NIH Human Microbiome Project (HMP) (100) directly addresses these issues, and 

investigators are suggested to contact the NIH directly for microbiome banking information.

Tissue biopsies allow unbiased genomic, epigenetic, and proteomic interrogation of key 

metabolic tissues (skeletal muscle, adipose) involved in the regulation of energy balance. 

Due to burdens placed on subjects and investigators, the collection of specific tissue biopsies 
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is suggested for studies with specific objectives directed at elucidating molecular 

mechanisms or generating the evidence as to how these tissues could serve as mediators or 

moderators of treatment outcomes.

CONCLUSIONS

The ADOPT Biological Domain Subgroup was tasked with identifying feasible measures of 

biological constructs (body composition, energy homeostasis, brain structure and function, 

blood biomarkers, and biobanking tissues) that, when used consistently in weight loss trials, 

could serve to explain the variability in treatment outcomes and lay the foundation for 

genetic, epigenetic, and –omic based analyses. Selections (see Table 1) were made with the 

underlying goal of maximizing the potential to address knowledge gaps in obesity treatment, 

in conjunction with the other ADOPT Domains. It is the intent of the ADOPT Project that 

these recommendations and suggestions and the GEM website will be updated as new 

information becomes available.

It should be emphasized that the recommended measures are not always the “gold standard” 

but they are the ones that are most feasible across numerous different study sizes and 

population. When integrated across studies and with the other ADOPT domains, the 

recommended measures will facilitate development of a large, comprehensive database that 

could be mined to evaluate, propose, and implement current and future obesity treatments 

with maximal efficacy. The recommended and suggested measures are intended to augment 

weight loss intervention studies, rather than replace planned measures.

The strengths and weaknesses of the ADOPT Biological Domain are closely intertwined. 

The main strength is the practicality of measures that can be implemented in most, if not all, 

studies going forward at little additional expense and inconvenience to investigators and 

participants. An additional strength is the intentional malleability of the ADOPT 

recommendations and suggestions. Regular modifications of the ADOPT domain 

manuscripts are anticipated based on new data and techniques that become available and on 

input from the scientific community through the GEM website. The weaknesses of the 

recommended and suggested measures are that, to achieve necessary fiscal and feasibility 

goals, numerous more sensitive or specific measures are not included. To address these 

issues, we would encourage biobanking of serum, plasma, and buffy coats on as many 

participants as possible in anticipation of the decreasing costs and increasing understanding 

of relevant future assays.
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What is already known about this subject?

• Biological adaptations to weight loss interventions contribute to the high rates 

of obesity recidivism.

• Key aspects of this biological response may explain, in part, the high level of 

individual variability in the response to obesity treatments.

• We lack an evidence base with a broad range of biological factors or a 

consensus on a list of measures that, when used in weight loss trials, could 

inform the development of tailored treatments.
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What does our study add?

• The ADOPT Core Measures Project suggests an initial list of common core 

biological constructs and associated measures related to body composition, 

energy homeostasis, brain structure and function, biomarkers, and biobanking 

approaches, which could be feasibly employed in small, medium, and large 

weight loss trials.

• In order to reliably identify complex interactions among multiple factors 

influencing energy balance, the recommended and suggested measures will 

significantly enhance the value of future studies by facilitating the integration 

of multiple data sets to deepen our understanding of the individual variability 

in treatment responses.

• The consistent use of ADOPT Biological Domain measures in weight loss 

trials, along with key measures from psychosocial, behavioral, and 

environmental domains, could help to identify predictors of treatment 

responses and inform precision-medicine oriented interventions.

Rosenbaum et al. Page 20

Obesity (Silver Spring). Author manuscript; available in PMC 2020 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Review of selection criteria for different tissues that could be biobanked. Whole blood is 

clearly the best fit for these criteria, though other tissues should not be eliminated if 

available depending upon their relevance to specific study. *Collection costs include creation 

of sample aliquots; measured markers include metabolites (M), nucleotides (N), and proteins 

(P).
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