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ABSTRACT The ongoing coronavirus disease 19 (COVID-19) pandemic has infected millions of people, claimed hundreds of
thousands of lives, andmade a worldwide health emergency. Understanding the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) mechanism of infection is crucial in the development of potential therapeutics and vaccines. The infection pro-
cess is triggered by direct binding of the SARS-CoV-2 receptor-binding domain (RBD) to the host-cell receptor angiotensin-con-
verting enzyme 2 (ACE2). Many efforts have beenmade to design or repurpose therapeutics to deactivate the RBD or ACE2 and
prevent the initial binding. In addition to direct inhibition strategies, small chemical compounds might be able to interfere and
destabilize the metastable, prefusion complex of ACE2-RBD. This approach can be employed to prevent the further progress
of virus infection at its early stages. In this study, molecular docking was employed to analyze the binding of two chemical com-
pounds, SSAA09E2 and Nilotinib, with the druggable pocket of the ACE2-RBD complex. The structural changes as a result of
the interference with the ACE2-RBD complex were analyzed by molecular dynamics simulations. Results show that both Nilo-
tinib and SSAA09E2 can induce significant conformational changes in the ACE2-RBD complex, intervene with the hydrogen
bonds, and influence the flexibility of proteins. Moreover, essential dynamics analysis suggests that the presence of small mol-
ecules can trigger large-scale conformational changes that may destabilize the ACE2-RBD complex.
SIGNIFICANCE This study aims to shed light on the interference mechanism of small molecules and their destabilization
effects on the ACE2-RBD complex. Instead of direct inhibition mechanisms, we focused on the structural analysis of the
metastable ACE2-RBD complex targeted by small molecules such as SSAA09E2 and Nilotinib. We showed that in addition
to direct inhibition, small molecules can potentially destabilize the early-stage, prefusion, ACE2-RBD complex by inducing
conformational changes, changing structural flexibility, and triggering different large-scale motions.
INTRODUCTION

The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is the newest member of coronaviruses, a
family of single-stranded, RNA-based viruses able to infect
mammals such as bats and humans. Although the SARS-
CoV-2 preserves almost 70% of the sequence of the previous
SARS-CoV virus, the differences are enough to affect the
pathogenicity. Several studies show that the SARS-CoV-2
has a higher binding affinity with its host-cell receptor,
angiotensin-converting enzyme 2 (ACE2) (1–4). The higher
risk of virus initial recognition can justify the higher infec-
tivity of the novel coronavirus. However, the overall path of
infection is similar to the SARS-CoV virus. The infection
process is initialized by virus recognition through binding
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of the receptor-binding domain (RBD) of spike glycopro-
teins with ACE2 receptors. The recognition step is followed
by the cleavage and activation processes induced by prote-
ase enzymes such as TMPRSS2, which paves the way for vi-
rus fusion and entry into the cell membrane. Since the initial
days of the emergence of the novel coronavirus, huge scien-
tific efforts have been made to target various stages of the
infection process from inhibiting the initial host-cell binding
to intervene in the virus reproduction pathway. Here, we
focus on the early stages of infection and virus recognition
process by host-cell receptors.

The crystal structure of the ACE2-RBD complex with the
resolution of 2.45 Å (Protein Data Bank (PDB): 6M0J) was
determined by Lan et al. (5). Moreover, Yan et al. (6) pre-
sented the cryoelectron microscopy structures of full-length
ACE2 receptors with and without the RBD (PDB: 6M17).
Various strategies have been evaluated to block ACE2-
RBD interactions. Monolocal antibodies show promising re-
sults in deactivating SARS-CoV-2 spike proteins (7–9).
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Moreover, ACE2-based peptides can be designed to
compete with real cellular receptors and reduce the risk of
infection (10–12). In the absence of approved drugs and vac-
cines, screening techniques have been widely employed to
repurpose approved drugs and find chemical compounds
able to inhibit various proteins that are essential for the
infection process. Adedeji et al. (13) carried out the
screening of a large library of pharmacologically active
small molecules and suggested three compounds with
different mechanisms of action to inhibit the infection pro-
cess of SARS-CoV. Interestingly, they reported that N-[[4-
(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-car-
boxamide or SSAA09E2 has a novel inhibition mechanism
that allows it to interfere with ACE2-RBD interactions and
block the early stages of infections. However, details of this
novel mechanism and its effectiveness in the case of the
SARS-CoV-2 virus are yet to be understood completely.
Wei et al. (14) employed virtual screening to evaluate the
binding energy of ~15,000 drugs with the RBD. Based on
their analysis, among all the drugs listed in the DrugBank
database (15), Digitoxin and Nilotinib have the best docking
scores with the RBD. In addition to virtual screening tech-
niques, all-atomistic (16,17) and coarse-grained (18–20)
molecular dynamics (MD) methods are effective computa-
tional tools for multiscale modeling of virus infection pro-
cess and computer-aided drug design (21). Deganutti et al.
(22) employed structure-based screening and supervised
MD to find potential drugs that can bind to the druggable
pockets of the RBD and inhibit the binding process. They
reported Cefsulodin and Nilotinib as the potential disruptors
of the ACE2-RBD interface. Nilotinib is a member of Abel-
son (Abl) tyrosine-protein kinase (Abl-TK) inhibitor drugs
that can potentially affect the infection process through in-
hibiting the virus fusion before hemifusion (23). In addition,
these drugs can reduce the risk of infection through Abl-
mediated cytoskeletal rearrangement and interfering with
actin dynamics (24). The in vitro observations of positive
impacts of Abl-TK inhibitors have recently been strength-
ened by in vivo studies and medical surveys. For instance,
Foà et al. (25) and Breccia et al. (26) reported a lower per-
centage of COVID-19 infection among the Philadelphia-
positive acute lymphoblastic leukemia and chronic myeloid
leukemia patients under treatment by Abl-TK inhibitors.

In this study, we focused on the interference mechanism
of small molecules that can potentially destabilize the
ACE2-RBD complex. The disruption of protein-protein in-
teractions can be a strategy for potential drugs to interfere
with the early stages of infection. Based on in vitro and vir-
tual screening studies, we chose SSAA09E2 and Nilotinib to
study their potential intervention effects. Instead of direct
inhibition of ACE2 or RBD, this study aims to understand
the structural changes induced by binding of SSAA09E2
and Nilotinib into the druggable pocket at the central part
of the ACE2-RBD interface that may shed light on the
mechanisms of action of these drugs. Molecular docking
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was employed to find the most favorable binding poses.
MD was then utilized to analyze the structural changes of
the ACE2-RBD complex. We showed that both of these
chemical compounds are able to make stable bonds with
the ACE2-RBD complex that may potentially reduce the
infection risk by interfering with the ACE2-RBD interac-
tions and triggering large-scale conformational changes.
MATERIALS AND METHODS

The crystal structure of the SARS-CoV-2 RBD complexed with the ACE2

enzyme was obtained from the protein data bank, PDB: 6M0J (5). The pro-

tein structure includes chains A and E, which represent the ACE2 and RBD

structures, respectively. The protonation state of proteins was investigated

by the Hþþ server (27). Hþþ server automates the process of pKa prediction

based on the standard continuum solvent methodologies and the environ-

ment pH provided by the user. In this work, the protonation state is assigned

at the neutral pH of 7.0. Moreover, the salinity, internal dielectric, and

external dielectric were set to be 0.15, 10, and 80 M, respectively (28).

The chemical structures of Nilotinib and SSAA09E2 were retrieved from

the PubChem database (29). Avogadro software was used to prepare the

ligand structures and adding hydrogen atoms (30). DoGSiteScorer (31)

was used to analyze the binding pockets at the interface of the ACE2-

RBD complex. DoGSiteScorer is an online tool that analyzes and ranks po-

tential binding pockets based on their volume, surface area and assigns a

drug score to them. Drug score is a number between 0 and 1, the higher

the score, the better estimated druggability. The most druggable binding

pocket at the ACE2-RBD interface with the volume of 532.4 �A3, surface

area of 572.2 �A2, and drug score of 0.69 was chosen for further analysis.

This binding pocket is made by residues Asn33, His34, Glu35, Ala36,

Asp38, Lys353, Gln388, Pro389, Phe390, Arg393, of the ACE2 protein

and residues Arg403, Glu406, Lys417, Tyr449, Tyr453, Gln493, Ser494,

Tyr495, Gly496, Phe497, Gln498, Asn501, and Tyr505 of the RBD.

Fig. 1 a shows the electrostatic surface (with the unit of KBT=ec) of the

ACE2-RBD complex. The residues that form a druggable binding pocket

at the interface of ACE2 enzyme and SARS-CoV-2 RBD are displayed in

Fig. 1, b and c.

Ligplotþ package (32) was used to prepare the two-dimensional dia-

grams of ligand-protein interactions. Protein-Ligand Interaction Profiler

(PLIP) web-tool (33) was employed for further analysis of ligand-protein

interactions. Molecular docking simulations were performed by Autodock-

tools 4 (34). The ligand preparation for docking simulations was performed

by Autodocktools (34). This process includes adding Gasteiger-Marsili

charges to the ligand atoms (35), define torsional degrees of freedom, merge

nonpolar hydrogen atoms, and prepare PDBQT files (PDB format with par-

tial charges (Q), and atom types (T)). More details on this standard process

can be found in Forli et al. (36) and Morris et al. (37) protocols for molec-

ular docking. A grid with the size of 60 Å � 60 Å � 60 Å centered on the

druggable pocket at the interface of the ACE2-RBD complex was used for

docking simulations. The docking process was carried out with the La-

marckian Genetic algorithm (38,39). The best docking pose was used for

further MD simulations. The system topology was made by CHARMM-

GUI solution builder module by using the CHARMM36(m) all-atom force

field (40,41) and TIP3P water model (42). The ligand reader and modeler

module of CHARMM-GUI (43) was employed for ligand parameterization

and topology preparation. The parameterization was performed based on

the CHARMM General Force field (44) approach in which the chemical

space that is not covered by the CHARMM force field is parameterized

with a rule-based interpretation of existing force field parameters. More de-

tails on the automation process of ligand parameterization for the

CHARMM force field can be found in the works of Vanommeslaeghe

et al. (44,45) and Kim et al. (43). An octahedral computational box with

12 Å distance between the edges was employed for the protein solvation.
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FIGURE 1 (a) The electrostatic surface (with the unit of KBT= ec) of the

ACE2-RBD complex, the binding site is indicated by a green square. (b)

Cartoon representation of the ACE2-RBD complex and binding pocket

location. (c) Key residues that form the binding pocket. The SARS-CoV-

2 RBD and ACE2 enzyme are shown by magenta and gray cartoons, respec-

tively. Key residues are shown by licorice-stick representations. The carbon

atoms of the RBD and ACE2 residues are colored yellow and coral, respec-

tively. Red and dark blue sticks show oxygen and nitrogen atoms, respec-

tively. This color scheme is used in figures throughout this article. To see

this figure in color, go online.
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The system is neutralized by adding potassium (K) and chloride (Cl) ions

with the final concentration of 0.15 M. Systems were initially minimized

by the steepest descent algorithm with 5000 steps. The minimization was

followed by 125 ps of equilibration simulation in the canonical ensemble

with the constant number of atoms (N), constant volume (V), and constant

temperature (T) (NVT ensemble). Linear Constraint Solver algorithm was

employed to constrain the hydrogen bonds (46). The Verlet cutoff scheme

with the cutoff radius of 1.2 nm, and the Particle Mesh Ewald method was

used to compute long-range electrostatics. All the systems were simulated

at the temperature of 310 K that was maintained by the Nos�e–Hoover tem-

perature coupling method with the time constant for coupling (t-t) of 1 ps

(47). The 200 ns of production simulation were performed with the constant

number of atoms (N), pressure (P), and temperature (T) (NPT ensemble) at

the pressure of 1 atm, which was controlled by the Parinello-Rahman

method with the time constant for pressure coupling (t-p) of 5 ps. The pro-

duction simulations were performed in triplicates with the total simulation

time of 9� 200 ns or 1.8 ms and average results were calculated. GRO-
MACS 5.1 (48) was employed for all the MD simulations and trajectories

were visualized by PyMol (49). g_RMS, g_RMSF, g_gyrate, g_hbond,

and g_distance packages of GROMACS software were employed to

analyze the root mean-square deviations (RMSD), root mean-square fluctu-

ations (RMSF), radius of gyration ðRgÞ, number of hydrogen bonds, and

distances between residues, respectively. To understand the effects of

drug molecules on the essential dynamics of the ACE2-RBD complex, Prin-

cipal Component Analysis (PCA) was performed on the combined trajec-

tory made by concatenating three trajectory replicates for each case (3 �
200 ns or 600 ns trajectory for each case). The covariance matrix of back-

bone atoms was diagonalized by the g_covar package of the GROMACS

software. The g_anaeig package was employed to project the principal

components into essential phase space. Porcupine plots were drawn based

on the extreme conformations sampled during the simulation time along

each of the first three eigenvectors by using the principal components calcu-

lated for the concatenated trajectory of each case. PyMol (49) package was

used to prepare the porcupine plots and show direction and strength of

movements.
RESULTS AND DISCUSSION

Our docking simulations show that both Nilotinib and
SSAA09E2 have high binding affinities with the druggable
pocket of the ACE2-RBD complex. Fig. 2 a shows the two-
dimensional diagram of potential interactions between the
Nilotinib and ACE2-RBD complex. It can be seen that at
this binding pocket, Nilotinib has nonbonded interactions
with residues Lys26, Thr27, Leu29, Asn33, His34, Glu37,
Asp38, Lys353, and Arg393 of the ACE2 protein, which
is shown by chain A of the PDB: 6M0J in the diagram.
Two residues of the ACE2 enzyme, Glu37 and Gln96, can
potentially form hydrogen bonds with Nilotinib. The
RBD, chain E of PDB: 6M0J structure, has nonbonded inter-
actions with the Nilotinib through residues Arg 403, Ser494,
Tyr495, Gly496, and Tyr505. Moreover, as shown in Fig. 2
b, the PLIP web-tool (33) characterizes two potential cation-
p interactions for Nilotinib with His34 and Arg403 residues
and more potential hydrogen bonds with Asp30 and Lys 353
of the ACE2 and Lys417 and Gly496 of the RBD. The best
docking pose for the Nilotinib is shown in Fig. 2 c with the
score of �8.34 kcal/mol. Fig. 2 d shows the interaction di-
agram of SSAA09E2. Residues Asn33, His34, Glu35,
Glu37, Asp38 of the ACE2 enzyme have nonbonded inter-
actions with SSAA09E2. Moreover, Lys353 is able to
make a hydrogen bond with the ligand. SSAA09E2 can
also form a hydrogen bond with the RBD by interacting
with Gly496. Arg403, Tyr449, Tyr453, Ser494, Tyr495,
Gly496, and Tyr505 from the RBD have nonbonded interac-
tions with SSAA09E2. As illustrated by Fig. 2 e, the PLIP
web-tool predicts one more hydrogen bond between the
SSAA09E2 and Tyr453. Moreover, a potential p-stacking
interaction is predicted between His34 and SSAA09E2.
The best docking pose of SSAA09E2 is displayed in
Fig. 2 f with the score of �8.04 kcal/mol, which is close
to the case of Nilotinib with the score of �8.34 kcal/mol.
Our docking results show that both Nilotinib and
SSAA09E2 can potentially interfere with some of the
Biophysical Journal 120, 2793–2804, July 20, 2021 2795
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FIGURE 2 (a) Two-dimensional interactions diagram of Nilotinib and ACE2-RBD complex, chains A and E of PDB: 6M0J represent the ACE2 and RBD,

respectively. (b) Interactions between the Nilotinib, in the best docking pose, and ACE2-RBD complex characterized by the PLIP web-tool, the dashed black

lines show the potential cation-p interactions. (c) The best docking pose of Nilotinib inside the binding pocket. (d) Two-dimensional interactions diagram of

SSAA09E2 and the ACE2-RBD complex. (e) Interactions between the SSAA09E2, in the best docking pose, and ACE2-RBD complex characterized by the

PLIP web-tool, the dashed black line shows the potential p-stacking interaction, (f) The best docking pose of SSAA09E2 inside the binding pocket.

Nonbonded interactions are shown by red-spoked arcs (parts (a) and (d)) and red-dashed lines (parts (b) and (e)). Hydrogen bonds are represented by the

green-dashed lines. Nilotinib and SSAA09E2 are shown by the ball-stick representation with light blue and green carbon atoms, respectively. This color

scheme for drug molecules is used in figures throughout this article. The mesh surfaces of ligand molecules in parts (c) and (f) show the molecular surfaces

of ligands made by rolling a probe ball with the radius of 1.4 Å on the Van der Waals surface of atoms. To see this figure in color, go online.
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important ACE2-RBD interactions such as His34-Tyr453,
Glu35-Gln493, and Asp38-Tyr449 (5,6,50,51).

To analyze the stability and conformational changes of
protein structures, 200 ns of MD simulation were performed
2796 Biophysical Journal 120, 2793–2804, July 20, 2021
in triplicates for the control group without drug molecules
and the ACE2-RBD complex bound with Nilotinib and
SSAA09E2. The RMSD is a measure of protein drift from
a reference structure. Fig. 3 a shows the RMSD of the
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FIGURE 3 (a) RMSD of the ACE2 protein. (b)

RMSF of the ACE2 protein, the region between

residues Gln380 and Asn397 is separated by two

vertical dashed lines. (c) Means and standard devi-

ations of the RMSF for residues Gln380-Asn397.

(d) Snapshot of the Gln380-Asn397 region of the

ACE2 protein shown by the coral cartoon. In parts

(a) and (b), means and standard deviations are

shown by solid lines and filled regions, respec-

tively. To see this figure in color, go online.
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ACE2 enzyme in various cases. In all simulations, ACE2
reaches an equilibrium after ~50 ns of simulation. The
average RMSD is 3.0250.37, 2.8950.49, and 2.995
0.57 Å for the control, Nilotinib, and SSAA09E2 cases,
respectively. Therefore, adding drug molecules does not
change the ACE2 protein drift from the reference structure
significantly. The RMSF shows the time-averaged fluctua-
tions of individual residues. As shown in Fig. 3 b, both drugs
can induce changes in the RMSF of some ACE2 regions. For
instance, the RMSF of residues Gln380 to Asn397 is
increased for both Nilotinib and SSAA09E2 cases (Fig. 3
c). Arg393 is among the key residues that can form a
hydrogen bond with the residue Tyr505 of the RBD (52).
The higher estimated flexibility of those interface residues
can lead to higher entropy penalty that negatively influences
the binding energy, especially at higher temperatures (53).
Moreover, drug molecules can increase or decrease the
average fluctuations in some loop regions that are far from
the ACE2-RBD interface such as residues Leu142-Gly147
and Asn194-Tyr202, suggesting that both drugs may have
secondary effects on the enzyme activity of ACE2 proteins,
which needs to be further studied in experimental works.

The average RMSF over all residues is 1.575 0.79,
1.5250.71, and 1.5450.69 Å for the control, Nilotinib,
and SSAA09E2 cases, respectively. Thus, despite the
above-mentioned local changes in the fluctuations, the over-
all flexibility of the ACE2 enzyme is not significantly
changed as a result of adding drug molecules.

Fig. 4 a shows the RMSD of the RBD. For the control and
Nilotinib cases, the RMSD fluctuates around ~2.5 Å after
~150 ns of simulation. The final RMSD for the RBD with
the Nilotinib is close to the control case. The RBD has the
most unstable behavior in the SSAA09E2 case in which
the RMSD fluctuates around ~4 Å. The average RMSD
values over 200 ns of the simulation in triplicates are
2.5850.69, 2.2550.45, and 3.3151.1 Å for the control,
Nilotinib, and SSAA09E2 cases, respectively. However,
by analyzing the RMSF plot of the RBD, it can be seen
that the higher instabilities in the SSAA09E2 case are
mainly stemmed from the large fluctuations of the C-termi-
nal residues. Fig. 4 b shows the RMSF plot of the RBD pro-
tein. The most notable increase in the flexibility is at the
terminal residues His519-Gly526 in which the RMSF is
much larger in the SSAA09E2 case. It should be noted
that because of computational limitations, the whole spike
protein (PDB: 7AD1 (54)) was not simulated in this study
and we just focused on the residues Thr333-Gly526, which
represent the RBD. Thus, the spike glycoprotein residues
before and after residues Thr333-Gly526 from both termini
are not modeled in this work. However, large fluctuations
and flexibility of the C-terminal residues, His519-Gly526,
in the case of SSAA09E2 may be effective in triggering
conformational changes in the rest of the spike protein struc-
ture. To analyze the effects of fluctuations of C-terminal res-
idues on the overall RMSD of the SSAA09E2 case, we
recalculated the RMSD by neglecting His519-Gly526 resi-
dues (Fig. 4 a). The RMSD of the SSAA09E2 case drops
to 2.2350.34 Å in the absence of C-terminal residues,
which is close to the Nilotinib and control cases. Another
significant change in the flexibility of the RBD takes place
Biophysical Journal 120, 2793–2804, July 20, 2021 2797
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FIGURE 4 (a) RMSD of the RBD, SSAA09E2-

W/O-T represents the SSAA09E2 case in which

the RBD terminal residues of His519-Gly526 are

not considered in the RMSD calculation. (b)

RMSF of the RBD, residues Ala475-Glu484 and

Ser438-Leu441 are shown by regions between

two vertical dashed lines. (c) The snapshot of

ACE2-RBD complex with Ala475-Glu484,

Ser438-Leu441, and Gln24 that are showed by lic-

orice-stick representation. (d) RMSD of ligand

molecules. In the parts (a), (b), and (d), means

and standard deviations are shown by solid lines

and filled regions, respectively. To see this figure

in color, go online.
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in the loop region Ala475-Glu484 (Fig. 4 c). Both the Nilo-
tinib and SSAA09E2 drugs decrease the flexibility of resi-
dues in this region which can be effective on the RBD
interactions with the N-terminal domain of the ACE2
enzyme. For instance, the hydrogen bond formed between
Asn487 of the RBD and Gln24 of the ACE2 is important
in the SARS-CoV-2-binding process (5,55). Moreover, the
presence of the SSAA09E2 molecule can affect the fluctua-
tions of three other regions of the RBD protein. For instance,
the SSAA09E2 increases the flexibility of residues Ser438-
Leu441 whereas the Nilotinib molecule does not affect the
fluctuations of this region. Less significant increases in the
RMSF can be observed for the SSAA09E2 case at residues
Ser359-Tyr369 and Leu390-Phe400, which are close to the
C-terminal and may be affected by its large fluctuations. The
average of RMSF over all residues is 1.7151.84 Å for the
SSAA09E2 case, which is significantly larger than 1.395
1.04 and 1.2650.79 Å for the control and Nilotinib cases,
respectively, mainly because of huge fluctuations at the ter-
minal residues. Neglecting the C-terminal residues leads to
significant drops in both mean and standard deviation of the
averaged RMSF to 1.4150.87 Å.

Fig. 4 d illustrates the RMSD of the ligand molecules at
the binding pocket. Both SSAA09E2 and Nilotinib are sta-
ble at the binding pocket during the 200 ns simulation with
the average RMSD of 1.6650.32 and 2.5150.61 Å, respec-
tively. It should be noted that the Nilotinib molecule is
larger in comparison with the SSAA09E2. Although at the
best docking pose almost half of the Nilotinib molecule is
in the druggable pocket, another half of the molecule is freer
to fluctuate out of the binding pocket (see Video S1). This
2798 Biophysical Journal 120, 2793–2804, July 20, 2021
leads to higher total deviations from the reference structure.
Moreover, higher fluctuations of the Nilotinib molecule may
help this drug to interfere with the hydrogen bonds between
ACE2 and RBD. Despite higher RMSD, visual analysis of
trajectory shows that the Nilotinib molecule is fixed at the
pocket during the 200 ns of simulation and does not escape
from its initial location. Fig. 5 shows the radius of gyration
ðRgÞ of the ACE2 and RBD proteins in all simulations. Rg is
a measure for the compactness of proteins and shows the
stability of protein folding. It can be seen that for the
ACE2 protein, in all cases the proteins are stably folded
and the differences in the compactness are negligible. For
the RBD, the Rg is slightly higher for the SSAA09E2
case. The average Rg is 18.4250.23, 18.4350.22,
18.5850.24 Å for the control, Nilotinib, and SSAA09E2
cases, respectively. However, this small increase of less
than ~1% may be stemmed from the higher fluctuations of
terminal residues and cannot be considered as a meaningful
change in the compactness of the RBD structure. Thus,
drugs do not influence the consistent shape and size of the
ACE2-RBD complex during the 200 ns of simulation.

Hydrogen bonds have a significant role in the strength of
protein-protein interactions (56). A recent study shows that
the average number of hydrogen bonds formed between the
RBD and cell receptors can be almost two times more for
the novel SARS-CoV-2 in comparison with the SARS-
CoV (57). This can be a reason for the greater binding en-
ergy of ACE2-RBD and more infectivity of the SARS-
CoV-2 virus. We studied the hydrogen bonds between the
ACE2 and RBD proteins in various cases. To make plots
more clear, in addition to the average number of hydrogen
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FIGURE 5 Rg of the (a) ACE2, and (b) RBD

proteins. Means and standard deviations are shown

by solid lines and filled regions, respectively. To

see this figure in color, go online.
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bonds at each frame, running averages over every 50 frames
are plotted. As illustrated in Fig. 6 a, the SSAA09E2 and Ni-
lotinib molecules have different effects on the number of
hydrogen bonds between the ACE2 and RBD proteins. In
the case of SSAA09E2, more hydrogen bonds form between
the two proteins. On the other hand, Nilotinib weakens the
structural integrity by reducing the number of hydrogen
bonds. The average numbers of hydrogen bonds during
the 200 ns of simulation in triplicates are 7.135 1.96,
6.2052.05, and 9.5752.50 for the control, Nilotinib, and
SSAA09E2 cases, respectively. Thus, on average, the Nilo-
tionib case has ~1 fewer hydrogen bonds in comparison with
the control system. On the other hand, the SSAA09E2 drug
can result in a tighter binding of the ACE2 and RBD pro-
teins, because on average, ~2 more hydrogen bonds are
formed in this case. Moreover, we analyzed the number of
hydrogen bonds between the ligand molecules and the
ACE2 or RBD proteins. Fig. 6, b, c, e, and f illustrates the
number of hydrogen bonds formed between the SSAA09E2
and Nilotinib molecules with the ACE2 and RBD proteins.
FIGURE 6 Number of hydrogen bonds formed

between (a) the ACE2 and RBD proteins, (b)

drug molecules and ACE2, and (c) drug molecules

and RBD. Rolling average of average hydrogen

bonds are also plotted for (d) ACE2-RBD, (e)

ligand-ACE2, and (f) ligand-RBD. In parts (a)–

(c), means and standard deviations are shown by

solid lines and filled regions, respectively. To see

this figure in color, go online.
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FIGURE 7 (a) Box plots of His34-Tyr453,

Glu35-Gln493, Asp38-Tyr449 distances, and snap-

shots of residues and their distances at the last

frame of simulation (200 ns) for the (b) control,

(c) Nilotinib, and (d) SSAA09E2 cases. Distances

are shown by dashed black lines. To see this figure

in color, go online.
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Both ligands can form hydrogen bonds with the ACE2 pro-
tein. On average, Nilotinib has 0.9550.84 hydrogen bonds
during the 200 ns of simulation with the ACE2 protein,
which is slightly greater than 0.8850.54 bonds made be-
tween SSAA09E2 and ACE2. On the other hand, the
average number of hydrogen bonds of SSAA09E2 with
the RBD is 0.8250.93, which is significantly larger than
0.0550.23 for the Nilotinib case. Thus, we can expect the
formation of one or two hydrogen bonds between the
SSAA09E2 and RBD during the simulation time, whereas
the formation of such a hydrogen bond between the Niloti-
nib and RBD is much less expected.

Moreover, we analyzed the distance between three pairs
of key residues at the interface of the ACE2-RBD complex.
Fig. 7 a shows the box plots of His34/NE2-Tyr453/OH,
Glu35/OE2-Gln493/NE2, and Asp38/OD2-Tyr449/OH dis-
tances calculated by using all the frames of the concatenated
simulation trajectories (made by pooling together three tra-
jectory replicates for each case). Each box plot shows the
minimum, first quartile, median, average, third quartile,
and maximum of distance distributions. Fig. 7, b–d show
a b
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the snapshots of the residues and their distances at the last
frame of simulation (200 ns in the first trajectory replicate)
for various cases. The box plots of Fig. 7 a illustrate that the
average and median distances of Asp38-Tyr449 are signifi-
cantly reduced in the case of SSAA09E2. The Asp38-
Tyr449 distance ranges between ~2.4 and 4.6 Å in the
SSAA09E2 case, in which 50% of data lie in the range of
~2.7–3.4 Å. On the other hand, for the control case, the dis-
tance ranges between ~2.4 and 10.8 Å, and half of the data
lie between 4.0 and 6.8 Å. Moreover, the median and
average of data are 2.8 and 3.3 Å for the SSAA09E2 case,
respectively. In the control case, the median of data is
5.8 Å and the average is 5.5 Å. Therefore, the average dis-
tance in the control case is ~1.6 times greater than the
SSAA09E2 case. Moreover, the Asp38-Tyr449 distance
fluctuates in a significantly wider range in the control
case. For instance, ~50% of data in the control case lies be-
tween ~5.8 and 10.8 Å, which is larger than the maximal
distance of 4.6 Å in the SSAA09E2 case. Thus, SSAA09E2
can significantly reduce the average and lower the fluctua-
tions of the distance between Asp38 and Tyr449. The
FIGURE 8 (a) Eigenvectors and corresponding

eigenvalues for various systems. (b) Percentage

of variance of eigenvectors. To see this figure in

color, go online.
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FIGURE 9 Dynamic conformations projected onto the two first principal

vectors for (a) control, (b) SSAA09E2, (c) and Nilotinib cases. To see this

figure in color, go online.
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same but less significant effect can be seen for the distance
between His34 and Tyr453 in the SSAA09E2 case. Whereas
in the control case the distance ranges between 2.6 and
5.8 Å, the upper bound is reduced to 4.4 Å for the
SSAA09E2 case. Moreover, the average and median dis-
tances for His34-Tyr453 and Asp38-Tyr449 are increased
in the Nilotinib case. However, the ligand effects are less
significant on the distance between Glu35 and Gln493.
The distances between key residues are consistent with the
hydrogen bond analysis results that show a tighter ACE2-
RBD binding in the case of SSAA09E2.

Analysis of hydrogen bonds and key residues distances is
essential in determining two different mechanisms of action
for the Nilotinib and SSAA09E2 molecules. Although the
Nilotinib molecule is weakening ACE2-RBD interactions
by reducing the average number of hydrogen bonds,
SSAA09E2 increases the strength of protein-protein binding
at the ACE2-RBD interface. On the other hand, although
both drugs can form at least one hydrogen bond with the
ACE2 protein during the majority of simulation trajectory,
the formation of hydrogen bonds is less probable between
the RBD and Nilotinib. Thus, the Nilotinib molecule may
have more freedom to fluctuate at the binding pocket,
whereas the SSAA09E2 is bound with a greater number of
hydrogen bonds especially with the RBD. Therefore, Nilo-
tinib may work by a disruption mechanism in which the
binding between the ACE2 and RBD proteins is targeted,
whereas SSAA09E2 has another mechanism of action that
involves more powerful binding at the interface. The tighter
binding at the interface may trigger higher fluctuations at
other regions such as C-terminal residues and induce struc-
tural changes in the rest of the spike protein.

We employed the PCA or essential dynamics analysis to
identify dominant motion modes of the ACE2 and RBD in
various cases. For each case, the concatenated trajectory
made by pooling together all three trajectory replicates was
used for the PCA analysis. The covariance matrix of fluctu-
ations was calculated for backbone atoms and diagonalized
to find the eigenvalues and eigenvectors. The conformational
area that is sampled by each system was then analyzed by
projecting the trajectory into the essential phase space along
the calculated eigenvectors. Usually, a few numbers of low-
frequency eigenvectors are responsible for the majority of
overall fluctuations. Fig. 8 shows the eigenvalues and their
percentage of variance that is defined as the contribution of
each individual eigenvalue to the sum of eigenvalues. The
traces of covariance matrices are 109.37, 124.37, 184.39
nm=N for the control, Nilotinib, and SSAA09E2 cases sug-
gesting that the tertiary structural conformations are more
dynamic in the cases with the ligand molecules. As shown
in Fig. 8 b, our results indicate that the first three eigenvectors
account for 58.5, 63.9, 68.3% of overall fluctuations in the
control, Nilotinib, and SSAA09E2 cases, respectively.
Thus, the first three eigenvectors contribute more to the over-
all essential dynamics of proteins in the cases with ligand
Biophysical Journal 120, 2793–2804, July 20, 2021 2801
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FIGURE 10 (a) Front-view snapshots of porcu-

pine plots of essential dynamics for the three

lowest-frequency principal components, binding

pockets are annotated with blue (Nilotinib) and

green (SSAA09E2) circles for the first eigenvec-

tors. (b) Top-view snapshots of the porcupine plots

for the first eigenvector of the contol, Nilotinib,

and SSAA09E2 cases, (c) large-scale motions of

residues Glu471-Pro491 of the RBD, shown by

yellow cartoons (backbone atoms only), for con-

trol, Nilotinib, and SSAA09E2 cases. To see this

figure in color, go online.
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molecules. Fig. 8 b also illustrates that the first eigenvector
has a greater percentage of variance for the cases with the Ni-
lotinib and SSAA09E2 drug molecules, which shows the
importance of the first eigenvector in the dynamics of sys-
tems with ligand molecules.

Fig. 9 shows the conformational space sampled by the
ACE2-RBD complex in various cases. Each point shows a
frame of 200 ns trajectory projected onto a two-dimensional
space along the first two eigenvectors. Principal components
are calculated for the concatenated trajectory made by pool-
ing together all three trajectory replicates. Fig. 9 shows the
effect of ligand molecules on intensifying dynamics of
the ACE2-RBD complex. The largest covered area is for
the SSAA09E2 case, which shows that a larger area of the
conformational space is sampled especially along the first
principal component. Therefore, in this case proteins have
more dynamic tertiary structural conformations. Moreover,
the area covered by the ACE2-RBD complex bound with
Nilotinib illustrates the higher flexibility of this case in com-
parison with the control case. For a better analysis of the
dominant dynamics, porcupine plots (58) are employed to
show characteristics of dynamic fluctuations for the first
three eigenvectors. In Fig. 10, vectors indicate the motion
of each backbone atom along the eigenvector direction.
The length of each arrow represents the magnitude of the
corresponding motion. As expected, the largest motions
happen at the loop regions. For the first eigenvector, the
overall rotation direction (indicated by black arrows in
Fig. 10 a) of the ACE2-RBD complex bound with the
2802 Biophysical Journal 120, 2793–2804, July 20, 2021
SSAA09E2 molecule is similar to the control case. Howev-
er, unlike the control case, residues Glu471-Pro491 of the
RBD (Fig. 10 c, some of the residues in this loop region
are shown in Fig. 4 c) does not move toward the ACE2 pro-
tein in the SSAA09E2 case. As mentioned before, the
Glu471-Pro491 loop region and its large-scale motions
can affect the interactions of the RBD with the N-terminal
residues of the ACE2 enzyme and formation of key
hydrogen bonds such as Asn487 (RBD)-Gln24 (ACE2).
The difference between the dominant motions is more sig-
nificant in the Nilotinib case. In contrast to the control
case, the ACE2 and RBD proteins bound with Nilotinib
move away from each other by a counterclockwise rotation
in the RBD and a clockwise rotation in the ACE2. Results of
essential dynamics analysis clarify the difference in the
mechanisms of action of SSAA09E2 and Nilotinib.
Although SSAA09E2 changes the motion dynamics locally,
especially at the terminal residues and loops close to the
ACE2 interface, Nilotinib induces completely different
large-scale motions in both proteins.
CONCLUSIONS

Molecular docking and MD methods were employed to
study the intervention and destabilization mechanisms of
two small therapeutics. Results suggest that the SSAA09E2
and Nilotinib molecules may have different mechanisms of
action to intervene with the ACE2-RBD binding process or
destabilize the protein complex after initial binding. Our
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ligand-protein interactions study at the best docking posi-
tion shows that both drugs are able to form hydrogen bonds
and other forms of attractive interactions with some key
residues at the interface of ACE2 and RBD. Moreover,
MD simulations were performed to study the structural
changes induced by drug molecules. The stable binding
of SSAA09E2 at the pocket between ACE2 and RBD leads
to higher flexibility in the residues Ser438-Ser443 and
C-terminal residues of the RBD and less fluctuations at
the residues Ser477-Gly484 of the RBD. In the case of
SSAA09E2, more hydrogen bonds are formed between
the ACE2 and RBD structures and the ligand can form
hydrogen bonds with both proteins during the simulation
trajectory. In addition to hydrogen bonds, the distance be-
tween the Asp38 (ACE2) and Tyr449 (RBD) is signifi-
cantly lower for the SSAA09E2 case. Thus, the
SSAA09E2 molecule may result in a tighter binding of
ACE2 and RBD proteins. Moreover, the tighter binding
at the interface and significant increase in the fluctuations
of terminal residues may trigger large-scale structural
changes in the whole spike glycoprotein, which are beyond
the scope of this study. The PCA analysis shows that in the
first dominant motion of the SSAA09E2 case, both ACE2
and RBD proteins have similar large-scale rotation direc-
tions to the control case. However, some large-scale mo-
tions such as dynamics of residues Glu471-Pro491 are
different in the case of SSAA09E2 that may affect the
ACE2-RBD binding process. On the other hand, the Nilo-
tinib is less stable at the binding pocket and half of its
structure, which is posed parallel to the ACE2 interface
with the RBD can fluctuate out of the druggable pocket
of the ACE2-RBD complex. However, Nilotinib is able
to weaken the interactions between the ACE2 and RBD
proteins by reducing the average number of hydrogen
bonds. Our essential dynamics analysis illustrates that
both drugs are destabilizing the ACE2-RBD complex by
triggering large-scale motions that lead to increase in the
conformational area that is sampled by the ACE2-RBD
complex. In the case of Nilotinib, filtering the trajectory
by the first three eigenvectors shows that the most domi-
nant motions of ACE2 and RBD proteins are completely
different from the control system. In contrast to the control
system, Nilotinib induces a divergent large-scale motion
that rotates ACE2 and RBD in opposite directions. Our
structural analysis broadens the understanding of small
molecules destabilization and intervention mechanisms
that would be an effective strategy to prevent infection at
its early stages. However, considering the intrinsic limita-
tions of all-atomistic MD simulations, such as small size
scales, short timescales, and sampling issues, further exper-
imental and numerical studies should be conducted to fully
understand the mechanisms of action of SSAA09E2, Nilo-
tinib, and other similar chemical compounds. More specif-
ically, one of the future works would be analyzing drug
effects on the whole spike protein at longer timescales
and potential changes in the enzymatic activity of ACE2
proteins as a result of these two drugs.
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