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ABSTRACT Epithelial-mesenchymal transition (EMT), a basic developmental process that might promote cancer metastasis,
has been studied from various perspectives. Recently, the early warning theory has been used to anticipate critical transitions in
EMT from mathematical modeling. However, the underlying mechanisms of EMT involving complex molecular networks remain
to be clarified. Especially, how to quantify the global stability and stochastic transition dynamics of EMT and what the underlying
mechanism for early warning theory in EMT is remain to be fully clarified. To address these issues, we constructed a compre-
hensive gene regulatory network model for EMT and quantified the corresponding potential landscape. The landscape for EMT
displays multiple stable attractors, which correspond to E, M, and some other intermediate states. Based on the path-integral
approach, we identified the most probable transition paths of EMT, which are supported by experimental data. Correspondingly,
the results of transition actions demonstrated that intermediate states can accelerate EMT, consistent with recent studies. By
integrating the landscape and path with early warning concept, we identified the potential barrier height from the landscape
as a global and more accurate measure for early warning signals to predict critical transitions in EMT. The landscape results
also provide an intuitive and quantitative explanation for the early warning theory. Overall, the landscape and path results
advance our mechanistic understanding of dynamical transitions and roles of intermediate states in EMT, and the potential bar-
rier height provides a new, to our knowledge, measure for critical transitions and quantitative explanations for the early warning
theory.
SIGNIFICANCE Epithelial-mesenchymal transitions (EMTs) play critical roles in cancer metastasis and development.
Recent studies have proposed that early warning signals can be used to predict critical transitions in EMT. However, the
mechanism of early warning related to cell fate decisions and stochastic transition dynamics in EMT has yet to be
elucidated. Here, we constructed the potential landscape of EMT based on a comprehensive gene regulatory network
model and identified multiple attractor cell states, including epithelial, mesenchymal, and intermediate states. The
transition path results highlight that intermediate states can accelerate EMT. Importantly, the potential barrier height
provides a new, to our knowledge, measure for critical transitions and quantitative explanations for the mechanism of the
early warning theory.
INTRODUCTION

Epithelial-mesenchymal transition (EMT) has been sug-
gested to play an important role in the normal embryonic
development of the metazoan body, differentiation into tis-
sues and organs, and wound healing (1,2). In disease,
EMT contributes to organ fibrosis (3) and the formation of
metastasis in cancer (4). However, it remains elusive how
to elucidate the underlying mechanism and transition dy-
namics of EMT quantitatively.
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Mathematical models have been widely used to study the
dynamics of EMT (5–19). Tian et al. established models
showing that the negative feedback loop between SNAIL1
and miR-34 and the one between ZEB1 and miR-200 play
important roles in EMT (17). Hong et al. extended the previ-
ous model and proposed the critical involvement of Ovol2
and its associatedmolecular regulations (12). Huang et al. es-
tablished a more inclusive ordinary differential equation
(ODE) model with 18 genes to simulate EMT (11). Steinway
et al. identified network perturbations that suppress TGF-b-
driven EMT, with the goal of suppressing invasive properties
of cancer cells by Boolean modeling with 65 genes (20).
Although different models have been proposed to study
EMT based on deterministic or stochastic models, the global
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stability and stochastic transition dynamics of EMT, e.g., the
roles of intermediate states, have not been fully clarified.

The classic Waddington landscape has been proposed as a
metaphor for the development and differentiation of cells
(21). Recently, the Waddington epigenetic landscapes for
biological networks have been quantified from various ap-
proaches (22–27) and used to study the stochastic dynamics
of development (22,28,29) and cancerization (13,30). An
advantage of the landscape-transition path approach is that
it can address the problem of global stability and therefore
provides a global and quantitative measure for how a pertur-
bation (gene or regulation changes) will influence the transi-
tion (cell fate decisions). In this work, we aim to employ
landscape theory to study the stochastic dynamics of EMT.
Firstly, we constructed a gene regulatory network for EMT
by collecting evidence of gene interactions based on previous
works (9–12,16), which includes 16 nodes (genes) and 53
links (regulations). Then, we constructed the ODE models
based on the network structure. By screening the parameter
space, we identified the parameter regions for multistable
states. The multistability and intermediate E/M states have
been suggested both from theoretical and experimental
explorations (9,10,16,17,31). Therefore, we focus on the
parameter regions that can generate more than two stable
states, which means that in addition to the epithelial state
(E state) and the mesenchymal state (M state), there will
also be intermediate states between them in various cases.
As a typical example, we map out a landscape with six stable
attractors or cell states, which correspond to the E state, M
state, and four intermediate states.

Based on the transition action theory, we calculated the
kinetic transition paths of EMT, which include the dynam-
ical information of the genes switching on or off. The tran-
sition paths predicted by our model are supported by
experimental data. We performed single-factor sensitivity
analysis to uncover how each link influences the cell state
transition and identified effective strategies for regulating
target genes to inhibit EMT. Previous works (18,19) empha-
sized that intermediate states play critical roles on EMT pro-
cess. Goetz et al. inferred that intermediate states may
accelerate EMT in some cases from a simplified state tran-
sition model (32). However, the evidence for this conclusion
from a molecular network perspective is still lacking. To test
whether this conclusion holds from the EMT gene network
perspective, we calculated the distribution of transition ac-
tions from E to M state for a wide range of parameter re-
gions and found that the appearance of intermediate state
will make the transition action decreasing (corresponding
to faster transition) in certain scenarios. These results pro-
vide a theoretical basis for intermediate state accelerating
EMT, from the perspective of molecular network dynamics.

Recently, predicting tipping points has been a key topic
because it may be important to prevent ‘‘critical transitions,’’
e.g., in cases of ecosystems, the climate, and the financial
market (33–35), as well as in many cases related to disease
(36–40). Different indicators based on time-series data have
been suggested as early warning signals (EWSs) to predict
tipping points, including variance, autocorrelation function,
coefficient of variation, etc. (41–48). Recently, Sarkar et al.
identified the variance as the EWS for EMT based on a
simplified EMT regulatory network model (49). Specif-
ically, they proposed the ‘‘critical slowing down’’ of the sys-
tem as it approaches the tipping point as the key property for
EWSs, which are linked to the variance in the EMT case.
Here, we intend to explore how this theory works in a
more comprehensive EMT network model. We performed
corresponding analysis related with EWSs from our EMT
regulatory network. We identified the potential barrier
height from the landscape as a new, to our knowledge,
EWS and demonstrated that it performs better than other
traditional indicators including variance, autocorrelation,
etc., in terms of predicting the critical phase transition. In
fact, the ‘‘critical slowing down’’ of the system in transition
period can be well explained by the decrease of barrier
height from landscape topography. This provides a possible
physical explanation for the well-known EWS theory. Over-
all, our work provides a holistic view for the mechanistic un-
derstanding of EMT transition dynamics and suggests new
roles of intermediate states. The landscape approach pro-
vides a new, to our knowledge, tool to predict critical
cellular transitions in EMT and metastasis progression.
MATERIALS AND METHODS

Self-consistent mean field approximation

The time evolution of a dynamical system is determined by a probabilistic

diffusion equation (Fokker-Planck equation). Given the system state P(x1,

x2, ., xN, t), with x1, x2, ., xN representing the levels of components

(e.g., the gene expression level), we will have a N-dimensional partial dif-

ferential equation. In our network, there are 16 genes, so N ¼ 16 here. It is

difficult to solve a high-dimensional diffusion equation because of the huge

state space of the system. Following a self-consistent mean field approach

(24,28,50,51), we can split the probability into the products of probabilities

of individual ones, P(x1, x2,., xN, t)�
Qn

i Pi(xi, t), and solve the probability

self-consistently. In this way, we effectively reduce the dimensionality of

the system from MN to MN (M is the dimension for each gene expression

level), and the computation of above problem becomes feasible.

However, for the multidimensional system, it is still challenging to solve

the diffusion equations directly. We start from the moment equations and

assume specific probability distribution based on physical argument, i.e.,

we assume some specific connections between moments. In this work,

we assume Gaussian distribution as an approximation, which means we

need to calculate two moments, the mean and the variance. When the ele-

ments in diffusion coefficient matrix D is small, the moment equations can

be approximated to (52,53)

_xðtÞ ¼ F½xðtÞ� (1)

and

_sðtÞ ¼ sðtÞATðtÞ þ AðtÞsðtÞ þ 2D½xðtÞ�: (2)

Here, x, s(t), and A(t) are vectors and tensors and AT(t) is the transpose

ofA(t). The elements of matrix A are specified as A ¼ vFi ½XðtÞ�.D[x(t)] is the
ij vxjðtÞ
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diffusion matrix. For the external noise only cases,D[x(t)]) is not dependent

on x(t), i.e., D ¼ diag(d, d, ., d). For the intrinsic noise cases, Dx(t)]) is

dependent on x(t) (see Supporting materials and methods). Based on these

equations, we can solve x(t) and s(t). Here, we only consider the diagonal

elements of s(t) from the mean field approximation. Therefore, the evolu-

tion of probability distribution for each variable can be acquired from the

Gaussian approximation:

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2psðtÞp e

�½x�xðtÞ�2
2sðtÞ : (3)

Here, x(t) and s(t) are the solutions of Eqs. 1 and 2. From the mean field

approximation, we can extend this formulation to the multidimensional
case by assuming that the total probability is the product of each individual

probability for each variable: P(x1, x2, ., xN, t) �
QN
i¼1

P(xi, t), namely

Pjðx1; x2;.; xN; tÞ ¼ 1

ð2pÞðN=2ÞQN
i¼ 1

ffiffiffiffiffiffiffiffiffi
siðtÞ

p e
�
PN
i¼ 1

½xi�xiðtÞ�2
2siðtÞ

:

(4)

The probability distribution obtained above corresponds to one steady

state or basin of attraction. If the system has multiple stable states, there
will be several probability distributions localized at each basin with

different variances. Therefore, the total probability is the weighted sum

of all these probability distributions:

Pðx1; x2;.; xN; tÞ ¼
XNss

j¼ 1

Pjðx1; x2;.; xN; tÞ$wj; (5)

where Nss denotes the total number of the stable states and j denotes the cor-

responding stable state.

The weighting factors (wj) characterize the relative sizes of different ba-

sin of attraction. We determine the weights wj by giving a large number of

random initial conditions to the ODEs to be solved and collecting the sta-

tistics from all of these different solutions. Finally, we can construct the po-

tential landscape by U(x) ¼ �lnPss(x) (22,24), with Pss representing the

steady-state probability distribution (in practice, we let t be very large to

obtain the steady state). To visualize the landscape, we chose two of the

transcriptional factors and microRNAs to display a two-dimensional

landscape.
State transition path from path-integral approach

After we obtain the landscape, we calculate the transition path from one sta-

ble state to another one. Based on the path-integral approach (22,54), we

have

Pt

�
xfinal; t; xinitial; 0

� ¼ Z
xexp

�
�
Z

dtð 1
2
P $FðxÞ

þ 1

4
ðdx = dt�FðxÞÞ $ 1

DðxÞ $

ðdx = dt�FðxÞÞÞ ¼
Z

Dxexp½ � SðxðtÞÞ�

¼
Z

Dxexp

�
�
Z

LðxðtÞÞdt
�
; (6)
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where Pt represents the transition probability, S(x(t)) is the action, and

L(x(t)) is the Lagrangian.

To calculate the most probable transition path from one stable state to

another one, we need to minimize the action S to maximize the transition

probability. Here, the Lagrangian is written as (22,54)

LðxÞ ¼ 1

4D
_x2 þ VðxÞ � 1

2D
FðxÞ$ _x; (7)

where V(x) ¼ 1
4DF

2 þ 1
2
P $ F(x).

So, we can write the generalized momentum and Hamiltonian

PmðxÞ ¼ vL

v _x
¼ 1

2D
ð _x�FðxÞÞ (8)

and

HðxÞ ¼ � LðxÞ þ PmðxÞ$ _x ¼ Eeff : (9)

Here, we chose Eeff ¼ �Vmin, with Vmin being the minimum of effective

potential. In this case, the path connects two stable states, so V will reach its

minimum when x is the most stable state among multiple stable states.

Then, we substitute Eq. 9 into the action and obtain S(x)¼ R ðPmðxÞ $ _x �
HðxÞÞdt. To calculate the action of the path, we need to transform the for-

mulations into a different representation in x space and discretize the inte-

gral. The target function can be written as

S ¼
XNtp�1

n¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Eeff þ VðnÞ��Dq 	

� 1

2D
FlðnÞÞDln;nþ1 þ lPl;

(10)

where Ntp is the total number of points on the transition path and Pl is a pen-

alty function keeping all the length elements close to their average.

Pl ¼
XNtp�1

n¼ 1

ðDln;nþ1 � CDlDÞ2

Dln;nþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼ 1

ðxiðnþ 1Þ � xiðnÞÞ2
vuut

FlðnÞ ¼
XN
i¼ 1

FiðxðnÞÞðxiðnþ 1Þ � xiðnÞÞ
�
Dln;nþ1

VðnÞ ¼
XN
i¼ 1

 
1

4D
F2ðxiÞ þ 1

2

XN
j¼ 1

vFjðxiÞ
vxj

!
;

(11)

where N represents the number of genes (here N ¼ 16) and i is the index

for different dimensions. In this way, we can calculate the transition action

of any path. Finally, we can obtain the most probable transition path by

minimizing the transition action S. Here, we used simulated annealing algo-

rithm for optimization.
Data availability statement

A MATLAB (The MathWorks, Natick, MA) implementation of the land-

scape and kinetic path of EMT has been deposited at GitHub (https://

github.com/chunhelilab/EMT).
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RESULTS

Gene regulatory network model of EMT

EMT is a complex and heterogenous biological process
controlled by underlying gene regulatory networks. The reg-
ulatory networks of EMT have been studied from previous
work based on ODE models (9–11,16,17). However, these
previous studies usually focus on small circuits for EMT.
To reveal deeper molecular mechanisms, we aim to
construct a relatively complete gene regulatory network
for EMT. Based on the EMT network of Huang et al. (11),
we added an important transcriptional factor Ovol2 (12),
an important microRNA miR-145 (13,14), and merged three
microRNAs with similar functions (miR-200a, miR-200b,
and miR-200c) and obtained a gene regulatory network
for EMT including 16 components. We checked the experi-
mental evidence of all gene regulations in this network by
literature mining (Table S1). In this network, CDH1 and
VIM are treated as the E marker and Mmarker, respectively.

Our EMT model includes 16 representative gene or mi-
croRNA components. Here, xi (i ¼ 1, 2, ., 16) stands for
the expression levels of TGF-b, ZEB1, ZEB2, SNAI1,
SNAI2, TWIST1, FOXC2, GSC, TCF3, VIM, miR-145,
miR-141, miR-200, miR-34a, Ovol2, and CDH1, respec-
tively. The circuit consists of 12 transcriptional factors
and four microRNAs. The network diagram is shown in
Fig. 1.

Based on the gene regulatory network structure, we wrote
down the ODEs to describe the time evolution of relative
expression levels for each of the 16 genes or microRNAs.
Here we used Hill functions to describe the activation and
inhibition regulations among different genes (22,25,28).
The ODEs take the form
GSC

SNAI1

FOXC2

VIM

ZEB1

SNAI2

TGF

TCF3
ZEB2

TWIST1

m

Fi ¼ _xi ¼ dxi
dt

¼ S
j˛Ai

ajix
n
j

snji þ xnj
þ S

j˛Bi

bjis
n
ji

snji þ xnj
� kixi: (12)

Here, Fi represents the driving force for the time evolu-
tion of the activity of the ith gene (i ¼ 1, 2, ., 16). ki is
the degradation rate. Ai denotes the aggregate of genes
that activate the ith gene in the network, and Bi denotes
the aggregate of genes that inhibit the ith gene in the
network. aji is the activation constant from the jth to the
ith gene, and bji is for the inhibition. sji is the threshold level
for the regulation from xj to xi, and n is the Hill coefficient of
the regulation (see Supporting materials and methods for
detailed descriptions of parameter setting).
Landscape with multiple intermediate states for
EMT and mesenchymal-epithelial transition

Recent studies have identified intermediate cell states both
at the single-cell level and population levels across different
cancer types (31,55,56). To study the multistable properties
and roles of intermediate states, a key property for the model
is being able to generate multistable states. After screening
the parameters (see Supporting materials and methods for
details of parameter-searching approaches and Tables S2–
S7 for results), we found that intermediate states commonly
exist in a wide range of parameter space. There could be a
monostable state or two to six states coexisting depending
on parameter choice, and five or six states coexisting are
very common (Tables S2–S7). Here, we focus on the multi-
stable state cases. For example, we identified a parameter re-
gion leading to a six-stable-state landscape, including four
miR-145

miR-141

CDH1

miR-200

Ovol2

iR-34a

FIGURE 1 The diagram of EMT gene regulato-

ry network. The network consists of 12 transcrip-

tional factors (rectangle nodes), four microRNAs

(ellipse nodes), and 53 regulatory links. Blue ar-

rows represent activation, and red bars represent

repression. The six genes represented by the pink

nodes (miR-145, miR-141, miR-200, miR-34a,

Ovol2, and CDH1) are E markers, and the other

genes represented by the blue nodes are M

markers. To see the figure in color, go online
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FIGURE 2 The landscape and transition paths between different attractor

states in the CDH1/ZEB plane shown in three-dimensional (A) and two-

dimensional (B) figures. The landscape surface is characterized by different

colors, with the blue region representing lower potential or higher probabil-

ity and the yellow region representing higher potential or lower probability.

The red curve represents the transition path of EMT, and the green one rep-

resents the transition path of MET. The six stable states (E, IE1, IE2, IE3,

IM, and M) correspond to the cell states in Table S8. E, epithelial state; IE1/

2/3, intermediate epithelial state 1/2/3; IM, intermediate mesenchymal

state; M, mesenchymal state. Here, a ¼ 2, ã ¼ 7.9, b ¼ 4, sa ¼ 5.8, and

sb ¼ 0.21. To see the figure in color, go online
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intermediate states (Table S8). The parameter set of this case
is listed in Table S9.

The probabilistic evolution of a stochastic dynamical sys-
tem is determined by the diffusion equation. To study the
stochastic dynamics of a gene regulatory network, one
way is to solve the probability evolution from the diffusion
equations. However, the diffusion equation is hard to solve
directly for a high-dimensional system, e.g., the EMT
network here. Here, we use a self-consistent approximation
approach (see Materials and methods) to quantify the
steady-state probability distribution (Pss) (24,30,50,51).
Then, we can obtain the landscape by U ¼ �ln(Pss)
(22,24,26,28). The landscape here is a high-dimensional
curved surface, which is hard for visualization. So, we chose
the key variables VIM, ZEB1, and CDH1 as the coordinates
and projected the landscape to two-dimensional space, as
VIM and ZEB1 are major M marker genes and CDH1 is a
major E marker gene (Figs. 2 and S1).

To illustrate the typical landscape with multiple interme-
diate states, here we used a case with six stable states co-
existing as an example. On the landscape, the basins or
attractors (blue region) represent stable states or pheno-
types (Fig. 2; Table S8). It follows that the closer to the sta-
ble states, the lower the potential energy and the more
likely the cell is to stay. The six basins of attraction on
the landscape represent six different cell states character-
ized by different gene expression patterns in the 16-dimen-
sional state space (corresponding to the six stable states in
Table S8). These states correspond to the E state (high
CDH1 and low VIM/ZEB1 expression), M state (high
VIM/ZEB1 and low CDH1 expression), three intermediate
states close to the E state (IE1, IE2, and IE3, intermediate
expression close to the E state), and one intermediate state
close to M state (IM, intermediate expression close to the
M state), respectively. Fig. S2 shows the landscape pro-
jected onto other dimensions. The number of stable states
and the property of intermediate states do not change,
whereas in certain coordinates, some of the stable states
might overlap. We also showed the tetrastable (Fig. S1, A
and B) and tristable landscapes (Fig. S1, C and D) as
parameter values vary, which shows that multistable states
exist in a wide range of parameter space. In the following,
we will take the six-stable-state landscape as an example to
study the transition properties of EMT and the roles of in-
termediate states.
Kinetic transition paths for EMT are supported by
experimental data

Transition path theories have been used to quantify the most
probable path for the transition between cell attractors based
on large deviation theory (57,58). However, one limitation
for the transition path from large deviation theory is that it
assumes zero noise limitation (59). To overcome this limita-
tion, here we resort to a path-integral approach to calculate
4488 Biophysical Journal 120, 4484–4500, October 19, 2021
the transition paths between stable states so that we are able
to study the effects of noise on these transition paths. Based
on the path-integral approach (see Materials and methods
for details) (22), we calculated the 16-dimensional transition
path or minimal action paths (MAPs) between neighboring
stable states. The MAPs are shown in Fig. 2, A and B on the
landscape. The red MAP from the E state to the M state cor-
responds to the EMT process, and the green MAP from the
M state to the E state corresponds to the mesenchymal-
epithelial transition (MET) process. Here, we minimize
the transition action by the method of simulated annealing.
Fig. S3 displays the stability and convergence of the simu-
lated annealing method, which supports the reliability of
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the results for MAPs. The results of landscape and transition
paths indicate that the cell fate transition process for EMT
needs to go through the intermediate states (Figs. 2 and S1).

To support the transition path results from our models, we
obtain some experimental data (TGF-b-treated lung adeno-
carcinoma cells (GSE17708)) (60), which yield a trajectory
moving from the E to the M state, and make comparisons
between the paths from experiments and the paths from
our model. The comparison results for the transition paths
are shown in Fig. 3 A. Here, the experimental data are ob-
tained from two repeated experiments under the same con-
ditions (60). We also visualized the 16-dimensional MAP
from the E to M state by showing the expressions of the
16 genes changing with time, respectively. In current data
sets, there are no data for all the microRNAs. Most data
of GSC are zero, which is consistent with the fact that the
expression of GSC is very small (Table S8). In addition,
the data of TWIST1 have large errors (it has very intensive
oscillation, and there is a big difference between the two
groups of experimental data). So, we only show the compar-
ison of paths for 10 components here. We found that the
transition paths from models are essentially in agreement
with the two experimental data groups (Fig. 3 A).
To quantify how the transition paths from modeling agree
with experimental trajectories, we discretize the paths to
binary form (Fig. 3 B). In this way, we can quantify the sim-
ilarity between the paths from models and the paths from
experiments. Here, we define the similarity for two matrices
as the ratio between the number of same elements in two
matrices and the number of matrix elements. Here, each
element of a matrix represents the on or off state for corre-
sponding genes (Fig. 3 B). The similarity degree between
modeling and experiment 1 is 80.00%, and the one between
modeling and experiment 2 is 76.67%, whereas the similar-
ity degree between experiment 1 and experiment 2 is
83.33%. The similarity between experiments and models
is similar to the one between the two experiments, which
indicates that the MAP from modeling is supported by
experiments.

To probe the roles of network structure on generating sta-
ble states and corresponding transition paths, we perturbed
the network structure to recalculate the MAP of EMT and
compared these MAPs with the experimental data as we
did for the wild-type network (Fig. S4). Specifically, we
modified nr regulatory links in the network, for which
we picked nr as 10, 20, ., 200 (there are 16 genes in total,
FIGURE 3 (A) Comparison for the transition

path of EMT between the model and the experi-

mental data in terms of activity of 10 different

genes. The gene expressions on the paths are

normalized for comparison. The experimental

paths are based on the data from TGF-b-treated

lung adenocarcinoma cells (GSE17708) (60). (B)

Corresponding comparisons between models and

experiments after the gene expressions are discre-

tized to 0 or 1. Here, 1 represents that the expres-

sion of gene is high and 0 that the expression of

gene is low. The X axis shows the nine time points

along the transition path. To see the figure in color,

go online
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so the total possible edge number is 16 � 16 ¼ 256). For
each nr, we simulated 30 different mutated networks and
calculated the average and variance of their similarity de-
gree with experimental data. Here, we perturbed the
network so that each ‘‘mutant’’ network either has an edge
removed or has an edge with reversed sign (from activation
to inhibition or from inhibition to activation). We define the
similarity degree as 0 when the mutated network only gen-
erates a monostable state, as the experimental data show two
stable states, E and M. As shown in Fig. S4, A and B, with
the increase of the mutated edge number nr, the average
value of similarity degree decreases, and it is much lower
than the one for the wild-type network (Fig. 3). For example,
when the mutated edge number is equal to or larger than 20,
there is very low correlation (smaller than 0.15) for the tran-
sition path results between models and both experimental
data sets (Fig. S4, A and B). These results support the impor-
tance of network topology on generating multistable E/M
states and provide further support for our gene regulatory
network model of EMT.

In addition, Fig. S4 C indicates that the average number
of stable states decreases with the increase of nr, which sup-
ports that multistability of EMT network is determined by
the topology of the regulatory network. It has been shown
in many regulatory networks, including those involved in
EMT (61), that positive feedback loops enable multistabil-
ity. Once several regulations are modified and such loops
are broken, there is a high probability that the system will
lose its multistability, consistent with recent experiments
showing that breaking positive feedback loops will compro-
mise multistable behavior (62).

An advantage of the path-integral approach compared
with the methods based on large deviation theory is that
we can study the effects of noise level on the transition
paths. For the external noises cases (characterizing envi-
ronment changes) (63,64), we explored the effects of
noise level d (see Materials and methods) on the transition
paths. As shown in Fig. S5, larger d leads to larger differ-
ence between the two paths (path from E to M and path
from M to E). This is because larger d means the system
has stronger ability of diffusion, which makes the system
not have to follow the path with the lowest potential en-
ergy, and the effect of flux tends to be more obvious
(24,65).
Intermediate states accelerate EMT

A critical question in EMT is what the role of intermediate
states is. With an intermediate state, the cells can make
changes on the expression of a small part of genes as the first
step for a partial transition and stay in an intermediate state.
The intermediate state possesses a certain level of stability
(as an attractor), which will reduce the possibility of the
cells returning to the E state. From the view of energy land-
scape, more intermediate states mean lower barrier height
4490 Biophysical Journal 120, 4484–4500, October 19, 2021
between the stable states, which may facilitate the transi-
tion. However, too many intermediate states make the en-
ergy level rise and fall repeatedly, which increases the
difficulty of the transition. Therefore, the roles of multiple
intermediate states might be a combinatorial effect of above
two factors in terms of promoting or hindering EMT. Inter-
estingly, recent work proposed that the intermediate states
can accelerate EMT based on a state transition model
(32). However, whether this conclusion holds from the mo-
lecular network level has yet to be clarified. So, we aim at
studying this issue from a stochastic dynamics perspective
based on our gene network model of EMT.

To uncover the roles of intermediate states, we studied the
relationship between the transition action and the number of
intermediate states (NIM) as parameters vary. To avoid a sig-
nificant change of landscape as parameters vary, we first
performed analysis when parameters change in a small
range (Fig. 4). In this parameter region, there are relative
smaller changes in landscapes (e.g., similar E and M states
are preserved as parameters vary), so we can focus on the
role of intermediate states on state transitions. Here, the
five parameters a, ã, b, sa, and sb are selected independently
and randomly (a ¼ 0.5, ã ¼ 8, b ¼ 2, sa ¼ �5.1–5.7, and
sb ¼ �1.2–1.6). This parameter area is taken from the
area of Table S7 that can generate two to six stable states
(namely �0–4 intermediate states). We screened more
than 2000 sets of parameters to calculate the transition ac-
tions and classified the results of transition actions by NIM

(Fig. 4, A–E). For each parameter set, we calculated the
transition action from the E state to the M state based on
the path-integral approach, which can also be used to mea-
sure the transition rate of EMT (9). Smaller transition action
means faster transition. Similarly, we studied two other
small parameter regions (Figs. S6 and S7), which are taken
from the areas of Tables S3 and S5 that can generate two to
six stable states. We found that for all three cases (three
different small parameter ranges, corresponding to Figs. 4,
S6, and S7, individually), there are certain optimal number
of intermediate states (transition actions have some minima
or transition rates have some maxima as the number of inter-
mediate states increases). However, the optimal number of
intermediate states is different under different parameter re-
gions. The transition action reaches a minimum when there
is one (Fig. S7), two (Fig. 4), or three (Fig. S6) intermediate
states and reaches a maximum when there are four interme-
diate states (Figs. 4, S6, and S7). These results support that
when parameter changes in relative smaller regions, the in-
termediate states promote the transitions from E to M,
although the optimal number of intermediate states may
depend on specific conditions.

Furthermore, to study how larger changes of landscapes
affect the relationship between the transition action and
the number of intermediate states, we screened more than
10,000 sets of parameters (in larger parameter ranges) to
calculate the transition actions and classified the results of



FIGURE 4 (A–E) The distribution for transition

action of EMT for different numbers of intermedi-

ate states in a small parameter region (a ¼ 1, ã ¼
8, b ¼ 2, sa ¼ �5.1–5.7, and sb ¼ �1.2–1.6).
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to calculate the transition action from the E state

to the M state. (F) Mean transition action and cor-
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transition actions by the number of intermediate states
(Fig. S8). This parameter area contains all the parameter
areas of Figs. 4, S6, and S7. We found that the variances
of transition actions are very large for the same NIM, which
indicates that even if NIM is the same, transition paths may
be quite different under larger parameter changes. This indi-
cates that the roles of intermediate states on promoting EMT
can be complicated and depend on specific conditions.
Other factors, e.g., the interaction with the local microenvi-
ronment could also play a role.

These results suggest that some intermediate states may
accelerate the EMT process, but too many intermediate
states may hamper EMT. A possible explanation is that
the occurrence of intermediate states increases the plasticity
of cell fate transitions, and the stepwise transition lowers the
total transition actions from E to M. However, there is also
another outcome for the increase of number of intermediate
states, which is that the system needs to cross more barriers
to finish the transition from E to M. As the number of inter-
mediate states increases, when the latter factor becomes
dominant, it leads to the transition action increasing again
and the EMT being hampered. However, the number of in-
termediate states with faster EMT may vary for different
models of EMT depending on specific conditions. Our re-
sults based on the dynamical molecular network model sug-
gest that the intermediate states may have a complex role.
Certain number of intermediate states may promote EMT,
which is consistent with recent findings (32). But we also
propose that when the number of intermediate states is
over a certain number, the EMT may be hampered (32).
We expect that this prediction can be tested by further exper-
imental study.
Barrier height from landscape serves as an EWS
for critical transitions in EMT

Recently, the theory of EWSs have been applied to predict
critical transitions in EMT. Some indicators for EWSs
have been suggested, including variance and autocorrelation
functions. In fact, in ecological and climate systems, many
indicators related with system dynamics have been sug-
gested as EWSs to predict critical transitions (41,42). Based
on a simplified EMTmodel, Sarkar et al. proposed that there
exists EWSs for EMT (49). It remains unclarified whether
this conclusion holds in a more realistic EMT network
including more molecular details. With our EMT regulatory
network, we aim to study this issue.

We first generated stochastic time series of gene expres-
sions by Langevin stochastic simulations (Supporting mate-
rials and methods). With parameter a (activation strength
for regulations in EMT network) characterizing the signal
of EMTactivation, the trajectory is generated with time-vary-
ing signal a, which starts from 0 at day 0 and then increases
up to 8 at day 20 (the rate of a changing (da/dt) is 0.016
mM/h2). The network structure in Fig. 1 shows that all activa-
tion regulations are among M genes, so increasing awill pro-
mote transitions from the E state to the M state. Here, we
considered the effects of internal noise in modeling (see Sup-
porting materials and methods) because the level of system
state (concentrations) will affect the variance of trajectories.
Fig. S9 shows the stochastic trajectories of all 16 genes.
We see there are three obvious abrupt changes in the trajec-
tory of Fig. S9, so we divide the trajectory into four segments
corresponding to four stages of EMT, i.e., E/ IE, IE/ IM,
IM4M, and M state (Fig. 5). This is because the landscape
Biophysical Journal 120, 4484–4500, October 19, 2021 4491



FIGURE 5 (A) The trajectory of ZEB2 for four different transition stages in EMT. (B) Residual time series after applying a Gaussian filter (red curve in

figure A is the result after filtering). (C–F) Four indicators of EWSs for EMT calculated from the filtered time series after using a rolling window of 10% of the

data length. Four indicators are AR (1) (C), variance (D), coefficient of variance (E), and Fano factor (F). Four columns from left to right correspond to four

different transition stages (1, days �1–9; 2, days �10–12; 3, days �13–16; 4, days �17–20). To see the figure in color, go online
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will change with the parameter a, leading to cells staying in
different stable states at different time. The exact transition
time points are day 9, day 12, and day 16 (Fig. 5).

We notice that the third segment of trajectory oscillates
back and forth between the two stable states (the M state
4492 Biophysical Journal 120, 4484–4500, October 19, 2021
and the IM state). A question is whether this oscillation
behavior is caused by the sudden increase of noise. To study
this possibility, we compared the magnitude of internal

noise (proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþi þ r�i

p
) in the chemical Langevin

equation (Eq. S6) with the bandwidth of the trajectory
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(width of trajectory, Fig. S10). As shown in Fig. S10, the tra-
jectory has three obvious abrupt changes when the param-
eter a changes uniformly that divide the trajectory into
four segments. We see that the bandwidth has a sudden in-
crease in the third segment of the trajectory, which charac-
terizes the oscillation behavior in this stage. If this is caused
by the sudden increase of noise, we will anticipate a similar
increase of noise in the third segment of the trajectory. How-
ever, the change of noise as a increases is similar to the
change of trajectory and different with the change of band-
width. This means that the oscillation behavior in the third
stage is not completely determined by the noise increase.
It should be caused by the decrease of barrier height be-
tween stable states.

Then, we consider a time-series segment from the E state
to the M state (Fig. 5 A) based on the trajectory in Fig. S9 to
see possible EWSs. We filter possible nonstationarities of
the trajectory by Gaussian filter, obtain the remaining resi-
dues (Fig. 5 B) for EWS analysis (66), and calculate four in-
dicators as EWSs for EMT with a rolling window having a
length of 10% (Fig. 5, C–F). From left to right, we show the
properties of trajectory in different time periods. These four
segments correspond to the four key transition stages (also
see Fig. S9). We also obtained similar results for MET
(Fig. S11), including stochastic trajectory of MET
(Fig. S11 A), remaining residues (Fig. S11 B), and four in-
dicators as EWSs for MET with a rolling window having
a length of 10% (Fig. S11, C–F).

Here, we take ZEB2 as an example; the analyses of other
genes are shown in Figs. S12 (EMT) and S13 (MET). Of
note, we found that not all genes have EWSs. For example,
we see that the variances of ZEB1, ZEB2, SNAI2, TWIST1,
FOXC2, TCF3, and VIM increase significantly before crit-
ical points (Fig. S9 1), but not for TGF-b, SNAI1, GSC,
and all six E genes (Fig. S9 2).

Previous study suggested that variance and temporal
lag-1 autocorrelation (AR (1)) of the expression of some
genes will increase before critical transitions (49). From
our EMT network model, we focus on the four indicators
for the first three stages (Fig. 5, first three columns) because
the last stage corresponds to a single M state with no phase
transition. We see that the AR (1) and variance of gene
expression increase in EMT for four stages, individually
(Fig. 5, C and D, the first three columns), but there is no
such behavior for MET (Fig. S11, C and D, the first three
columns). It seems that the variance and AR (1) are not
accurate enough as EWSs in EMT and MET.

One possible reason for why the variance is not working
well as the EWS here is because it does not involve the ef-
fects of the mean of gene expression, as a possible reason for
increasing variance is actually the increasing magnitude of
gene expressions. Based on Fig. S9, only M genes show
obvious EWSs. So, we only focus on the trajectories of
the M genes. From Eqs. S4–S6, we can see clearly that
the intrinsic noise level (proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþi þ r�i

p
) in-

creases with xj (j ˛ Ai) (first term in Eq. S4). Here, the ith
gene and jth gene are both M genes (Fig. 1 shows that acti-
vation regulations only exist between M genes). From
Fig. S9, during EMT the expressions of all M genes in-
crease. So, the increase of the mean of gene expressions
(M genes) contributes to the increase of noise, or the in-
crease of variance of the trajectory. In other words, the in-
crease of variance may be due to two factors, one related
to the phase change and another one related to the change
of the magnitude of gene expression. So, we also studied
two other indicators: the coefficient of variance (CV) and
the Fano factor (the ratio between variance and mean),
which both involve the mean and the variance. With the
CVor Fano factor, we can focus on the former factor (phase
change) because our purpose is to identify the early warning
signals related with critical transitions. We found that both
the CV and Fano factor have better performance in terms
of predicting critical transitions marked by their increase
before critical points for EMT and MET (Fig. 5, E and F,
the first three columns).

Specifically, the Fano factor increases before the cell tran-
sits to another stable state (Figs. 5 F 1, 2, and 3 and S11 F 1),
and it decreases when the cell tends to be stable (Figs. 5 F 4
and S11 F 4). This is clear at the beginning and ending
phases of the transition (stages 1 and 4 for both EMT and
MET). However, this phenomenon is not that obvious in
the transition between intermediate states (Figs. 5 F 2 and
S11 F 2 and 3). We suppose that this is because a segment
of the trajectory contains oscillations between the two stable
states (Figs. 5 3 and S11 2). These results demonstrate that
the Fano factor is a better indicator as an EWS in EMT and
MET, compared with the other three indicators studied here.

We further studied the mechanism of EWSs based on
landscape theory. In Fig. 6 A, we show the landscapes under
different parameter a with a typical stochastic trajectory
(landscape for intrinsic noise). Clearly, the first, second,
and fourth segments of trajectory are all for transitions
from one stable state to the other (E to IE, IE to IM, and
IM to M state). For the third segment, the trajectory oscil-
lates between the IM state and the M state. These results
imply that EWSs are related to the change of the stable
states. Here, the variance of the stable states was calculated
from stochastic simulations with intrinsic noise (see Sup-
porting materials and methods). As is shown in Fig. 6 B,
for all three stages (stages 1–3, representing the transition
from one stable state to another) before the critical point,
the Fano factor (red line) of the former stable state gradually
increases. The trend of the Fano factor is similar to that in
Fig. 5, which indicates that the theoretical trend of the
Fano factor is consistent with the simulation results. We
also acquired a similar conclusion in MET (Fig. S14).

Importantly, we identified the barrier height from the po-
tential landscape as a new, to our knowledge, EWS and
Biophysical Journal 120, 4484–4500, October 19, 2021 4493



FIGURE 6 (A) A three-dimensional landscape of EMT under intrinsic noise with a typical stochastic trajectory from the E state to the M state. Different

layers of two-dimensional landscape are for different values of parameter a. The red trajectory is a typical trajectory from E to M state from stochastic sim-

ulations. The red arrows represent the direction of the transitions. The parameter a, characterizing the activation signal of EMT, varies from 2 to 7 from top to

down. The whole transition is divided into four stages with 1 a ¼ �1.2–4.1, 2 a¼ �4.1–4.5, 3 a ¼ �4.5–5.3, and 4 a ¼ �5.3–6.0 (corresponding to the four

stages in Fig. 5). (B) The Fano factor (s2/x, red line; here s is the standard deviation of ZEB2 and x is the expression of ZEB2) of the E state (stage 1), IE state

(stage 2), IM state (stage 3), and M state (stage 4) and the barrier height (blue line) from the E state to the IM state (stage 1, a¼�1.2–3.0), from the E state to

the IE state (stage 1, a¼ �3.0–4.1), from the IE state to the IM state (stage 2), from the IM state to the M state (stage 3), and from the M state to the IM state

(stage 4). To see the figure in color, go online
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found that the barrier height provides a better indicator for
critical transitions than other indicators studied here, such
as variance and AR (1). Here, the barrier height is defined
as the potential difference between the local minimum
(stable state) and neighboring saddle point for correspond-
ing transitions. We found that the barrier height between
stable states is decreasing for each stage (Fig. 6 B, blue
line), which makes cells more likely to move to adjacent
states. There is a significant decrease of barrier height at
about a ¼ 3 in the first stage as the landscape changes
from the bistable to the tristable state. Because of the
appearance of the IE state, the barrier height between the
E state and the adjacent stable state is significantly reduced.
That is the major reason for the upcoming transition from
the E to the IE state. In the third stage of EMT, the magni-
tude of the barrier height between the IM state and the M
state is very small, which explains why the trajectory oscil-
lates in these two stable states (Fig. 6, stage 3). In the first
half of this stage, the barrier is slightly larger, so the trajec-
tory does not always oscillate between two stable states. For
the second half of this stage, the trajectories oscillate more
4494 Biophysical Journal 120, 4484–4500, October 19, 2021
frequently as the barrier height becomes even smaller
(Fig. 6 A, stage 3). For the fourth stage of the transitions,
the magnitude of the barrier height becomes very small,
indicating a stable M state. From a global point of view,
the barrier height from the E state to the M state keeps
decreasing, which indicates that the difficulty of the transi-
tion is decreasing. We also acquired a similar conclusion for
MET (Fig. S14). These results explain why the barrier
height is more accurate for predicting critical transitions
as it characterizes the underlying transition dynamics of
stable state switching.

These results also demonstrate that the global stability,
rather than local stability, is more important to determine
the system behavior. If we analyzed some local indicator
for stability of the system, e.g., the real part of the dominant
eigenvalue of Jacobian matrix of F(x) at an individual stable
state, we found that the local stability does not give consis-
tent results for predicting critical transition for all four
stages as the barrier height does (Fig. S15). To sum up,
the results of landscape reveal the underlying and physical
mechanism for the emergence of EWSs, and the change of
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barrier height, as a new, to our knowledge, EWS, offers a
quantitative explanation for the appearance of phase transi-
tion and the change of feasibility of transition between
different stable states.
Gene classification based on intermediate states

During the EMT, different genes have different expression
patterns. Here, we choose 200 cases (parameter sets) with
more than three stable states to observe the rough paths
for each gene against parameter perturbations (Fig. 7). We
connect all adjacent stable states as the rough paths to inter-
rogate the properties of different genes. Fig. 7 A shows the
paths of all 16 genes, which are classified to three classes,
and Fig. 7 B shows three typical average transition paths
for three types of genes, individually.

Based on the results for parameter perturbations, the 16
genes in the network can be divided into three categories:
1) SNAI2 has an irregular path, probably because of its
self-activation. Although ZEB1 and ZEB2 have self-activa-
tion, too, their changing trends are different from SNAI2. 2)
The changes of transition paths for ZEB2, VIM, miR-200,
and CDH1 are smoother, as indicated by the color in
Fig. 7 A, probably because these genes are affected by
more other genes in the network. As shown in Fig. 1, the
second type of gene is activated or inhibited by at least
four genes, whereas other genes are affected by at most three
genes (except ZEB1 and SNAI2). According to Eq. 12, it is
FIGURE 7 (A) Classification of the genes through their changing trends during

M state. The Y axis represents 100 different samples. Each line represents a sa

represents lower expression. The 16 genes are divided into three types. (B) Avera

of these three genes during EMT are shown. The X axis, from left to right, repres

represents the normalized gene expression. The first type of gene (SNAI2) has ob

third type of gene exhibits sigmoidal change during the transition. To see the fi
reasonable to consider that genes regulated by more other
genes may change more smoothly because of the averaging
effects from other genes. 3) Different from above two cases,
the expression of the other 10 genes displays a sigmoidal
shape of transition path, and they keep the highest expres-
sion (yellow) or lowest expression (blue) most of the time
during the transition process. This indicates that these genes
will not change their expression much at the beginning and
the end of EMT, and their expression will change consider-
ably between intermediate states. Furthermore, the expres-
sion of M genes in this class (TGF-b, ZEB1, SNAI1,
TWIST1, FOXC2, and TCF3) increases and the expression
of E genes in this class (miR-145, miR-141, miR-34a, and
Ovol2) decreases almost at the same time because their
patterns in Fig. 7 A are similar.

In summary, we classify the genes based on their chang-
ing trend during EMT. These results may help us to design
regulatory strategies: compared with type 1 and type 2
genes, the type 3 genes seem more sensitive to perturbations
because they have a very short transition time in the middle.
So, it may be less effective to target them at the beginning or
the end of EMT. Because EMT has been suggested to pro-
mote cancer metastasis (14), a better anti-metastasis strategy
could be targeting them in the middle of EMT, e.g., targeting
them in the intermediate state stage. This is consistent with
recent work suggesting that intermediate states are critical
to cancer metastasis (67,68). We also calculated the location
of intermediate states in different conditions (Fig. S16). For
EMT. The X axis represents the virtual time from E to intermediate, and to

mple. The yellow region represents higher expression, and the blue region

ge of the changing curves of each type of genes. The normalized expressions

ents the virtual time from E to intermediate state and to M state. The Y axis

vious oscillations. The second type of gene (ZEB2) changes gradually. The

gure in color, go online

Biophysical Journal 120, 4484–4500, October 19, 2021 4495



Lang et al.
most cases, the stable states exist on both a positive axis and
negative axis, which indicates that if there are more than two
intermediate states, most likely the IE state and IM state will
exist at the same time, reflecting the heterogeneity for the
intermediate states in EMT.
Identify influential factors for EMT and MET from
global sensitivity analysis

To regulate EMT, a key issue is how to identify critical factors
for EMT and MET. In the gene regulatory network model, it
means identifying the critical parameters which determine
the EMT. For example, it is important to ask how to stabilize
the E state and destabilize the M state by targeting certain
genes or regulations between genes. One natural way to
accomplish these two missions is to perform a global sensi-
tivity analysis for the transition actions from E attractor to
M attractor (or from M attractor to E attractor). Sensitivity
analysis can show the influence of different parameters on
the system, and transition actions can measure the possibility
of transition from one state to another for a cell.

For simplicity, we constrain the system in the bistable re-
gion (the E state and the M state coexisting, no intermediate
state). From the definition of transition action, the cell needs
more energy to overcome the barrier to transform to the
other state when the transition action is larger. The sensi-
tivity analysis here is based on calculating the change of
the transition action, individually for E to M and M to E, af-
ter changing the model parameters one by one. To inhibit
EMT, we tend to make the transition action of EMT become
larger, namely the cell needs more energy to transform to the
M state, after changing the parameters. Here, we choose
each factor of K ¼ {ki} (the degradation rate of genes) to
4496 Biophysical Journal 120, 4484–4500, October 19, 2021
perform the sensitivity analysis. The result is shown in
Fig. 8.

The simulation results show that the regulation of gene
expression has different effects on EMT and MET.
Increasing kE (the innate degradation rate of an E gene,
Fig. 8 A, the top six lines) does not necessarily make it easier
for cells to transform to M state. On the other hand,
decreasing kM does not necessarily make it easier for cells
to transform to the E state. Thus, we focus on the genes
and regulations with significant effects on state transitions
next.

As shown in Fig. 8, the top five sensitive regulations are
TCF3, ZEB1, ZEB2, Ovol2, and SNAI2. In previous work
(5–14,16,69,70), we know SNAI1, SNAI2, ZEB1, ZEB2,
and TCF3 are the most essential regulators of EMT. In
this work, we found that TCF3 is the strongest single-factor
activator of EMT in some cases, which is partially supported
by some experimental work (71). Interestingly, less expres-
sion of TCF3 (larger degradation rate, Fig. 8 A) will not in-
fluence the transition much, but more expression of TCF3
(Fig. 8 B) will greatly increase the action required for
EMT. It is anticipated that more experiments will focus on
TCF3 to test its roles in regulating EMT in the future. Mean-
while, the ZEB family (including ZEB1 and ZEB2) also
plays a key role of the transition, as suggested by previous
experiments (71,72). Once the expression of ZEB1 de-
creases (Fig. 8 A), EMT will become harder, whereas
MET will become easier. On the contrary, if the expression
of ZEB1 increases (Fig. 8 B), EMT will be easier, whereas
MET will be harder. Further, Ovol2 also plays an important
role in EMT (12). If the expression of Ovol2 decreases
(Fig. 8 A), SE/M will decreases a lot, which means the
EMT will become easier.
FIGURE 8 Sensitivity analysis for parameter

K ¼ {ki}, the degradation rate of each gene, on

the transition action (SE/M and SM/E). The Y

axis represents ki of 16 genes, individually. The

X axis represents the percentage of the change of

the transition action (DS) relative to action with

default parameters (S), namely the sensitivity of

the genes (DS/S). Here, SE/M denotes the transi-

tion action from the E state to the M state, and

SM/E denotes the transition action from the M

state to the E state. (A) Each ki is increased by

5% individually. (B) Each ki is decreased by 5%

individually. Here, we fix the perturbation level

to be 5% to avoid phase transition of the model.

Other parameters are set as a ¼ 1, ã ¼ 3, b ¼ 3,

sa ¼ 3, and sb ¼ 0.5. To see the figure in color,

go online
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The EMT system also shows strong sensitivity to SNAI2.
When the expression of SNAI2 increases (Fig. 8 B), it be-
comes more difficult for both EMT and MET, possibly
because of the role of SNAIL2 on stabilizing an intermedi-
ate EMT phenotype (73). Similarly, TCF3, ZEB2, SNAIL1,
and TGF-b also show this property. From the network topol-
ogy, ZEB2 and SNAI2 both have self-activation. As
suggested by previous work, strong self-activation will pro-
mote more stable intermediate states (74). This indicates
that ZEB2 and SNAI2 might make EMT and MET both
harder by promoting stable intermediate states. For micro-
RNAs (miRNAs), miR-145 and miR-141 show strong sensi-
tivities from our model. If their expression decreases, MET
will be remarkably harder (Fig. 8 A), which is supported by
the experiments (75,76).
DISCUSSION

EMT is an important phenotypic switching (1–4,77).
Mathematical modeling has been applied to study the
dynamical properties for EMT. However, the molecular
mechanisms of EMT have not been fully understood. In
this work, we constructed a relatively inclusive gene regu-
latory network for EMT including 16 genes. By screening
the parameters, we modeled the EMT in different condi-
tions and showed that intermediate states exist in a wide
range of parameter regions, which is supported by experi-
ments (31). Based on the stochastic dynamics theory of
gene networks, we revealed the landscape of EMT, which
quantifies the global stability and stochastic transition dy-
namics of EMT. We identified multistable cell states char-
acterized by the attractors on the landscape. We calculated
the kinetic transition path of EMT based on the path-inte-
gral approach to identify the order of gene switching in
EMT and studied the effects of noise on the transition
path (22). Larger noise, leading to larger probability flux
(24,65), makes the system deviate from the path with the
lowest potential energy. We demonstrated that the 16-
dimensional transition paths of EMT from the model are
supported by experimental data.

In the study of EMT, an interesting question is what the
roles of intermediate states are. Recent work proposed a
role of intermediate state for accelerating EMT from a
simplified state transition model (32). Whether this conclu-
sion holds from a molecular network perspective remains
unsolved. Here, by screening multiple parameter values,
we calculated the distribution of transition actions for
EMT to study the relationship between the number of
intermediate states (NIM) and the rate of the transition.
Roughly speaking, as NIM increases, the mean transition
action first decreases, and after a certain NIM, the mean
transition action begins to increase. That means intermedi-
ate states in certain condition can accelerate EMT, which
agrees with a recent study (32). As the number of interme-
diate states NIM increases, the energy landscape becomes
more complex. Besides the number of intermediate states,
the depth of basins for intermediate states would also influ-
ence the rate of transition, and the rate changing effect be-
comes limited for large numbers of intermediates (78).
However, the optimal number of intermediate states is
different under different parameter regions, which suggests
that the role of intermediate states interacting with the local
microenvironment would make a difference to the transi-
tion path. These predictions can be verified by further
experiments.

In gene regulatory network modeling, a critical issue is
the selection of parameters. In this work, we performed
the parameter selection by first setting the parameters
randomly and independently in reasonable regions and
then searching for the multistability. So, in some sense we
considered the possible collinearity among these parameters
to ensure that the dynamical system generates multistability.
In other words, we actually selected the parameters as an
ensemble (79).

The EWS theory has been applied to EMT study to antic-
ipate the critical transition points recently (49). Here, we
studied a few indicators for critical transitions from our
EMT model. We verified the existence of EWSs in EMT
through our complex molecular network model and showed
that some genes, including ZEB1, ZEB2, SNAI2, TWIST1,
FOXC2, TCF3, and VIM, have obvious EWSs at multiple
stages, whereas the other genes do not display such behavior
obviously. Interestingly, we demonstrated that the Fano fac-
tor could be a better indicator as an EWS compared with
traditionally used ones, although it does not perform as
well as the potential barrier height. We proposed that the po-
tential barrier height based on the landscape topography
provides a new, to our knowledge, indicator for predicting
critical transitions, which performs the best compared
with other indicators including the Fano factor, the CV, vari-
ance, etc. This is reasonable because the barrier height is a
global quantity based on the potential landscape, whereas
other indicators here are all local measures for certain vari-
ables. So, the potential barrier height can characterize the
dynamical behavior of the system more accurately. The
landscape not only provides a new, to our knowledge, indi-
cator for EWS with better accuracy but also offers an
explanation for the underlying mechanism of the well-
known EWS theory. One limitation of barrier height as
an EWS is that the current approach for obtaining the
barrier height depends on the quantified landscape, which
requires a dynamical model as a prior and is not a
completely data-driven approach. This could be further
improved by absorbing the data-driven landscape construc-
tion approaches (80,81).

The concept of barrier height based on landscape theory
has been proposed to predict transitions in a multistable sys-
tem (9–11,13–15,22–30,54). It is understandable that barrier
height from potential landscape may be related to the early
warning theory of critical transitions. However, to our
Biophysical Journal 120, 4484–4500, October 19, 2021 4497
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knowledge the underlying physical mechanism for EWSs
remains to be clarified quantitatively. For example, different
indicators based on time-series data have been suggested as
EWSs to predict critical transitions, including variance,
autocorrelation function, coefficient of variation, etc. (41–
48). Recently, Sarker et al. proposed some indicators for
EWSs of EMT (49). However, the underlying physical
mechanism for why these EWSs can work remains unclear.
In this work, based on landscape theory, we propose barrier
height as a new global measure for EWSs, and provide a
quantitative explanation for the mechanism of EWS. An
interesting question is what the difference between EMT
and other multistable systems is. From current work, the
EMT does not show obvious differences with other multista-
ble systems because the multistable property mostly comes
from the network structure with positive feedback loops. A
possible difference between EMT and other multistable sys-
tems is the common existence of intermediate states in
EMT, as the partial EMT states or hybrid E/M states have
been extensively explored both in modeling and experi-
mental studies (10,16,17,67). Another possible difference
between EMT and other multistable systems is that we
found that intermediate states promote E to M transitions.
Whether this conclusion holds for other multistable system
warrants further explorations.

Through classifying the genes by their trend of transitions
in each step, we propose their unique regulation strategy for
each type of gene. The strategy may provide a route for
regulating EMT more efficiently. By global sensitivity anal-
ysis of each gene on model parameters, we identified some
genes playing critical roles on regulating EMT or MET. For
example, besides the SNAIL family and the ZEB family, our
models predict that TCF3 has a significant regulatory influ-
ence on EMT.

In this work, we quantified the global stability and sto-
chastic transition dynamics of EMT by landscape and tran-
sition path theory. We mapped out a landscape with
multiple intermediate states for EMT and proposed
possible roles of intermediate states for accelerating
EMT. We provide a physical and quantitative explanation
for the mechanism of the well-known EWS theory and pro-
pose the potential barrier height as a new, to our knowl-
edge, indicator for critical transitions. Our approaches
can be applied to other dynamical systems or gene regula-
tory systems.
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