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Visual experience modulates the intensity of evoked brain activity in response to
training-related stimuli. Spontaneous fluctuations in the restful brain actively encode
previous learning experience. However, few studies have considered how real-world
visual experience alters the level of baseline brain activity in the resting state. This study
aimed to investigate how short-term real-world visual experience modulates baseline
neuronal activity in the resting state using the amplitude of low-frequency (<0.08 Hz)
fluctuation (ALFF) and a visual expertise model of radiologists, who possess fine-level
visual discrimination skill of homogeneous stimuli. In detail, a group of intern radiologists
(n = 32) were recruited. The resting-state fMRI data and the behavioral data regarding
their level of visual expertise in radiology and face recognition were collected before
and after 1 month of training in the X-ray department in a local hospital. A machine
learning analytical method, i.e., support vector machine, was used to identify subtle
changes in the level of baseline brain activity. Our method led to a superb classification
accuracy of 86.7% between conditions. The brain regions with highest discriminative
power were the bilateral cingulate gyrus, the left superior frontal gyrus, the bilateral
precentral gyrus, the bilateral superior parietal lobule, and the bilateral precuneus. To
the best of our knowledge, this study is the first to investigate baseline neurodynamic
alterations in response to real-world visual experience using longitudinal experimental
design. These results suggest that real-world visual experience alters the resting-state
brain representation in multidimensional neurobehavioral components, which are closely
interrelated with high-order cognitive and low-order visual factors, i.e., attention control,
working memory, memory, and visual processing. We propose that our findings are likely
to help foster new insights into the neural mechanisms of visual expertise.
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INTRODUCTION

Visual experts refer to individuals with superior behavioral
performance in visual recognition in specific domains (Curby
and Gauthier, 2010). To become a visual expert, it requires visual
learning with at least hundreds of cases of samples (Clark et al.,
2012). A few real-world visual expertise models have been used
to study the neural substrate underlying this behavioral expertise
(Rossignoli-Palomeque et al., 2018). Increased level of activation
was found in the left superior frontal gyrus and left cingulate
cortex in radiologists, which is responsible for better working
memory capability (Haller and Radue, 2005). Harel et al. (2010)
demonstrated enhanced neuronal activity in the right precuneus
of a group of car experts related to better memory retrieval
strategies. Song et al. (2021) reported increased activation in
the right anterior cingulate gyrus, but decreased activation in
the superior parietal lobule in chess players (Song et al., 2020),
which is closely related to improved visual processing and better
attention control. These results derived from cross-sectional
studies demonstrated that real-world visual experience alters
the strength of evoked brain activity across widely distributed
regions, which are supportive of high-order cognitive, such as
attention control, working memory, and memory, and low-order
visual components, such as visual processing (Khader et al., 2005;
Cavanna and Trimble, 2006; Schipul and Just, 2016).

Low-frequency spontaneous fluctuations (0.01–0.1 Hz) of
the restful brain play an important role in maintaining the
ongoing internal brain representations (Oldfield, 1971; Tang
et al., 2010; Evans et al., 2011), which are involved in the coding
of previous experience and support learned skills (Dong et al.,
2014). Particularly, patterns of spontaneous activity within the
resting brain are shaped by experience-dependent changes in
neural plasticity (Chakraborty, 2006). However, less attention
has been paid to analyze how real-world visual experience alters
the patterns of resting-state brain activity using longitudinal
experimental design. In this regard, the baseline spontaneous
neuronal activity reflects cortical excitability (Logothetis et al.,
2001; Boly et al., 2007), and the level of cortical excitability may
smear the spatial patterns of evoked brain activity (Di et al., 2013;
Dong et al., 2015). We propose that the level of baseline brain
activity is fundamentally important; therefore, this study aimed
at investigating how short-term real-world visual experience
modulates baseline neuronal activity in the resting state.

The amplitude of low-frequency fluctuations (ALFF) serves as
an indicator of cortical excitability (Duff et al., 2008). Previous
studies have used ALFF to measure the level of baseline brain
activity in healthy subjects (Yang et al., 2007; Dong et al., 2015).
In our study, a group of 32 radiology interns were recruited
from our collaborative hospital. The resting-state MRI data were
collected before and after 1 month of training in the X-ray
department, and ALFF was calculated to quantify the level of
baseline brain activity. To better capture the subtle changes in
the strength of neuronal activity, a novel but sensitive machine
learning analytical framework, support vector machine (SVM),
was employed (Xu et al., 2019). We expected to see an altered
level of activity in brain regions related to the multidimensional
neurobehavioral component that supports visual recognition,

such as attention control, working memory, memory extraction,
and visual processing (Humphreys et al., 1999). To the best
of our knowledge, this study is the first to investigate baseline
neurodynamic alterations in response to short-term real-world
visual experience using longitudinal experimental design.

MATERIALS AND METHODS

Subjects
The subjects in this study consisted of a cohort group of radiology
interns, who were medical students in the undergraduate
program in national medical schools. They were recruited from
the First Affiliated Hospital of Medical College, Xi’an Jiaotong
University. Thirty-two radiology interns [15 male participants,
age: 22.47 ± 1.02 years old, mean ± standard deviation (SD)].
The participants were aware of the purpose of the study and
the reason why they were recruited. All the subjects are medical
students in the undergraduate program in national medical
schools, and they underwent a 4-week rotation in the First
Affiliated Hospital of Medical College, Xi’an Jiaotong University.
The subjects worked in the X-ray department during the rotation
and reviewed approximately 35 cases per day, 6 days a week. Their
daily training included interpreting X-ray images and drafting
reports for each case. Senior radiologists were assigned to these
interns as mentors and provided response to their clinical reports
each day. The intern radiologists reviewed a minimum of 831
cases during the rotation period, as recorded in the Picture
Archiving and Communication System (PACS). Moreover, all the
subjects had no neurological or psychiatric brain diseases, had no
history of head trauma, and had not taken recreational drugs or
drugs that influence brain function during the time window of
this study (Oldfield, 1971).

Behavioral Tasks
This study employed a longitudinal experimental design, which
is rare in visual expertise studies. Basically, the subjects
underwent the behavioral assessment (including prescreening
tasks and behavioral tasks) and MRI scanning before training,
and behavioral assessment (only behavioral tasks) and MRI
scanning after a 4-week visual training. Note that the purpose
of prescreening and the behavior tasks were different. The
prescreening procedures were conducted before MRI scanning,
aiming to exclude confounding factors such as visual expertise
from other known domains (e.g., cars, chess, birds, and
mushrooms). Specifically, we used questionnaires to ensure that
the subjects had no visual expertise of other known domains,
such as aircrafts, animals, and plants. The behavioral tasks were
conducted after MRI scanning, aiming to quantify the level of
face expertise and radiological expertise, using the Cambridge
face memory test (CFMT) (Duchaine and Nakayama, 2006) and
radiological expertise task (Evans et al., 2011) respectively, as
introduced in our previous studies (Wang et al., 2021; Zhang
et al., 2022).

A standard behavioral task, i.e., radiological expertise task
(Evans et al., 2011), was used to quantify the radiological expertise
of the subjects before and after radiological training. The images
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selected for RET were identical for both tests. Basically, the
subjects were shown 100 standard lung X-ray images and were
asked to render a diagnostic decision (e.g., tumor present or
absent) and prognosis (e.g., malignant vs. benign) for each
image in RET. The 100 standard lung X-ray images were
carefully chosen from the X-ray image library in the Medical
Imaging Department of the First Affiliated Hospital of the College
of Medicine under the guidance of three independent senior
radiologists with more than 15 years of diagnostic radiology
experience. These 100 images used for RET consisted of three
ascending levels of difficulty with a portion of 50, 30, and 20%,
respectively. Each lung X-ray image contained 0∼N nodules, and
there was no mention of a diagnosis unrelated to pulmonary
nodules. Sixty-five X-ray images containing only 1∼3 nodules
were selected as positive cases, and 35 X-ray images without
tumors were selected as negative cases. The pathologies in
the images were carefully examined and reconfirmed by these
three experts. The detailed procedure of CFMT and RET was
introduced in our previous study (Zhang et al., 2022).

MRI Data Acquisition
Before MRI scanning, all subjects underwent complete physical
and neurological examination. Note that, to eliminate the
potential influence of behavioral tasks on central representation,
the behavioral task took place after MRI data acquisition. The
MRI scanning was performed on the 3 Telsa MRI system
(EXCITE, General Electric, Milwaukee, Wisc.) at the First
Affiliated Hospital of Medical College, Xi’an Jiaotong University
in Xi’an, China. To eliminate the time-of-day effect, the scanning
was performed from 8:30 to 12:30 a.m. (Hasler et al., 2014).
A resting scan and a structural scan were conducted. A standard
birdcage head coil was used, along with restraining foam pads to
minimize head motion and to diminish scanner noise. Prior to
the scan, subjects were instructed to close their eyes, keep their
heads still, and stay awake during the scanning process. After
scanning, the subjects would be asked whether they had fallen
asleep during the process.

For the resting MRI scanning, the following parameters
were used. Each volume contains 35 axial slices, scan
duration = 370 s, repetition time (TR)/echo time
(TE) = 2,000 ms/30 ms, field of view = 240 mm, total brain
volume collection = 185, matrix = 64× 64, flip angle = 90◦, voxel
size = 3.8× 3.8× 5.0 mm3, gap = 0 mm, thickness = 4 mm, layer
spacing = 0 mm. The resting-state fMRI scans lasted for 8 min
and 20 s. High-resolution T1-weighted structural imaging data
used 3D magnetization preparation to quickly acquire gradient
echo sequence for acquisition.

MRI Data Preprocessing
Statistical Parametric Mapping (SPM12)1 and the Data
Processing Assistant for Resting-State fMRI (DPARSF 4.5)2

were used for MRI data preprocessing. The first 10 images were
deleted to eliminate non-equilibrium effects of magnetization
and allow the participants to adapt to the experimental

1http://www.fil.ion.ucl.ac.uk/spm
2http://rfmri.org/DPARSF

environment. The images were corrected for the acquisition
delay between slices, motion corrected and co-registered to the
subject’s anatomical images in native space. Two subjects had
head motion exceeding the threshold of 0.2 mm (frame-wise
displacement, i.e., Power FD). For the remaining 30 subjects, a
two-sample t-test was used to verify that there was no significant
difference in head movement between the two groups for
the remaining subjects. Next, all the functional images were
normalized to the MRI space using the deformation field maps
obtained from structural image segmentation, following the
segmentation routine in SPM12. The normalized images were
resampled to 3 mm isotropic voxels, which were then spatially
smoothed with a 6-mm full width-at-half-maximum Gaussian
kernel. Finally, the linear trend was removed (Dale et al., 2000),
and temporal filtering (0.01–0.08 Hz) was performed on the time
series of each voxel to reduce the effect of low-frequency drifts
and high-frequency noise (Zou et al., 2008).

Feature Extraction
Generation of Voxel-Wise Amplitude of
Low-Frequency Fluctuations Map
Resting-State fMRI Data Analysis Toolkit (REST)3 was used to
compute ALFF (Song et al., 2011). ALFF measures the level
of intrinsic or spontaneous neuronal activity in a given voxel
(Jiang et al., 2004). The ALFF serves as an indicator of cortical
excitability (Duff et al., 2008), and the volume of regional cerebral
blood flow is correlated with ALFF in the brain region from
the resting-state data (Li et al., 2012); therefore, it is taken as
the index for the level of baseline brain activity. To calculate
ALFF, after preprocessing, a fast Fourier transform (FFT) was
used to transform from time domain to frequency domain for a
given voxel, and the specific parameters are as follows: the taper
percentage was zero, and the FFT length was set to short. Then,
the square root of the power spectrum at each frequency was
calculated, and the average value was taken in the range of 0.01–
0.08 Hz. The average square root of a given voxel was taken as
ALFF (Jia et al., 2020). To minimize the impact of variability
among participants and reduce noise interference, we divided the
ALFF of a given voxel by the average ALFF value of whole brain
voxels to obtain the standardized value.

Generation of Region-Wise Amplitude of
Low-Frequency Fluctuations Map
The voxel-wise ALFF map was averaged into a region-wise ALFF
map. The Brainnetome atlas was used to divide the ALFF map
into 246 regions of interest (ROIs) (Fan et al., 2016), and the
average ALFF value of each region was obtained by averaging
the ALFF value in this region (Li et al., 2012). Mean ALFF
values from the 246 ROIs then served as the input vector to the
classification procedure.

Feature Selection
Feature selection is necessary in MRI data analysis to avoid
dimension disaster (Mladenić, 2006), reduce training time,
and increase classification performance (Jiang et al., 2004;

3http://rest.restfmri.net
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Dosenbach et al., 2010). A two-stage feature selection
procedure was conducted, identifying features with the highest
discriminative power. For the first-level selection, the paired
sample t-test was performed between the region-wise post-
and pre-training ALFF maps in a leave-one-out fashion. The
combined region-wise features that survived the statistical
threshold (p < 0.05) from each iteration were used as the input
for a second-level feature elimination. Note that the remaining
ALFF was regressed against the outcome of CFMT individually
to remove the confounding effect from other domains of visual
expertise, i.e., face in this study. Second, a recursive feature
elimination-support vector machine (RFE-SVM) approach was
used. This process recursively eliminates the least useful features
until further elimination reduces the accuracy (Ding et al., 2015).
The specific steps were as follows:

1. The training set was regressed against the
outcome of CFMT.

2. The resulting beta-maps were normalized across all brain
feature data between 0 and 1 through normalization
of mean variance.

3. RFE reduced the dimension of features again and used
the classifier itself to discard irrelevant features (Figure 1).
Our implementation of RFE is described by the following
pseudo-code:

a. Input all training samples and class labels, train SVM
classifier, calculate the classification accuracy of the
model accuracy0;

b. Sequentially subtract one feature, inputting the other
into LOOCV-SVM, calculating the classification
accuracyi of the model, finding all accuracyi greater
than or equal to accuracy0, and determining the
corresponding removed feature featurei;

c. Delete these features and update the feature set; and
d. Repeat the above steps until further elimination reduces

the accuracy.

As a result, we were able to identify a set of brain regions of the
highest discriminative power.

Support Vector Machine
Basically, SVM is a binary classification model (Cortes and
Vapnik, 1995). The basic idea is to find the separation hyperplane
with the largest interval in the feature space to make the data
binary classification efficiently (Li et al., 2007). Linear SVM is
often used in neuroimaging data in that it produces interpretable
results (Rasmussen et al., 2011). Therefore, this study adopted
the linear SVM classifier model of soft interval separation and
hinge loss function. LIBSVM toolbox4 was used in this study
(Chang and Lin, 2011).

The leave-one-out cross-validation (LOOCV) was used to
assess the performance of the classifier (Dai et al., 2012). In
LOOCV, each sample was designated as the test sample, while
the remaining samples were used to train the multi-classifier.

4https://ww2.mathworks.cn/matlabcentral/fileexchange/75567-svm-boundary-
libsvm?s_tid=srchtitle_libsvm_4

To quantify the performance of the classifier, according to
the prediction results of LOOCV, the accuracy, sensitivity, and
specificity were defined as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

where TP, FN, TN, and FP denoted the number of samples
correctly predicted, the number of trained subjects classified
as untrained ones, the number of untrained subjects correctly
predicted, and the number of untrained subjects classified as
trained ones, respectively. In this study, the area under the
curve (AUC) was also used to represent the classification
ability of SVM. A greater AUC value also represented a better
classification ability.

Statistical Analysis
The non-parametric permutation test (Filgueiras et al., 2014) was
used to evaluate the statistical significance of the classification
results. The features with the highest discriminative power were
used in this step, i.e., the 10 features after feature selection. Each
subject was treated as an independent sample. For a given sample,
the label was randomly set to 1/-1 (1: post-training data, -1: pre-
training data), while the label of the testing sample remained
unchanged to determine the outcome of SVM. The procedure
was repeated 1,000 times. Accordingly, the statistical significance
of the original accuracy was calculated as the probability that
the SVM classification result was greater than or equal to the
original accuracy in the 1,000 replacement. The average accuracy
was obtained in all permutations, and the p-value was calculated
as a proportion larger than the average accuracy obtained by
our method. The threshold of p < 0.05 was used to determine
the significance.

Regression Analysis
To assess the relationship between behavioral measurement
and brain activity, Pearson’s correlation analysis was conducted
between alterations in outcomes of CFMT and RET and
alterations in region-wise ALFF. The significance level was
set at p < 0.05 after multiple comparison correction (false
discovery rate, FDR).

RESULTS

Results of Behavioral Tasks
During 1 month of training, the subjects reviewed at least 831
cases (926 ± 73, mean ± SD). As shown in Table 1, after 1
month of training, the performance of the radiologist interns
significantly improved as revealed by higher scores in RET
(p < 0.001, Mann-Whitney U-test) and shorter response time
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FIGURE 1 | The pipeline of data analysis. After the resting-state fMRI data were preprocessed, voxel-wise and region-wise amplitudes of low-frequency fluctuations
were extracted and used for feature selection, which consisted of two steps, including region-wise paired t-test and recursive feature elimination embedded in a
leave-one-out cross-validation framework, resulting in 10 features of highest discriminative power. These features were used for SVM modeling with LOOCV. ALFF,
amplitude of low-frequency fluctuations; RFE, recursive feature elimination; LOOCV, leave-one-out cross-validation.

in RET (p < 0.001, Mann-Whitney U-test). Whereas the level
of face expertise remained the same after 1 month of training
in the domain of radiology (p = 0.19, Mann-Whitney U-test)
(Figure 2).

Performance of Support Vector Machine
After feature selection, 10 features remained corresponding to
the highest accuracy (Figure 1). The classification accuracy of
SVM after LOOCV reached 86.7% (Figure 3A), and the AUC was
0.8244 (Figure 3B). The specificity and sensitivity of SVM after
LOOCV were 80.00 and 83.33%, respectively. The classification

results were tested 1,000 times, and no repetition reached the
classification accuracy of 86.7%. Thus, the statistical significance
was p < 0.001, indicating that the results of our study were
significantly higher than the chance value.

As for the brain regions, 10 regions were identified with
the highest discriminative power, including the left cingulate
cortex (CG_L_7_4), the right cingulate cortex (CG_R_7_2), the
left superior frontal gyrus (SFG_L_7_2), the right precentral
gyrus (PrG_R_6_4), the left precentral gyrus (PrG_L_6_4), the
right superior parietal lobule (SPL_R_5_4), the right superior
parietal lobule (SPL_R_5_1), the left superior parietal lobule
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TABLE 1 | The results of behavioral tasks within the subjects pre-
and post-training.

Pre-training (n = 30) Post-training (n = 30) p-values

Mean SD Mean SD

Cases reviewed N/A N/A 926 73 –

RET 0.61 0.05 0.84 0.04 <0.001

*RT of RET(s) 3.08 0.30 2.53 0.34 <0.001

CFMT 56.90 4.29 57.30 4.67 0.19

Note that the Mann-Whitney U-test was used to investigate group difference
between groups. *Denotes the items showing significant difference between
groups after Mann-Whitney U-test (p < 0.001).
SD, standard deviation; s, seconds; RET, radiological expertise task; RT, response
time; CFMT, Cambridge face memory test.

(SPL_L_5_4), the right precuneus (PCun_R_4_4), and the left
precuneus (PCun_L_4_3) (Figure 4 and Table 2).

Results of Regression Analysis
No significant correlations were found between alterations in the
outcomes of CFMT and RET and alterations in region-wise ALFF
after multiple comparisons.

DISCUSSION

The acquisition of visual expertise requires at least hundreds
of cases of training within a specific domain (Annis and
Palmeri, 2018). In real-world visual learning, several behavioral
components, including high-order cognitive, such as memory
(Viggiano et al., 2006), attention (Rose et al., 2004), and
working memory (Ennaceur, 2010), and low-order visual
factors, such as visual processing (Binder and Desai, 2011),
are required. Existing neuroimaging studies demonstrated
differentiated patterns of brain response in visual experts under
tasks, which are modulated by their accumulated experience in
a given domain. Resting-state spontaneous brain fluctuations
actively encode previous learning experience. However, few
studies have considered how real-world visual experience alters
the level of baseline brain activity in the resting state. This
study aimed to investigate how short-term real-world visual
experience modulates baseline neuronal brain activity in the
resting state using the amplitude of low frequency (<0.08 Hz)
and a group of intern radiologists (n = 32). The resting-state
fMRI data and the behavioral data regarding their level of
visual expertise in radiology and face recognition were collected
before and after 1 month of training in the X-ray department.
A novel machine learning analytical method, i.e., recursive
feature elimination SVM embedded in LOOCV, was used to
identify subtle changes in the level of baseline brain activity
(Figure 1). With a superb classification accuracy of 86.7%
(Figure 3A), the results demonstrated that the left posterior
cingulate cortex (CG_L_7_4), the right anterior cingulate cortex
(CG_R_7_2), the left superior frontal gyrus (SFG_L_7_2),
the bilateral precentral gyrus (PrG_L_6_4 and PrG_R_6_4),
the bilateral superior parietal lobule (SPL_R_5_4, SPL_R_5_1,
and SPL_L_5_4), the bilateral precuneus (PCun_R_4_4 and

PCun_L_4_3) showed highest discriminative power after short-
term visual learning (Figure 4 and Table 2). To the best of
our knowledge, this study is the first to investigate the baseline
neurodynamic alterations in response to real-world visual
experience using longitudinal experimental design. Our findings
may help develop new insights into the neural mechanism
of visual experts and provide new ideas for the cultivation
of visual experts.

Increased Level of Activity in Brain
Regions Supporting Working Memory
Working memory (WM) supports the online maintenance
and manipulation of information without external stimulation
(Baddeley, 1987). The capacity of WM serves as a reliable
predictor for the performance of visual experts (Sohn and Doane,
2004). In this study, after training, the radiology interns had
increased ALFF in the anterior cingulate gyrus, the posterior
cingulate gyrus, and the superior frontal gyrus (Figure 4 and
Table 2). Jonides (2004) reported deactivation in the anterior
cingulate gyrus, which supported increased WM load under
task condition. Duan et al. (2012) found that the activation of
posterior cingulate gyrus was enhanced in professional chess
players in the game, which was related to enhanced requirement
in the WM. Teresa et al. (2018) found increased activation in
the superior frontal gyrus under the visual tasks, which required
online monitoring and manipulation of task-related information.
In sum, all these regions, i.e., the anterior cingulate gyrus,
the posterior cingulate gyrus, and the superior frontal gyrus,
are closely related to the WM process. The increased level of
baseline brain activity in these regions might reflect tuning with
training, which in turn decreases the need for executive control
in the maintenance of task-relevant information. We propose
that these alterations during expertise acquisition might support
more automated encoding and maintenance of objects in their
expert domain, indicating a more efficient mechanism subserving
visual expertise.

Decreased Level of Activity in Brain
Regions Underlying Memory Extraction
In our study, compared with the pre-training condition, the
radiology interns had decreased level of ALFF in the bilateral
precuneus (Figure 4 and Table 2). Visual recognition intensively
depends on the retrieval of conceptual knowledge (Binder and
Desai, 2011). The difference in memory extraction predicts
the performance difference between visual experts and novices
(Binder and Desai, 2011). Assaf et al. (2013) reported the
involvement of the right precuneus in memory extraction using
the visual expertise model of car experts. While in the resting-
state study, Duan et al. reported the reduction of default mode
network activity, including left precuneus in the professional
chess players, which is closely related to episodic memory
extraction. In this study, the bilateral precuneus explicated
decreased level of activity after short-term visual training. Given
the fact that the resting-state brain activity is involved in the
coding of expected sensory stimuli (Jin et al., 2017), we propose
that the tuning in these regions is likely to reflect the optimal
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FIGURE 2 | Results of behavioral tasks pre- and post-training. (A) The level of radiological expertise assessed by the radiological expertise task. The radiology
interns had a significantly greater scores after training compared with scores before training (p < 0.001, Mann-Whitney U-test), indicating improved performance in
visual recognition of radiological images. (B) Response time of radiological expertise task pre- and post-training. The radiology interns had a significantly faster in
behavioral response after training compared with that before training (p < 0.001, Mann-Whitney U-test). (C) The level of face expertise measured by the Cambridge
face memory test. No significant differences were found (p = 0.19, Mann-Whitney U-test). RET, radiological expertise task; RT, response time; CMFT, Cambridge
face memory test. Error bars indicate the standard deviation. * indicats the significant differences between groups (p < 0.001).

FIGURE 3 | Performance of the proposed analytical framework. (A) Ten features corresponding to best classification accuracy. (B) The receiver operating
characteristic curve. The area under the curve is 0.8244, which indicates outstanding performance.

internal coping mechanism that supports the redistribution
of cognitive resources into more demanding brain process
(Fox et al., 2005).

Decrement in the Level of Activity in
Brain Regions Underlying Attention
Control
Visual attention is a critical component in visual recognition,
which facilitates subjects to focus on the target objects in a more
efficient way when dealing with complex visual scenes and gives
priority to the target visual objects to ensure task completion
(Cohen and Lefebvre, 2005). Therefore, the difference in the
brain representation underlying attention control may serve to
distinguish the brain states of experts and novices (Memmert
et al., 2009). In this study, the radiology interns had decreased
ALFF in the superior parietal lobule after training (Figure 4

and Table 2). Reilhac et al. (2013) reported deactivation in
the right superior parietal lobules, which was closely related
to visual attention in radiologists. Ouellette et al. (2020) also
found deactivation in the left SPL in radiologists, which was
attributed to more efficient control of visual attention supported
by accelerated eye-tracking data. We propose that decreased
ALFF in SPL also reflects a similar trend. After visual training,
the attention control is more efficient, which gives the subjects
more flexibility in manipulating attentional resources, so that the
resource allocated to attention before training might be allocated
later to other brain regions supporting more demanding tasks.

Enhanced Level of Activity in Brain
Regions Supporting Visual Recognition
In our study, the bilateral precentral (the PrG_L_6_4 and
the PrG_R_6_4) showed enhanced ALFF after short-term
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FIGURE 4 | Brain regions with highest discriminative power pre- and post-training. The color bar indicates the weight of the feature. Note that positive weights refer
to higher level of ALFF after training, and negative weights refer to lower level of ALFF after training. CG, cingulate cortex; SFG, superior frontal gyrus; PrG, precentral
gyrus; SPL, superior parietal lobule; PCun, precuneus; L, left; R, right.

TABLE 2 | Brain regions that show highest discriminative power pre- and post-training.

Cognitive component Labels Brain region Brodmann area Hemisphere Weight

Working memory CG_L_7_4 Posterior cingulate cortex BA23 L 0.59

CG_R_7_2 Anterior cingulate cortex BA24 R 0.99

SFG_L_7_2 Superior frontal gyrus BA8 L 0.26

Memory PCun_L_4_3 Precuneus - L -0.85

PCun_R_4_4 Precuneus BA31 R -1.02

Attention control SPL_L_5_4 Postcentral area BA7 L -0.55

SPL_R_5_4 Superior parietal lobule BA7 R -0.92

SPL_R_5_1 Postcentral area BA7 R -0.54

Visual processing PrG_L_6_4 Precentral gyrus BA4 L 0.12

PrG_R_6_4 Precentral gyrus BA4 R 0.44

Note that positive weights refer to higher level of ALFF after training, and negative weights refer to lower level of ALFF after training.
L, left; R, right.

visual training (Figure 4 and Table 2). Activations were
found in the bilateral anterior central gyrus when visual
stimuli were shown to subjects (Marks et al., 2019) and the
level of brain activity increased with the number of stimuli
(Mechelli et al., 2014). Studies using car experts reported
an increase in gray matter volumes in this region (Gilaie-
Dotan et al., 2012) and an increased level of evoked brain
response to expertise-related visual stimuli in this region
(Bentin, 2010). We suggest that our finding also reflects similar

changes, but the exact nature of the alteration remained
to be elucidated.

LIMITATIONS

Several issues should be mentioned when the findings from
this study are considered. First, the sample size is not optimal.
Given the longitudinal design and the COVID pandemic, the
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current size is the best that can be achieved. Second, given
the ratio between the number of discriminative features and
the number of samples, this study faced an overfitting issue,
which is quite common in MRI studies using a machine learning
analytical framework. But it should be noted that three steps
were taken to minimize the possibility of overfitting in our study.
Particularly, a region-wise feature extraction strategy was used,
which decreased the number of features from tens of thousands
to 246. Then, a two-step feature selection was conducted, which
decrease the number of features from 246 to 25. At last, an RFE-
SVM analytical framework was employed to cut off the number
of features to an optimal level, resulting in 10 features, i.e., 10
brain regions. Taken together, we do recommend further studies
to repeat the current findings using larger samples. Third, for
the behavioral tasks, only visual tasks were used. Tasks for WM,
visual attention, and memory should be taken into consideration
in future studies.

CONCLUSION

Our results suggest that real-world visual experience alters
the resting-state brain representation in multidimensional
neurobehavioral components, which are closely interrelated with
high-order cognitive and low-order visual factors, i.e., attention
control, WM, memory, and visual processing. We propose that
our findings are likely to help foster new insights into the neural
mechanisms of visual expertise.
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