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Abstract

The lymphatic system is responsible for transporting interstitial fluid back to the blood-

stream, but unlike the cardiovascular system, lacks a centralized pump-the heart–to drive

flow. Instead, each collecting lymphatic vessel can individually contract and dilate producing

unidirectional flow enforced by intraluminal check valves. Due to the large number and spa-

tial distribution of such pumps, high-level coordination would be unwieldy. This leads to the

question of how each segment of lymphatic vessel responds to local signals that can con-

tribute to the coordination of pumping on a network basis. Beginning with elementary fluid

mechanics and known cellular behaviors, we show that two complementary oscillators

emerge from i) mechanical stretch with calcium ion transport and ii) fluid shear stress

induced nitric oxide production (NO). Using numerical simulation and linear stability analysis

we show that the newly identified shear-NO oscillator shares similarities with the well-known

Van der Pol oscillator, but has unique characteristics. Depending on the operating condi-

tions, the shear-NO process may i) be inherently stable, ii) oscillate spontaneously in

response to random disturbances or iii) synchronize with weak periodic stimuli. When the

complementary shear-driven and stretch-driven oscillators interact, either may dominate,

producing a rich family of behaviors similar to those observed in vivo.

Author Summary

For decades, cardiovascular physiology has been an area of intense research, and we have

a fundamental understanding of the mechanisms the heart uses to drive blood flow

through the distributed network of vessels in the body. The lymphatic system is now

receiving similar attention as more is learned about its functional role in disease processes.

The importance of the lymphatic system in collecting excess fluid from tissues and return-

ing it to the blood is well known, but how the lymph flow is regulated without a central

pump is poorly understood. Each segment of collecting lymphatic vessel can indepen-

dently contract yielding a network of distributed pump/conduits. This paper shows how

the lymphatic muscle cells that squeeze fluid along the lymphatic vessels can be effectively

regulated using only chemical and mechanical signals that they receive from their
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immediate microenvironment. Using stability theory and the tools of nonlinear dynamics

we identify two complementary oscillators that respond to stretch of the vessel wall and

shear of fluid flowing over the vessel wall. Numerical simulations of the combined oscilla-

tors show that they have characteristics well suited to the regulation of distributed systems

in general and may have application in other biological and physical contexts.

Introduction

To maintain fluid homeostasis, interstitial fluid drains into the lymphatic system through ini-

tial lymphatic vessels that carry it to the collecting lymphatic vessels. The collecting lymphatic

vessels transport the fluid (known as lymph) both passively and actively to lymph nodes and

back to the systemic blood circulation. Collecting lymphatic vessels are surrounded by special-

ized lymphatic muscle cells (LMCs) [1] and sub-divided by valve structures that define individ-

ual segments called lymphangions (Fig 1) [2]. Lymphangions serve as both pumps and

conduits. In contrast to the blood circulation, where a single pump drives flow through rela-

tively passive conduits, each lymphangion has the ability to pump lymph through the converg-

ing network to lymph nodes and eventually to the thoracic duct. Pumping occurs when

expansions in radius draw fluid into the upstream end of the lymphangion and then expel it

downstream during a contraction. Directional flow is enforced by intraluminal valves, which

favor flow toward the thoracic duct. Lymphatic vessel contractions are triggered when cyto-

solic Ca2+ entering from intravascular stores and outside the cell surpasses a threshold concen-

tration in the cytoplasm of the LMC, resulting in actin and myosin cross-bridging within the

LMCs [3]. The contraction phase ends as transmembrane pumps restore cytoplasmic Ca2+

concentration to equilibrium allowing actin-myosin binding to relax, and the trans-wall pres-

sure and the passive elastic properties of the wall to reopen the vessel. The effects of Ca2+ on

LMC contraction are moderated by endothelial-derived relaxation factors (EDRFs) that act as

potent dilators of lymphatic and blood vessels when produced by the vessel-lining lymphatic

endothelial cells (LECs) in response to dynamic fluid shear stresses. The best known EDRF is

nitric oxide although others such as histamine have been shown to be important [4, 5]. For

notational simplicity we represent the entire class of EDRFs herein as NO. The NO and Ca2+

levels are both subject to mechanical regulation; Ca2+ can enter the cell through stretch-acti-

vated ion channels [6, 7], and NO is produced by LECs when they are exposed to increased

fluid shear stress [8]. Although rhythmic contractions can be produced by purely chemical

oscillations in Ca2+ within the LMCs [9, 10], it is likely that feedback regulation is necessary

for robust homeostasis. Indeed, we previously used a relatively complex numerical simulation

of lymphatic pumping to demonstrate that a wide spectrum of oscillatory behaviors is possible,

and that the behavior is very sensitive to local levels of stretch and stress [11].

Fig 1. A single lymphangion while opening and closing with valves at the inlet and outlet.

doi:10.1371/journal.pcbi.1005231.g001
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Our present aim is to reduce the complexity of our previous model to examine how the

observed oscillations arise from the integration of simple mechanical and chemical processes

within a physiological system. Once simplified, we employ tools such as linear stability analysis

to identify key parameter groups that determine the qualitative dynamic behaviors of such sys-

tems. Linear stability analysis seeks to determine which parameter values cause a small distur-

bance to grow rapidly from an initial state, or alternatively decay back to equilibrium. In

addition, our approach allows us to show how oscillations can arise from the interactions

between mechanical and chemical processes that lack intrinsic oscillators when considered

separately. Here we develop generic formulations of the mechano-chemical processes in the

muscular lymphatic vessel wall based on Ca2+ and NO signaling, then explore the dynamics of

each chemical species while holding the effects of the other constant. Finally we examine the

behavior of the fully coupled system. Linear stability analysis reveals a new class of oscillator

arising from the dynamics of shear and NO that can act alone or in concert with the better rec-

ognized Ca2+ dynamics. The most remarkable feature of the shear-NO mechanism is its ability

to offer distributed control of the pumping process, which is essential for managing a decen-

tralized network of pumps and conduits.

Methods

Model Formulation

Our model is based on a single lymphangion (Fig 1) bounded at each end by one-way valves.

The radius of the lymphangion is governed by the radial forces which are determined by the

contractile (Ca2+) and dilatory (NO) signaling molecules. Neglecting inertial effects, the radial

forces on the vessel wall balance as

D
dR
dt
¼ � EðRÞ � FðR;CCa;CNOÞ þARðtÞ ð1Þ

where the left hand side represents rate dependent effects with D incorporating the visco-

elastic material properties of the vessel wall as well as viscous losses in the flow and lags in the

transduction of concentrations into force, E is a restoring force-including elastic forces and

vessel “tone” -imparted by the material properties of the vessel wall and F is a dynamic

inward acting contractile force produced by muscle cells that surround the vessel. To a first

approximation, we assume that the concentration of Ca2+ is transduced into a contractile force

as F ¼ FCaCCa=ð1þ aCNOÞ where α scales the possible desensitizing effect of NO [12]. The

activation term AR can include a steady component from the mean transmural pressure differ-

ence pm that influences the baseline radius as well as extrinsic disturbances to the radius from

the surrounding tissue and adjacent lymphangions.

The restoring force is typically highly nonlinear[13–15]. Here we adopt the form EðRÞ ¼
AeaR � poffset with stiffening coefficient a, scaling coefficient A, and offset pressure poffset selected

to give a good fit of Shirasawa and Benoit (see the third figure of reference [15]) at typical oper-

ating pressures. In our numerical simulations we retain the full nonlinear form of EðRÞ, but

for the stability analysis that follows we linearize the elastic force near an equilibrium radius R1

in the absence of dynamic increments to Ca or NO as EðRÞ � E0 þ E1ðR � R1Þ where E0 is the

elastic force at equilibrium and a Taylor series expansion near equilibrium yields E1 ¼ AaeaR1 .

We find the equilibrium radius by solving 0 ¼ D dR
dt ¼ � ðAeaR1 � poffsetÞ � FCaSCa0

=KCa þ pm for

R1 where pm is the mean transmural pressure. Given the stiffening behavior of the wall

(E1 / eaR1 ), we expect that appropriate values of E1 will be larger at higher mean transmural

pressures where the equilibrium radius will be somewhat larger.

Lymphatic Oscillators
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The concentrations of the signaling molecules (i 2 {Ca, NO}) are governed by the generic

conservation law

dCi

dt
¼ � KiðCCa;CNOÞ þ S iðR; _R;CCa;CNOÞ þAiðtÞ ð2Þ

where all concentrations are taken to be dimensionless ratios relative to a suitable reference, Ki

is clearance of the signaling species through chemical reaction, transmembrane ion pumps

and advective-diffusive transport, Si is a dynamic source term for the signaling molecule and

Ai is an additional source term that can include the effects of imposed flow from upstream

fluid pressure, inflammation, pace-making signals from adjacent cells, neural signaling, ran-

dom disturbances, etc.

Stretch-Ca Dynamics

Since our focus is on the interactions between Ca2+ and NO, we introduce a minimal repre-

sentation of the Ca2+ dynamics rather than a fully detailed model of Ca2+ oscillations as may

be found in the literature [10, 16]. We retain the following features: i) at rest, Ca2+ is at a low

concentration in the cytoplasm of LMCs; ii) a contraction is initiated when Ca2+ is rapidly

admitted to the cytoplasm through ion-selective channels thereby triggering cross bridge for-

mation between actin and myosin chains creating a contractile force [17]; iii) relaxation of

LMCs coincides with a drop in cytoplasmic Ca2+ concentration due to a drop in the rate of

influx and the restoration of baseline conditions by ion pumps in the cell membrane and sar-

coplasmic reticulum; and iv) the LMC is refractory to a new contraction cycle until Ca2+ lev-

els have returned to near equilibrium. As the Ca2+ levels approach their threshold level, we

hypothesize that the membrane acquires sensitivity to small perturbations. Furthermore, the

sensitivity is enhanced when the membrane is stretched to a larger radius. This models

stretch-sensitive ion channels found in LMCs [6, 18]. Each step in the process has the poten-

tial for modulation by NO. Alternatively, each form of modulation by NO can be disabled to

demonstrate behaviors that have been observed in experimental preparations, for example

after removal of LECs (which produce NO) or the genetic or pharmacological suppressions

of NO [19–21].

We mathematically express the release of Ca2+ into the cytoplasm from intracellular stores

and the extracellular fluid as the sum of a steady source Sca0 needed to maintain the baseline

Ca2+ concentration and a transient component that is sufficiently rapid to be modeled as an

impulse function δ(t) where t is the time since the Ca2+ concentration most recently passed the

threshold necessary to trigger another contraction CCaThresh. This is expressed as,

SCa ¼ SCa0 þ
SCa1dðtÞ
ð1þ gCNOÞ

ð3Þ

where SCa1/(1 + γCNO) is the magnitude of a bolus of Ca2+ with a possible reduction due to NO

that is scaled by γ. We model the clearance of Ca2+ from the cytoplasm with

KCa ¼ KCað1þ bCNOÞðCCa � CCaThreshÞ ð4Þ

where KCa is a rate constant and β scales the possible enhancement of Ca2+ clearance attributed

to NO [12, 16]. At high concentrations of Ca2+ the clearance rate may be limited by the mem-

brane pump capacity, but near the threshold required to trigger a contraction we assume clear-

ance rates proportional to the concentration increment. The threshold itself may include a

random component that we incorporate into the activation term.

Lymphatic Oscillators
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The linearized form of the model for a constant level of NO can now be written as

D
dR
dt
¼ � E1R � FCaCCa þARðtÞ ð5Þ

and

dCCa

dt
¼ � KCaCCa þ SCa1dðtÞ þACaðtÞ ð6Þ

where the constants have been absorbed into the activation terms so that the radius and con-

centration now represent the increments from baseline values. The parameters SCa1 and KCa

now include the adjustments due to NO introduced in Eqs 3 and 4.

Shear-NO Dynamics

In the previous section we developed the model so that it reproduces Ca2+ induced contrac-

tions. We next considered how NO, created when LECs experience increased shear stress, can

modulate contractions when it diffuses rapidly into adjacent LMCs. A suitable form for the

NO source term can be obtained by considering steady laminar flow in a circular tube with

negligible inertia [22]. Conservation of mass in a tube of time-varying radius requires that @Q
@z ¼

� 2pR dR
dt which when integrated with respect to z along a vessel yields QðzÞ ¼ � 2pR dR

dt z þ C1

where the constant of integration depends on the end conditions for the lymphangion. When

the segment is contracting dR
dt < 0 and the upstream valve is closed [Q(0) = 0] we have

QðzÞ ¼ � 2pR dR
dt z. Alternatively, if the segment is expanding dR

dt > 0 and the downstream valve

is closed (Q(L) = 0), we obtain QðzÞ ¼ 2pR dR
dt ðL � zÞ. We can express the mean flow along the

length more compactly as �Q ¼ pRj dRdt jL. When additional flow Q0 is imposed on the segment

by an axial pressure gradient we have �Q ¼ pRj dRdt jLþ Q0. Approximating the velocity profile

with that of steady laminar flow with negligible inertia [22] we relate the mean shear stress τ to

the flow rate by t ¼ 4m �Q
pR3 . The mean shear stress along the segment due to dynamic changes dur-

ing contraction or expansion is therefore approximately t ¼ 4mL
R2 j

dR
dt j þ

4mQ0

pR3 . Recent studies

show that valves in collecting lymphatic vessels are biased toward the open condition [23], but

the simplification employed here allows us to study the basic stability of the system, at the pos-

sible expense of some accuracy in the predictions of pumping efficiency. There may be levels

of shear stress below which NO production is negligible and above which NO production satu-

rates at a maximum, but here we linearize the transduction of shear stress into the production

of NO in an intermediate range to yield

SNO ¼
SNO

R2

dR
dt

�
�
�
�

�
�
�
�þ SNO0

ð7Þ

where SNO has absorbed the remaining constants in the shear stress expression and SNO0
repre-

sents NO released due to the through-flow term Q0 or chronic sources of NO such as might

arise during inflammation. The source term SNO0
can be time varying, but arises from the local

environment of the lymphangion and mathematically acts as an input to our model of a single

lymphangion rather than as an interaction within the system itself. SNO0
therefore can serve as

an external trigger to the system or as a steady offset, but does not directly impact the dynamics

of an individual lymphangion, except by parametrically (rather than dynamically) changing

the equilibrium radius.

We can examine the effects of fluid viscosity on the pressure by using the same set of

assumptions. The pressure will vary due to viscous flow effects according to
@p
@z ¼

� 8mQ
pR4 . When

Lymphatic Oscillators
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contracting we have
@p
@z ¼

16m

R3
dR
dt z, which when integrated along the length gives

pðzÞ ¼ 16m

R3
dR
dt z

2 þ pð0Þ. Averaging over the length of the segment yields �p ¼ 16mL2

3R3
dR
dt þ pð0Þ

where the first term gives the magnitude of the pressure decrement (or increment for vessel

expansion) due to flow induced by the contraction of a single lymphangion. We see that the

pressure increment due to flow induced by the single lymphangion also multiplies dR
dt , so it can

be absorbed into the overall damping term D. For typical vessel sizes, we find that the lag due

to viscosity is orders of magnitude smaller than that from chemical and mechanical lags which

are on the order of one second.

NO does not produce a true outward force. However, it is conceptually equivalent to con-

sider an effective force produced by NO that has the effect of countering FCa and the elastic

effects. Mathematically, for small αCNO, we can write this as

F ¼
FCaCCa0

1þ aCNO
� FCaCCa0ð1 � aCNOÞ ð8Þ

By defining FNO� FCaCCa0α, we can write

FNO ¼ � FNOCNO ð9Þ

And the net force from Eq 8 becomes

F ¼ FCaCCa0 � FNOCNO ð10Þ

where the net contractile force is decomposed into a positive term set by the baseline Ca2+ lev-

els and a negative term that represents how the Ca2+ levels are modulated by NO. Thus, the

NO-dependent term is not a true outward force, but arises mathematically from a reduction in

the Ca2+-dependent contractile forces.

The parameter values used in the simulations that follow are given in Table 1. The parame-

ter values were based on experimental data where possible, but were chosen to demonstrate a

wide range of mathematical behaviors for the system rather than to mimic a particular experi-

mental data set in detail. As a representative example, we show simulations based on measure-

ments in rats [24] which offer data relating Ca2+ concentrations to lymph vessel diameter and

contractile tension. Our own experiments discussed later [20] were done on mice which have

smaller collecting lymphatic vessels than rats.

Specific parameters governing the effects of NO are difficult to estimate, but fortunately

may not be necessary here. As will be shown in the results section, we require only estimates of

combinations of parameters such as SNO and FCaCCa0α, rather than values for each parameter

individually. Unlike the geometrically-detailed continuum model of lymphatic NO transport

in Wilson et al [25] that includes shear-induced production and clearance by diffusion, con-

vection and reaction, our present model employs averages over a single lymphangion and

combines the sensitivity to shear stress with the rate of production of NO. To that end, we

employ parameter values that yield diameter changes due to NO on the order of 10% as

observed in [20, 21]. Moreover, we expect the effects of NO to be rapid. NO is released by

endothelial cells about 2 seconds or less after increases in shear stress as observed previously

[26–29]. Lymphatic vessels can be expected to dilate faster than blood vessels [30] because

their muscle cells contain more rapid-acting contractile proteins than those of blood vessels

[31]. We take the clearance of NO to be similar to, but somewhat faster than, that of Ca2+ [32].

Parameters such as the contractility, NO production and the mechanical stiffness appear to

depend on anatomical location, species and age [13, 28, 33–36], suggesting that the full range

of possibilities realizable in vivo awaits further investigation.

Lymphatic Oscillators
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Results

Here we first present analytical and numerical results for cases in which the stretch-Ca2+ dynam-

ics are active, but with constant NO levels. We will then present results of our model for when

shear-NO dynamics are active, but Ca2+ levels do not spike, but remain near baseline. Finally,

we will present results of our model for fully coupled stretch-Ca2+ and shear-NO processes.

Stretch-Ca2+ Dynamics with Constant NO Levels

In the absence of dynamic activation, Eq 6 implies the Ca2+ concentration during each con-

traction cycle will decay as CCaðtÞ ¼ SCa1e� KCat . Using this as an input to Eq 5, we find that the

radius varies from its baseline value during each contraction cycle as

DRðtÞ ¼
FCaSCa1

E1KCa

ðe� t=tCa � e� t=tmechÞ

ðtmech � tCaÞ
ð11Þ

where we see that the return to equilibrium depends on two characteristic times, one set by the

rate of Ca2+ clearance tCa = 1/KCa and the other by the mechanical lag tmech = D/E1 which can

include the lag between the concentration increase and force production. As a reference time

scale we have selected tCa = 1/KCa = 1 s which is in the range observed by Shirasawa and Benoit

[15]. They observed a similar lag between the rise in Ca2+ concentration and the peak force

generation. Here we use this lag as an estimate of tmech which we take to incorporate the visco-

elastic and chemical-mechanical transduction lags.

While both time constants contribute to the overall response, the slower of the two charac-

teristic times gives the dominant time constant tc that determines the return to equilibrium.

Experimental observations of the magnitude of radius change as a function of pressure show

Table 1. Baseline Parameter values

Parameter Symbol Value Units Source

Lymphangion radius R0 1.3x10-4 m [15]

Mean pressure pm 100–1000 Pa [15]

Wall stiffening exponent a 2.45x104 m-1 [15]

Wall stiffening coefficient A 12.3 Pa [15]

Offset pressure for wall stiffness poffset 100 Pa [15]

Wall damping coefficient D 3x106 Pa-s/m [15]

Baseline Ca concentration CCa0 1

Baseline Ca release rate SCa0 1

Ca release pulse size SCa1 0.85 [15]

Ca force production coefficient FCa 100 Pa [15]

NO source from shear stress coefficient SNO 3x10-3 m

Ca clearance rate constant KCa 1 s-1 [15]

NO clearance rate constant KNO 5 s-1

Contraction force suppression by NO α 0–1

Ca clearance enhancement by NO β 0–1

Ca source blunting by NO γ 0–1

Ca noise standard deviation σCa 10−3

NO noise standard deviation σNO 10−3

Integration time step dt 10−4 s

Parameters without units are taken to be dimensionless ratios. The concentrations are normalized relative to nominal concentrations. Force related terms

are given as pressure equivalents in a circular tube.

doi:10.1371/journal.pcbi.1005231.t001
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that it decreases with increased internal pressure [21]. This phenomenon is reproduced by our

model as the vessel wall stiffens (larger E1 in the denominator) at greater radius. The amplitude

may be further modified if the myosin cross bridging is length dependent as seen in skeletal

muscle [36].

The frequency of contractions at constant NO levels is set by the interplay between the

characteristic time for calcium tCa and the magnitude of the random activation term. In addi-

tion to the steady source of Ca2+ that establishes the vascular tone, we include a random com-

ponent ACaRandðR; tÞ with zero mean and a standard deviation σ that can be applied to either

the concentration itself or to the threshold level at which a new release of Ca2+ is triggered. A

higher radius leads to more stretch in the LMC membrane and therefore greater sensitivity of

ion channels. This can be modeled by increasing the noise level (for example let σ/ pm). This

will lead to a higher frequency at larger radii as found experimentally [21]. Exponential decay

of Ca2+ near equilibrium leads to a latency period between contractions that varies as T = tc log

(Cmax/σ) where Cmax is the magnitude of the Ca2+ increment from baseline.

We further investigated random activation with the aid of numerical simulations imple-

mented with the Euler-Maruyama method [37], which properly scales the computational time

step with the standard deviation of the noise (Fig 2). The simulation presented in Fig 2d–2f

results from a higher mean pressure than Fig 2a–2c. Thus, the baseline radius is larger in Fig

2d–2f, which in turn yields a stiffer wall (larger E1) leading to a smaller mechanical time con-

stant (smaller tmech) and reduced amplitude for change in the radius.

We note that our simple model of stretch-Ca2+ dynamics replicates important features of

the contraction cycles observed in vivo [20] where contractions are generally similar to one

another in magnitude and duration, but may be separated by inconsistent periods of latency.

In Fig 2, we see that the simulated contractions are nearly identical to each other (that is, the

trajectories nearly retrace one another in the phase portraits shown Fig 2c and 2f), but occur

on inconsistent intervals. Even though the intervals between contractions are not perfectly uni-

form, they are well estimated by tc log(Cmax/σ). We also see that increased transmural pressure

can reduce the interval between contractions by stiffening the wall (pm ") R1 ") E1 ") tmech

#) tc #) T#) and also by increasing the sensitivity of the Ca2+ channels by stretching the ves-

sel wall (pm ") σ ") T #) yielding higher frequency contractions (compare Fig 2b and 2e).

We also find that our model of the stretch-Ca2+ process readily synchronizes when we

impose extrinsic rhythmic pace-making since only small variations in the Ca2+ concentration

relative to the threshold level are needed to initiate the next contraction cycle (Fig 3). Such

small variations in Ca2+ concentration can be readily introduced by diffusion or voltage signals

from adjacent LMCs. Alternatively, the vessel may be locally stretched by lymph arriving from

upstream, which can also trigger a local contraction. In this way, neighboring LMCs can syn-

chronize contractions to coordinate flow along a series of lymphangions throughout a con-

nected network of collecting lymphatic vessels [38, 39].

Shear-NO Dynamics with Ca2+ Near Baseline Levels

The conditions for oscillations in radius to arise near baseline Ca2+ levels in the absence of

sharp spikes in Ca2+ as considered in the previous section are available from linear stability

analysis of the shear-NO process near a point R1 which yields

_R
_CNO

" #

¼

�
E1

D
FNO

D

�
SNOE1

DR2
1

sgnð _RÞ
SNOFNO

DR2
1

� KNO

2

6
6
4

3

7
7
5

R

CNO

" #

þ ½inputs� ð12Þ
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where the inputs include all extrinsic disturbances from the adjacent lymphangions and sur-

rounding tissue. We treat small variations in R parametrically so that the dynamics of the sys-

tem may be characterized by the eigenvalues of the Jacobian matrix [40] which are roots of the

characteristic polynomial:

l
2
þ

E1

D
þ KNO � sgnð _RÞ

SNOFNO

DR2
1

� �

lþ
E1KNO

D
¼ 0 ð13Þ

Since all of the coefficients are positive, stability requires only that the second term be posi-

tive. Thus the system is always stable during contraction ( _R < 0). However during dilation

( _R > 0) the second term can be positive or negative which allows the system to switch between

stability and instability (Fig 4).

Fig 2. Stretch-Ca dynamics at constant NO with noise triggering. At lower pressure a-c) pm = 100 Pa, tCa =

1s and tmech = 1.22 s, and at a higher pressure d-f)pm = 500Pa, tCa = 1s, and tmech = 0.24 s. The noise level is σ =

0.01. In each case the overall time constant is given approximately by the greater of tCa and tmech. The period is

predicted approximately by tc log(Cmax/σ) where Cmax is the amplitude of the change in Ca2+ concentration.

doi:10.1371/journal.pcbi.1005231.g002
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Herein is the key feature from which NO can induce spontaneous oscillations in the radius

without the sharp spikes in Ca2+ concentration described in Eq 6. If the radius is large enough

so that E1/D + KNO> SNOFNO/DR2, then the fixed point is inherently stable. If instead, the

radius is small enough that E1/D + KNO< SNOFNO/DR2 then the radius will unstably increase

when perturbed. The instability arises because a slight increase in radius (from point 0 on Fig

5) pulls fluid into the lymphangion, increasing shear and temporarily creating a runaway effect

wherein more NO is released from the LEC further increasing the radius and drawing in still

more fluid (upper branch from point 0 to point 2 on Fig 5b). The instability persists until the

Fig 3. Synchronization of stretch-Ca dynamics with small amplitude sinusoidal inputs at constant

NO. At higher pressure pm = 500 Pa, tCa = 1 s, and tmech = 0.24 s with input amplitude of 0.01 and input

frequencies of a) 0.3 Hz, b) 0.2 Hz, c) 0.1 Hz and d) 0.05 Hz. The tick marks indicate the beginnings of

successive cycles of the sinusoidal input signal. The ratio of output frequency to input frequency is at the right

of each panel.

doi:10.1371/journal.pcbi.1005231.g003
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radius becomes large enough at point 2 that the shear stresses begin to drop because more

cross-sectional area is available for lymph flow. Thereafter the release of NO occurs more

slowly than its degradation so that the system can return stably to equilibrium along the lower

branch of the trajectory from point 2 to 0. Mathematically, the unstable increase in radius per-

sists until the sign of _R changes at point 2. A change in the sign of _R does not require that the

eigenvalues move to the left half of the complex plane at point B on Fig 4 as required for inher-

ent stability, but rather requires only that the radius increase sufficiently to move the eigenval-

ues off of the real axis beyond point A, thus permitting at least a partial cycle of oscillation that

includes a time at which _R ¼ 0. As the vessel begins to contract, the sign of SNOFNO/DR2

changes at the R-nullcline where _R ¼ 0, leading to an unconditionally stable return to the orig-

inal radius. The time scale for contraction is approximated by tc� tmech + tNO + tFNO where the

three contributions arise from mechanical lag tmech as before, the clearance of NO tNO = 1/KNO,

and the rate of force modulation by NO tFNO = SNOFNO/E1KNOR2. To a similar degree of

approximation, the instability of the NO-shear dynamics requires tmech + tNO� tFNO. In other

words, the change in force elicited by shear stress must persist longer than processes that tend

to dissipate its effects. Exact algebraic expressions for the eigenvalues may be employed if

desired, but this approximation captures the key dependencies. See Table 2.

The NO cycle can be generalized into a controllable and synchronizable oscillator. Fig 6

shows the behavior of the NO cycle in response to small random disturbances. During the sta-

ble contraction process, the vessel remains refractory to disturbances until close enough to

equilibrium for a random disturbance to trigger another cycle, much as we found with the

Fig 4. Location of the shear-NO eigenvalues in the complex plane as the baseline radius R1 increases

parametrically. The arrows indicate the direction of increasing R1. The eigenvalues during contraction

always have a negative real part indicating stability. When the baseline radius is large enough to move the

eigenvalues beyond point B the system is inherently stable during dilation. At point B the system is marginally

stable and will oscillate at frequency f = (E1KNO/D)1/2/2π. For smaller baseline radius, between points A and B,

the response is unstable, but oscillatory. And when the baseline radius is smaller at point A, the dynamic

component of the radius increases exponentially without oscillation until the radius is large enough to reach

the range between A and B where oscillations can occur.

doi:10.1371/journal.pcbi.1005231.g004
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stretch-Ca process. Here the period of the NO-induced oscillations varies as tc log(Cmax/σ) as

before but tc and Cmax now refer to NO rather than Ca2+. As with Ca2+, a relatively quiet envi-

ronment or reduced sensitivity to disturbance will elicit longer latency periods between cycles

but will not significantly change the shape of the shear-NO cycle.

The NO dynamics can also readily synchronize with externally-imposed, small-amplitude

sinusoids (Figs 7 and 8). Fig 7b and 7c show how the radius oscillates at precisely the input fre-

quency for frequencies reasonably close to the response when noise triggered (Fig 6). However,

Fig 5. a) Generic time response and b) phase portrait of the shear-NO oscillator. Following a small

perturbation shown as a green arrow near equilibrium at point 0, by either a decrease in radius or an increase

in concentration, the radius increases unstably (red arrows _R_
> 0) until _R_

¼ 0 at point 2. Thereafter, the

trajectory begins a stable return (blue arrows _R_
< 0) to equilibrium at point 0. NO reaches its peak

concentration at point 1 before the radius reaches its maximum, but this point does not directly influence the

stability of the system.

doi:10.1371/journal.pcbi.1005231.g005
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when the input frequency is too high (Fig 7a) or too low (Fig 7d) synchronization occurs, but

at half or double the input frequency, respectively. Fig 8 shows a parametric study of synchro-

nization over a wide range of input frequencies and amplitudes where we find that synchroni-

zation can include a variety of integer ratios between input and output frequencies as

explained further in the Discussion.

Combined Stretch-Ca2+ and Shear-NO Dynamics

Having explored the system dynamics when Ca2+ and NO are taken to be constant relative to

each other we now consider their combined, dynamic effects. Our model includes three possi-

ble interactions reported in the literature: NO may i) desensitize the LMCs to Ca2+ as modeled

by Eq 10, ii) modify the availability of Ca2+ by 1/(1 + γCNO) or iii) speed clearance of Ca2+ by 1

+ βCNO [41, 42].

Our simulations (Fig 9) show that the dynamic effects of NO are most pronounced when

the shear-NO dynamics are unstable. When the shear-NO dynamics are unstable, the radius

can overshoot the nominal radius before or after a Ca2+-induced contraction, yielding oscilla-

tions in radius that are more symmetrical about equilibrium than when shear-NO is stable. At

marginal stability (Fig 9d), the NO concentration rings at a frequency determined by the point

where the eigenvalues of the shear-NO oscillator cross the imaginary axis f = (E1KNO/D)1/2/2π.

At larger radii, the shear-NO mechanism is inherently stable, but can still reduce the magni-

tude of the oscillations driven by the stretch-Ca2+ process. This process is important in the

presence of an assisting pressure gradient because the dilation induced by the forced flow can

put the vessel into the range of radii where the shear-NO mechanism can inhibit contractions

that would otherwise tend to restrict free flow through the vessel.

The overall frequency is set by a complex interplay of stretch-Ca2+ and shear-NO mecha-

nisms, but will typically be dominated by the faster of the two processes. Long latency intervals

between Ca2+-induced contractions can permit NO to produce an unstable dilation, whereas,

short intervals due to Ca2+ can suppress the autonomous oscillations possible through the NO

mechanism. Interestingly, the published clearance rates for Ca2+ and NO cover a wide enough

range that either possibility exists in vivo [15, 32].

Experimental observations of diameter in vivo show cycles consistent with the model pre-

dictions (Fig 10) (data from [20]). In the absence of direct measurements of concentrations,

we employ an alternative phase portrait of diameter plotted against the rate of change of diam-

eter. Fig 10a and 10b are from a wild-type mouse in which Ca2+ and NO effects can operate

normally. Here, we observe complex oscillations that include both rapid contractions and

Table 2. Representative Time Constants Based on Parameters in Table 1.

Equilibrium

Radius

Linearized

Stiffness

Mechanical Time

Constant

Calcium Clearance

Time Constant

NO Clearance Time

Constant

NO-Shear Time

Constant

Overall Time

Constant

R1(m) E1(Pa/m) tmech(s) tCa(s) tNO(s) tFNO(s) tc(s)

pm =

100 Pa

α = 1

β = γ =

0

8.5x10-5 2.45x106 1.22 1 0.2 3.35 4.77

pm =

500 Pa

α = 1

β = γ =

0

1.51x10-4 1.23x107 0.24 1 0.2 0.21 0.66

doi:10.1371/journal.pcbi.1005231.t002
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occasional strong dilations above the baseline diameter as expected from the shear-NO mecha-

nism. In contrast, when the NO effects have been genetically deleted in eNOS-/- mice in Fig 10c

and 10d, we see wave forms that are nearly identical to each other but dominated by contrac-

tion with the dilatory effects of NO appearing to be substantially weakened. In all cases, we see

cycles occurring on irregular intervals as we expect from noise-triggered oscillators.

Discussion

While the correspondence between the experiments and the model is encouraging, we should

not expect a model of an isolated lymphangion to reproduce all features of a vessel in an intact,

in vivo vascular network. For example, the effects of flow introduced from upstream or distur-

bances from surrounding tissue are inputs present in the animal, but are not included in the

Fig 6. Shear-NO dynamics at constant Ca2+ with noise triggering. At low pressure a-c) pm = 100 Pa, tCa = 1

s, tmech = 1.22 s, tNO = 0.2 s and tFNO = 3.35 s where the shear-NO oscillator is unstable (tmech + tNO < tFNO) and at

a higher pressure d-f) pm = 500 Pa, tCa = 1 s, tmech = 0.24 s, tNO = 0.2 s and tFNO = 0.21 s where the shear-NO

oscillator is stable (tmech + tNO > tFNO) yielding little change in radius. The noise level is σ = 0.01. In each case the

overall time constant for return to equilibrium is given approximately by tmech + tNO + tFNO. The period is predicted

approximately by tc log(Cmax/σ) where Cmax is the amplitude of the changes in NO concentration.

doi:10.1371/journal.pcbi.1005231.g006
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modeled dynamics. We have also not yet included effects due to nonlinear valve efficiencies or

the bias of the check valves toward the open position [43]. Nonetheless, phase portraits, such

as those newly employed here, promise to assist further study of the nonlinear dynamics that

govern vascular oscillations.

While our results await further experimental validation and improved estimates of key

parameter values, it is interesting to consider the newly identified shear-NO oscillator more

generically from a nonlinear dynamics perspective. The shear-NO oscillator has some impor-

tant similarities and differences from the well-known Van der Pol oscillator [44] which has the

Fig 7. Synchronization of shear-NO dynamics with small amplitude sinusoidal inputs at constant Ca.

At lower pressure pm = 100 Pa, tCa = 1 s, tmech = 1.22 s, tNO = 0.2 s and tFNO = 3.35 s where the shear-NO

oscillator is unstable (tmech + tNO < tFNO) with input amplitude of 0.01 and input frequencies of a) 0.08 Hz, b)

0.04 Hz, c) 0.02 Hz and d) 0.01 Hz. The tick marks indicate the beginnings of successive cycles of the

sinusoidal input signal. The ratio of the output frequency to the input frequency is at the right of each panel.

doi:10.1371/journal.pcbi.1005231.g007
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Fig 8. Synchronization of the shear-NO oscillator with a sinusoidal input. a) Color bands indicate

domains in which the output and input frequencies lock into simple, integer ratios. The red curve gives an

estimate of the autonomous frequency from f = 1/(tclog(CNOmax/σ) where the amplitude of the noise has been

replaced by the amplitude of the input sinusoid, b) Output frequencies at input amplitude of 0.01 showing a so-

called Devil’s staircase of discrete, rational values.

doi:10.1371/journal.pcbi.1005231.g008
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form

€x � Að1 � x2Þ _x þ x ¼ gðtÞ ð14Þ

The form of the characteristic polynomial in Eq 13 implies that the shear-NO oscillator

may be written as

€x þ Að1 � sgnð _xÞB=x2Þ _x þ ðx � x1Þ ¼ gðtÞ ð15Þ

where the generic variable x fills the role of the radius in the shear-NO model, x1 is the nominal

Fig 9. Fully coupled Ca2+ and NO dynamics operating autonomously. a-c) Low pressure (small radius) with

overshoot of the nominal radius due to instability in the NO dynamics leading to Fig 8 trajectories in phase space

(tmech + tNO < tFNO) pm = 100 Pa, tCa = 1 s, tmech = 1.22 s, tNO = 0.2 s, and tFNO = 3.35 s, d-f) Higher pressure (large

radius) without overshoot due to stable NO dynamics (tmech + tNO > tFNO) pm = 500 Pa, tCa = 1 s, tmech = 0.24 s,

tNO = 0.2 s and tFNO = 0.21 s. Note the decaying oscillations of the NO concentration in panel d. Near marginal

stability (tmech + tNO + tFNO) the NO concentrations oscillates at a frequency approximated by f = (E1KNO/D)1/2/2π
which corresponds to where the eigenvalues cross the imaginary axis at point B on Fig 4.

doi:10.1371/journal.pcbi.1005231.g009
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Fig 10. Typical in vivo experimental measurements of lymphangion diameter (a,c) in a mouse with

phase portraits of diameter vs. rate of diameter change (b,d) [20]. a,b) Wild type mice with Ca2+ and NO

active. c,d) NO effects genetically deleted in eNOS-/- mice. Spacing of data points indicates the rate of motion

in the phase plane (sampling period 0.21 s). The box surrounds a region of closely spaced points indicative of

an equilibrium condition. Orange arrows show the trajectory during a contraction, while green arrows show a

dilation. Contraction and dilation dynamics are generally more erratic when the vessel is small and has active

NO than when the vessel is larger and has suppressed NO activity.

doi:10.1371/journal.pcbi.1005231.g010
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operating point and g(t) is a forcing function that can include steady, random or periodic

components.

The stability-determining second term in both oscillators can change sign based on the

magnitude of the variable with a positive second term implying stability. The Van der Pol

oscillator is known to self-sustain oscillations about the origin in phase space ðx; _xÞ ¼ ð0; 0Þ
when g(t) = 0, as its second term changes sign during different phases of each cycle. In con-

trast, the shear-NO oscillator operates near ðx; _xÞ ¼ ðx1; 0Þ, but with x> x1. Therefore, the sec-

ond term in Eq 15 can be either i) always be positive (x2
1
> B) regardless of the sign on _x

implying inherent stability or ii) can be conditionally positive depending on both the magni-

tude of B and the sign of _x. As a result, the shear-NO oscillator cannot produce self-sustained

oscillations for large radius (x2
1
> B). Furthermore, even when the radius is sufficiently small

(x2
1
< B), the radius will return unequivocally to equilibrium as long as _x<0 unless a non-zero

forcing function is present to change the sign of _x. However, we find that when x2
1
< B the

magnitude of the forcing needed to start a new cycle can be arbitrarily small and in the form of

either random noise or a periodic stimulus provided that enough time has passed for the sys-

tem to approach its equilibrium point.

In the context of the shear-NO dynamics, the key to oscillations is the inverse dependence

on radius for the NO source due to shear stress in Eq 7. As long as the exponent on R−2

remains negative (increasing radius leading to lower shear stress and less NO production),

then the NO-shear mechanism will be capable of a mathematical transition from unstable to

stable as seen above in the generic oscillator in Eq 15. The physiological impact of this result

then depends on the relative magnitude of the time scales identified herein, not on any single

parameter value. For example, the stability of the NO-shear mechanism depends on groups of

parameters such as tFNO = SNOFNO/E1KNOR2, which combines the sensitivity of the vessel to

shear stress, the contractile force, the wall stiffness and the NO clearance rates.

Inputs of constant magnitude have the effect of adjusting the equilibrium point. Using the

shear NO oscillator as an example, an increase in transmural pressure will dilate the vessel, as

will a pressure gradient that assists flow by inducing NO production via a steady shear stress.

Likewise, a steady source of NO from local inflammation will chronically dilate the vessel [20].

If the vessel becomes sufficiently large, the stability criterion found above suggests that the

shear-NO process will not support self-sustaining oscillations, in part due to the direct effect of

radius on the stability criterion, but also due to greater stiffness of the wall at larger radius

Table 3. Comparison of Ca2+-Stretch and NO-Shear Mechanisms Acting Alone.

Ca2+-Stretch NO-Shear

Sequence Contraction then dilation Dilation then contraction

Contraction Speed Fast Slow

Dilation Speed Slow Fast

Phase Plane Trajectory Clockwise Counterclockwise

Contraction Stability Unstable Stable

Dilation Stability Stable Unstable for small R1

Trigger Increasing R Decreasing R

Time Constant During Stable

Return

tc � maxð 1

KCa
; DE1
Þ tc �

1

KNO
þ D

E1
þ

SNOFNO
E1KNOR2

1

Effect of Noise on Period Increasing period with smaller noise T� tc log(CCamax/

σ)

Increasing period with smaller noise T� tc log(CNOmax/

σ)

Effect of Radius on Frequency Increasing frequency with larger R1 Increasing frequency with larger R1

Effect of Radius on Amplitude Decreasing amplitude with larger R1 Decreasing amplitude with larger R1

doi:10.1371/journal.pcbi.1005231.t003
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(higher E1). Nonlinearities in the force production and chemical source/elimination terms

may also alter the stability in similar ways.

Numerical simulation and examination in the phase plane reveal that the stretch-Ca2+ and

shear-NO processes possess numerous symmetries that offer intriguing possibilities when the

processes act together (Figs 2 and 6, Table 3). Most notably, we see that the shear-NO process

produces rapid and unstable dilation toward a larger radius, followed by stable contraction,

while the stretch-Ca2+ process causes the vessel to contract rapidly and unstably toward a

smaller radius and then to dilate stably. An essential feature of both the Ca2+ and NO mecha-

nisms is that taken separately they do not produce traditional, self-sustaining limit cycles, but

instead have a one-sided stability near equilibrium from which a new cycle begins only with a

perturbation from the local environment. Interestingly, a suitable trigger for the stretch-Ca2+

oscillator can be an increase in radius produced by the shear-NO mechanism. And conversely,

the shear-NO oscillatory can be triggered by a contraction arising from the stretch-Ca2+ mech-

anism. Balanov et al [45] reviews a variety of similar, so-called “noise-induced” oscillators in

contexts outside of lymphatic physiology such as neurons and electrical monovibrators, but to

our knowledge, the coupling of symmetric, noise-induced oscillators described in the present

study has not been previously investigated.

Balanov et al [45] also review how nonlinear oscillators can synchronize with small-ampli-

tude sinusoidal inputs. Here we found that synchronization of either oscillator can occur over

a wide range of frequencies (shear-NO shown in Fig 8, similar behaviors for stretch-Ca2+ act-

ing alone and in combination with shear-NO can be observed). The synchronization behavior

seen here is similar to that for the forced Van der Pol oscillator in its ability to produce so-

called Arnold tongues which are broad domains within which the input and output frequen-

cies are locked in ratios of m:n where m and n are small integers [44, 46].

Kornuta et al [47] recently showed that lymphatic vessels studied ex vivo synchronize their

contractions in a 1:1 fashion with imposed oscillatory variations in shear stress when the

amplitude of the stimulus is sufficient large and the frequency of the input is relatively close to

the autonomous frequency. Interestingly, they also observed that small amplitude variation in

transmural pressure did not yield 1:1 frequency locking. However, our examination of their

results (Fig 8 in [47]) suggests that 2:3 locking may have occurred. In the absence of imposed

flow, they also found that the vessel continued to contract, but with a lower and more erratic

frequency consistent with our simulated noise-triggered oscillator (Figs 2 and 3) in the absence

of the shear-NO mechanism. Ohhashi et al [48] also examined sinusoidal variations in trans-

mural pressure at frequencies well away from the spontaneous frequency. Here too, 1:1 fre-

quency locking did not arise, but the frequency of the contractions responded strongly to the

input waveform. Given the subtlety of identifying non-1:1 synchronization, further examina-

tion of the experimental record may be warranted.

In conclusion, we have presented a model of a vascular oscillator. The present analysis is suf-

ficiently general to point toward several features that are likely found in other systems. The lin-

ear stability analysis shows: (i) complementary mechanisms for dilation and contraction of

collecting lymphatic vessels, (ii) a fast, unstable process that recovers slowly and stably to a one-

sided equilibrium, (iii) disturbance-based triggering that facilitates either synchronization with

a cyclic pacemaker or spontaneous oscillations from random disturbances and (iv) the capabil-

ity for reciprocal modulation between contractile and relaxation effects. Those features are not

only limited to the presented example of Ca2+ and EDRFs but can be extended into other fields.

The ability of the Ca2+ and NO based oscillators to respond to each other and external stimuli

explains how lymphatic pumping can be coordinated along extended lengths of collecting lym-

phatic vessels without the need for higher order coordination. This new class of coupled, noise-

driven oscillator can help to explain the diverse pumping behavior of lymphatic vessels.
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