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Abstract: A simple and rapid synthesis of a CoFeRu-based electrocatalyst by a microwave-assisted
method (using water as the microwave absorbing solvent) is reported in this work. Agglomerates
with different sizes and shapes are observed by scanning electron microscopy technique. The energy
dispersive X-ray spectroscopy shows a low atomic percentage of Co and similar atomic percentage
of Fe and Ru. However, the X-ray diffraction exhibits only the presence of metallic Ru and Fe2O3

(hematite) phases. The oxygen reduction without and with 2 mol L−1 methanol is studied using the
rotating disk electrode technique. The electrochemical kinetic parameters obtained are compared to a
similar electrocatalyst reported in the literature, which was synthesized using a mixture of an organic
solvent with DI water as the microwave absorbing solvent. An improvement on the activity of the
electrocatalyst synthesized is observed, where high Tafel slopes are not observed. The electrocatalyst
also showed tolerance to the presence of methanol during the oxygen reduction reaction.

Keywords: microwave heating; green synthesis; Ru-based electrocatalyst; oxygen reduction

1. Introduction

Hydrogen technology has generated great interest for its high efficiency and low
pollutant emissions. In this way, polymeric electrolyte membrane fuel cells (PEMFCs) and
direct methanol fuel cells (DMFCs) have been extensively investigated. However, these
devices are limited by the low electrochemical activity at the cathode (where the reduction
reaction takes place). In DMFCs, the methanol crossover effect is another critical step; this
effect reduces the cathode efficiency by a competing electrochemical process, known as the
mixed potential effect [1,2]. Moreover, when the methanol is oxidized on the active surfaces
of Pt, an intermediate reaction produces carbon monoxide (−COads), which inactivates the
active sites on the surface of the electrocatalyst [3,4]. To reduce these effects several Pt-free
or Pt-alloy electrocatalysts have been reported in the literature [5–12].

In this way, cobalt-based electrocatalysts with attractive activity towards the oxygen re-
duction reaction (ORR) and tolerance to the presence of methanol have been studied [13–17].
Other kinds of electrocatalysts studied are those based on iron, where an iron loading
of 4.7 wt% has shown the best activity towards the ORR, yielding a 1000 h lifetime as
cathode in a fuel cell [18–20]. On the other hand, Alonso-Vante [21,22] has reported that
Ru chalcogenides with Chevrel phase-type show significant catalytic activity towards the
ORR in acidic media. Other Ru-M-based electrocatalysts (M = Se, Mo, Cr, Fe, Co, Pb)
have shown activity and selectivity towards the four-electron mechanism for the oxygen
reduction reaction [1,9,20,21,23–26]. On the other hand, the synthesis of carbon-decorated
monometallic electrocatalysts (FeFe-N/C and CoCo-N/C) with attractive activity towards
ORR has been reported; however, the FeCo-N/C carbon-decorated bimetallic electrocata-
lyst shows the best performance towards ORR [27]. Thus, when these metals are alloyed

Materials 2021, 14, 1662. https://doi.org/10.3390/ma14071662 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9506-2092
https://orcid.org/0000-0003-2123-4159
https://doi.org/10.3390/ma14071662
https://doi.org/10.3390/ma14071662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14071662
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/7/1662?type=check_update&version=1


Materials 2021, 14, 1662 2 of 12

with Ru (RuFe and RuCo), their electrocatalytic activities are superior to the monometallic
Ru electrocatalyst [28,29]. Another important feature of these bimetallic materials is that
they show activity towards hydrogen oxidation reaction in an alkaline medium [29].

However, many of these electrocatalysts were synthesized using conventional heating
methods, i.e., using an electric furnace or oil bath. The disadvantage of these methods is
that there is no efficient heat transfer, since the first to heat up are the walls of the container
vessel (reactor) and then the reactants either by convection or conduction. Therefore, long
time periods (usually hours or even days) are needed to reach the target temperature.
Besides that, organic or inorganic solvents as the reaction media are also used, i.e., they are
not environmentally friendly methods.

On the other hand, high-speed chemical synthesis of inorganic nanostructured mate-
rials (such as metal, carbon, metal oxide and polymer nanocomposite materials) in liquid
phase with microwaves has been used in recent years. This method involves effective
heating of materials due to the dielectric heating effects of microwaves. In this way, the
microwave-assisted synthesis is a fast and efficient technique that can be used to produce
materials with greater reproducibility. The ability of a substance (a solvent for example)
to transform electromagnetic energy into heat (at a given frequency and temperature) is
determined by the loss factor (tanδ). In this way, solvents are classified as high (tanδ > 0.5),
medium (tanδ 0.1–0.5) and low microwave absorbing (tanδ < 0.1). Therefore, the solvent
plays a very important role for the microwave-assisted synthesis of inorganic nanostruc-
tures. Although water is classified as medium microwave absorbing (tanδ < 0.123), it
becomes a very useful solvent for synthesis at high temperatures using the sealed-vessel
technology [30–34]. Therefore, water is a very interesting solvent to be used at temperatures
above its boiling point and high pressures (c.a. 60 bar) because it starts to behave like an
organic solvent, and this property can be advantageous for synthesis of materials in aqueous
media. In addition, water is a non-toxic and non-flammable solvent and is available in
nature. On the other hand, when a chemical reaction is carried out in liquid solvents using
a closed system it is called “solvothermal processing”, and when water is the only solvent,
“hydrothermal processing”. This process allows to synthesize many materials in short times
and at temperatures slightly below those required by conventional methods.

In this work, the effect of the solvent (deionized water) used for the synthesis of
the electrocatalyst based on CoFeRu and its electroactivity towards the oxygen reduction
reaction is reported. The electrocatalytic activity of the material is compared with a similar
electrocatalyst synthesized by a microwave-assisted synthesis but using a mixture of an
organic solvent and water [26]. This green chemical synthesis avoids the use of organic
solvents and long times during the synthesis of electrocatalysts, and it is of great importance
for a rapid development of this kind of material.

2. Materials and Methods

Electrocatalyst Synthesis. The CoFeRu (H2O) electrocatalyst was synthesized by
mixing 67.5 mg of Co(NO3)2·6H2O (99.999%, Sigma-Aldric, St. Louis, MO, USA) with
50 mg of Ru3(CO)12 (99%, Sigma-Aldrich), 63.7 mg of FeSO4·7H2O (99%, Sigma-Aldrich)
and 10 mL of DI-water (resistivity = 18.2 MΩ cm) and heated thermally using microwave
irradiation in a microwave reactor (Synthos 3000, Anton Paar, Australia) at 180 ◦C during
30 min and at a maximum pressure of 60 bar. The product was centrifuged at 3000 rpm
and washed with DI water and dried at room temperature.

Physical Characterization. The study of the chemical composition of the CoFeRu
electrocatalyst was obtained by EDS (energy-dispersive X-ray spectroscopy, Hitachi High-
Tech, Tokyo, Japan), using a Hitachi SU1510 microscope. The scanning electron microscopy
(SEM, SEMTech Solutions, North Billerica, MA, USA) image was obtained using a JEOL
JSM-7800F microscope (Tokyo, Japan). The structural characterization of the material was
carried out by XRD (X-ray diffraction) analysis with a Rigaku DMAX-2200 diffractometer
(Cu Kα1 radiation, 1.5406 Å, Rigaku Americas Corporation, The Woodlands, TX, USA).
The X-ray diffraction pattern was obtained using Jade 6.5 software (MDI Material Data,
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Livermore, CA, USA). The Fourier transform infrared spectroscopy (FT-IR) was made by
Bruker equipment, Tensor 27 model, using an ATR technique (Thermo Fisher Scientific,
Waltham, MA, USA).

Electrochemical Characterization. An electrochemical cell with support for three elec-
trodes, a potentiostat/galvanostat (Model AFCBP1, Pine Instrument, Durham, NC, USA)
and Aftermath software (V 1.6.10513, Pine Instrument, Durham, NC, USA) were used for
electrochemical measurements and recording of experiments. The working, reference and
auxiliary electrodes were glassy carbon disk, mercury sulfate (Hg/Hg2SO4/0.5 mol L−1

H2SO4) (0.680 V/NHE) and carbon rod, respectively; 0.5 mol L−1 H2SO4 (98%, J.T. Baker,
Fisher Scientific, Madrid, Spain) was used as the electrolyte. The method used for the
preparation of the CoFeRu/C electrocatalytic ink was as follows: first, 0.6 mg of CoFeRu
was mixed with 1.4 mg of Vulcan XC-72R (Fuel Cell) and 15 µL of 5% Nafion/isopropanol
solution (ElectroChem) in an ultrasonic bath (Branson 1510). Then, 5 µL of the electrocat-
alytic ink was deposited on the surface of the glassy carbon disk electrode (geometrical
surface area = 0.1963 cm2, mirror polished with 0.05 µm alumina, Pine instruments) and
finally dried at room temperature. The final loadings of the CoFeRu electrocatalyst and
Nafion® were 1020 µg cm−2 and 1200 µg cm−2, respectively. These loadings are similar to
those used for Ru-Fe and CoFeRu materials described in the literature. The electrolyte was
bubbled with nitrogen (Infra; UHP), and then cyclic voltammetry (CV) was carried out be-
tween 0 and 0.98 V/NHE (the sweep rate is 20 mV s−1) until reproducible voltammograms
were obtained. After that, the electrolyte was bubbled with oxygen (Infra; UHP) until no
changes in the cell potential (open circuit potential, OCP) were observed (~30 min), then
the oxygen reduction was carried out by linear sweep voltammetry (LSV) from the OCP-0
V/NHE (the sweep rate is 5 mV s−1), under rotating conditions (100, 200, 400, 600 and
900 rpm) using the rotating disk electrode technique (RDE). CV and LSV studies were also
obtained with 2 mol L−1 methanol (CH3OH 99.9%, J.T. Baker) present in the electrolyte, at
the same conditions mentioned above.

3. Results and Discussion
3.1. Physica and Structural Characterization

The scanning electron microscopy (SEM) image of the CoFeRu electrocatalyst synthe-
sized in this work at 43,000× magnification is shown in Figure 1. It is observed as cloud-like
aggregates with irregular shapes and sizes and a material size greater than 100 nm. It is
not possible to identify a specific type or shape of particle.
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The chemical composition (at.%, atomic percentage) of the electrocatalyst synthesized
is shown in Table 1, which is compared with the previously reported composition of
CoFeRu synthesized using a mixture of ETG/H2O (ethylene-glycol/DI-water). In general,
it is observed that the material synthesized in water, CoFeRu (H2O), showed a lower
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at.% of Co and Ru than CoFeRu (ETG/H2O). Considering the at.% of Fe, O and C in
CoFeRu (H2O), these values can be related to the presence of Fe2O3 and CO formulas.
The presence of CO was confirmed with FT-IR results shown in Figure 3. For the CoFeRu
(ETG/H2O) electrocatalyst, the presence of carbonyl groups in its chemical composition
was not reported. This new composition of the electrocatalyst could be attributed to the
use of water as the microwave absorbing solvent, which favors the formation of iron oxide.
A similar behavior was observed for the Ru-Fe electrocatalyst reported by Su [35].

Table 1. EDS of CoFeRu electrocatalysts synthesized in deionized water and in a mixture of ethylene-glycol/deionized-water
(ETG/H2O).

Electrocatalyst at.%

Co Fe Ru O C

CoFeRu (H2O) 0.47 17.52 13.30 47.47 21.24
CoFeRu (H2O/ETG) [26] 1.70 1.70 46.60 33.00 17.00

Figure 2 shows the XRD pattern of the unsupported CoFeRu electrocatalyst. De-
fined peaks/(crystallographic planes) were observed at 24.06◦/(1 0 2), 33.02◦/(1 0 4),
35.62◦/(2 −1 0), 49.34◦/(2 0 4), 53.86◦/(2 −1 6) 63.96◦/(3 0 0) and 84.94◦/(4 −1 4) associ-
ated to the Fe2O3 phase [hematite, R-3c (167)] showing a crystallite size of 22 nm ± 6 nm.
The co-existence of a crystalline Ru phase [ruthenium, P63/mmc (194)] was observed at
38.40◦/(1 0 0), 42.20◦/(0 0 2), 44.02◦/(1 0 1), 58.54◦/(1 0 2), 69.48◦/(2 −1 0), 78.50◦/(1 0 3)
and 86.08◦/(2 −1 2), showing a crystallite size of 9 nm ± 2 nm. These crystallite sizes were
calculated by the Scherer formula; however, due to the irregular morphology and the size
of the aggregates the estimations presented a wide standard deviation. Additionally, the
XRD pattern presented a low-angle area associated to an amorphous phase. The Ru and
Fe2O3 phases were identified by JCPDS card No. 06-0663 and JCPDS card No. 33-0664,
respectively. No cobalt-associated signals were observed in the XRD pattern, possibly due
to the low Co at.% in the material.
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The FT-IR spectra of the CoFeRu electrocatalyst is shown in Figure 3, along with the
spectra of the precursors Ru3(CO)12, Co(NO3)2·6H2O and FeSO4·7H2O. Very broad O–H
stretching vibration bands around 3700–3000 cm−1 were observed for Co and Fe salts [36],
N–O asymmetric bond vibration bands at 1640 and 1382 cm−1 were also observed for Co
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salt [37,38], while Fe salt showed two peaks between 1100 and 1700 cm−1 corresponding
to S=O mode. Ru3(CO)12 showed the presence of a terminal carbonyl stretching vibra-
tion region [M-(CO)] and a group of bands associated to carbonyl deformation modes at
1800–2200 cm−1 and around 570 cm−1, respectively [39]. The CoFeRu electrocatalyst pre-
sented a signal around 1870 cm−1, which can be associated either with a terminal carbonyl
[µ1-(CO)] or a bridging carbonyl (µ2-CO), given the fact that the frequency of the material
was in the limit between both carbonyl frequencies. This means that Ru3(CO)12 did not
undergo complete decarbonylation.
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Figure 3. FT-IR spectra of the unsupported CoFeRu electrocatalyst and precursors.

3.2. Electrochemical Studies

The cyclic voltammograms of CoFeRu/C with and without methanol are shown in
Figure 4. The reduction of a ruthenium oxide thin film formed during the anodic sweep [40]
was observed between 0.1 and 0.4 V/NHE as a cathodic peak, while hydrogen adsorp-
tion/desorption regions (between 0 and 0.1 V/NHE) and iron redox couple signs (between
0.6 and 0.8 V/NHE) were also shown by the material [35]. No peaks associated with methanol
oxidation were observed, i.e., the electrocatalyst did not show activity towards this reaction.

The disc current densities under rotating conditions of CoFeRu/C for the oxygen
reduction with and without methanol is shown in Figure 5a. The RDE technique allows
to distinguish between mass transport and reaction kinetics. In this way, from the onset
potential to the head of the plateaus the mixed, kinetic and diffusion-limited regions
are observed; while at more cathodic potentials, where the limiting current plateaus are
reached, the diffusion limited region is observed. The presence of methanol during the
oxygen reduction reaction slightly decreases the current density. This effect could be due
to the adsorption of methanol on the electrode surface. However, the open circuit potential
is not affected by the presence of methanol. Figure 5b shows the oxygen reduction reaction
studies at 900 rpm for CoFeRu (H2O) and CoFeRu (H2O/ETG) and Ru-Fe reported in
the literature as comparison. In general, the CoFeRu (H2O) electrocatalyst showed higher
current densities and open circuit potential (OCP, Table 2) values than Ru-Fe and CoFeRu
reported in the literature, even with 2 mol L−1 methanol.
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Figure 5. Linear sweep voltammograms for the oxygen reduction of (a) CoFeRu/C electrocatalyst without (solid line)
and with (dash line) 2 mol L−1 methanol; (b) CoFeRu (H2O), CoFeRu (H2O/ETG) and Ru-Fe reported in the literature at
900 rpm. The sweep rate was 5 mV s−1 and as electrolyte 0.5 mol L−1 H2SO4.
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Table 2. Electrokinetic parameters and open circuit potentials of CoFeRu electrocatalyst synthesized using deionized water, and
CoFeRu and Ru-Fe electrocatalysts reported in the literature.

Electrocatalyst Methanol
(mol L−1)

Open Circuit Potential
(V/NHE)

Tafel Slope
(V dec−1)

Charge Transfer
Coefficient

Exchange Current Density
(mA cm−2)

CoFeRu (H2O) 0 0.811 (0.002) 0.129 (0.001) 0.420 (0.004) 1.36 (0.09) × 10−5

2 0.823 (0.0006) 0.126 (0.002) 0.430 (0.007) 1.55 (0.19) × 10−5

CoFeRu
(ETG/H2O) [26]

0 0.782 0.193 0.306 2.49 × 10−4

2 0.780 0.203 0.306 3.20 × 10−4

Ru-Fe [35] 0 0.772 0.267 0.22 1.7 × 10−3

2 0.774 0.270 0.22 2.0 × 10−3

The Koutecký–Levich analysis allows to obtain critical kinetic parameters for an
electrochemical reaction. The KL equation (Equation (1)) relates the sum of the reciprocals
of the kinetic and the diffusion limited currents, ik and id, respectively, as shown below:

1
i
=

1
ik

+
1
id

(1)

which is calculated based on the Levich equation (Equation (2)),

id = 200 nFACO2D2/3
O2
ν−1/6ω1/2 (2)

where [31]

A = geometric area of the glassy carbon disk (0.1963 cm2),
F = Faraday’s constant (96,485 C mol−1),
ν = kinematic viscosity of the electrolyte (0.01 cm2 s−1),
DO2 = diffusion coefficient of O2 in the electrolyte (1.40 × 10−5 cm2 s−1),
CO2 = concentration of O2 in the electrolyte (1.1 × 10−6 mol cm−3),
ω = electrode rotation velocity (rpm),
n = number of electrons involved in the oxygen reduction reaction,
200 = constant used whenω is expressed in rpm and the current disk (id) in mA.

In this way, Equation (1) can be rewritten as

1
i
=

1
ik

+
1

200 nFACO2D2/3
O2
ν−1/6ω1/2

(3)

or as
1
i
=

1
ik

+
ω−1/2

BL
=

1
ik

+ BKL·ω−1/2 (4)

where BL (= 200 nFACO2D2/3
O2
ν−1/6) and BKL (= 1/ BL) are the Levich and Koutecký–Levich

slopes, respectively.
The Koutecký–Levich plots (1/i vs. 1/ω1/2) are fitted using linear regression to calcu-

late the KL slopes and estimate the number of electrons involved during the ORR [31]. In this
way, the theoretical (2 and 4 e−) and experimental Koutecký–Levich plots (at 0.24 V/NHE)
without and with 2 mol L−1 methanol are shown in Figure 6. Clearly, the experimental lines
in Figure 6 come near to the theoretical 4 e− transfer, i.e., the reaction mechanism for the
oxygen reduction involves a four-electron pathway directly to H2O [41–44]. This behavior
was not altered even by the presence of methanol.
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without (∆) and with (o) 2 mol L−1 methanol.

The Butler–Volmer equation (Equation (5)) is the standard approach in macroscopic
modeling of electrochemical kinetics in porous electrodes. When mass transfer is not
considered, the Butler–Volmer equation can be expressed as a general current-overpotential
equation [45].

ik = io

[
e−

αF
RT η − e

(1−α)F
RT η

]
(5)

For large negative overpotentials (η = E − Eeq), the Butler–Volmer equation becomes

ik = ioe−
αF
RT (E−Eeq) (6)

Equation (6) can be rewritten as

ik = Ae−
αF
RT E (7)

where
A =

i0
e−

αF
RT Eeq

(8)

Expressing Equation (7) in its logarithmic form, it becomes

logik = logA − αF
2.3RT

E (9)

In this way, the Tafel plots corrected by mass-transport (log ik vs. E, Figure 7) for the
ORR without and with methanol can be obtained from Equation (9).

In order to get the kinetic current (ik) from the Koutecký–Levich equation as shown
in Equation (10), the potential–current curves are corrected by a previously described
procedure [46–48].

ik =
i·id

i − id
(10)
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Table 2 summarizes the electrokinetic parameters obtained from Figure 7, i.e., Tafel
slope, charge transfer coefficient and the exchange current density. These parameters are
compared with CoFeRu and Ru-Fe electrocatalysts reported in the literature.
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Platinum is one of the most active electrocatalysts used for the oxygen reduction
reaction, and for this electrocatalyst two Tafel slopes were observed: 60 mV decade−1 and
120–160 mV decade−1 at low current density (lcd) and high current density (hcd) regions,
respectively. At the lcd region the adsorbed oxygen species showed the fast initial electron
transfer step followed by the rate-determining chemical step, i.e., adsorption under the
Temkin adsorption conditions; while at the hcd region, the initial electron transfer was
the rate-determining step under the Langmuir adsorption conditions [49]. On the other
hand, Tafel slopes above 120 mV decade−1 are often observed in reactions through some
adsorbed ruthenium oxide layers on the surface, as observed with the reported CoFeRu
and Ru electrocatalysts, whose Tafel slope values were above 200 mV decade−1. Therefore,
Ru oxides of various monolayer thickness could lead to an increase in the Tafel slope
in these materials, which could be caused by a different reaction mechanism for oxygen
absorption, making the analysis of the reaction mechanism more difficult [50]. On the other
hand, the expected Tafel slope (120 mV decade−1) at hcd was observed for the CoFeRu
(H2O) electrocatalyst. This behavior could be due to the fact that only a very thin layer
of ruthenium oxide formed on the surface, which was not enough to affect the oxygen
adsorption mechanism.

According to the relationship between the Tafel slope (b) and the charge transfer
coefficient (α) (b = 2.3RT/αF), low α values are expected at high Tafel slope values, as
observed with CoFeRu and Ru-Fe electrocatalysts reported in the literature. However, this
α value for the CoFeRu (H2O) electrocatalyst was close to 0.5, as expected for Tafel slopes
near 120 mV decade−1.

Finally, the exchange current density (jo) is directly related to the rate constant and
represents the measure of the charge transfer rate in an electrochemical reaction at equilib-
rium [41], i.e., the higher this value is, the easier the reaction is to initiate. This electrokinetic
parameter for the ORR on Pt/C electrocatalyst was 3.9 × 10−2 mA cm−2 at the hcd re-
gion [49], i.e., this electrochemical parameter obtained for the CoFeRu (H2O) electrocatalyst
was only three orders of magnitude lower than Pt/C.
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4. Conclusions

A microwave thermal heating process has been employed to synthesize a CoFeRu elec-
trocatalyst, using only deionized water as the microwave absorbing solvent (green chemical
synthesis), i.e., the use of organic solvents and long synthesis times are avoided. Although
the structural characterization revealed only the presence of three phases—Ru, Fe2O3
and an amorphous phase—the chemical composition analysis showed the presence of Co,
which was not detected by X-ray diffraction due to its low at.%. SEM studies showed the for-
mation of agglomerates with different sizes and shapes. The electrochemical performance
of CoFeRu was improved compared to that synthesized in an ethylene-glycol/DI-water
mixture, favoring the formation of Fe2O3 rather than a ruthenium oxide. The electrocata-
lyst showed activity towards the ORR even in the presence of up to 2 mol L−1 methanol.
Therefore, this electrocatalyst can be proposed as cathode in a PEMFC or DMFC.
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