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Abstract

The mechanisms controlling the abundance and sub-cellular distribution of caveolae are not

well described. A first step towards determining such mechanisms would be identification of

relevant proteins that interact with known components of caveolae. Here, we applied prox-

imity biotinylation (BioID) to identify a list of proteins that may interact with the caveolar pro-

tein cavin1. Screening of these candidates using siRNA to reduce their expression revealed

that one of them, CSDE1, regulates the levels of mRNAs and protein expression for multiple

components of caveolae. A second candidate, CD2AP, co-precipitated with cavin1. Caveo-

lar proteins were observed in characteristic and previously un-described linear arrays adja-

cent to cell-cell junctions in both MDCK cells, and in HeLa cells overexpressing an active

form of the small GTPase Rac1. CD2AP was required for the recruitment of caveolar pro-

teins to these linear arrays. We conclude that BioID will be useful in identification of new pro-

teins involved in the cell biology of caveolae, and that interaction between CD2AP and

cavin1 may have an important role in regulating the sub-cellular distribution of caveolae.

Introduction

Caveolae are flask-shaped invaginations of the plasma membrane found in many vertebrate

cell types. They are especially abundant in endothelial cells, adipocytes and muscle cells [1–3].

A range of functions have been attributed to caveolae, including roles in endocytosis, organisa-

tion of plasma membrane signalling molecules, regulation of membrane lipid composition,

and protection of cells from mechanical stress forces within the membrane [1, 3–9]. The

molecular basis of all of these potential functions is under active investigation.

The protein complexes required for assembly of caveolae are increasingly well character-

ised. Fundamental components include caveolins—membrane proteins embedded in the cyto-

solic face of the membrane, and cavins—trimeric coiled-coil-forming proteins that are

recruited from the cytoplasm to caveolae in the presence of caveolins [10, 11]. Both caveolin1

and cavin1 are essential for formation of caveolae [9, 12, 13]. As well as being present at caveo-

lae, cavin1 has additional functions within the nucleus, where it regulates ribosomal RNA syn-

thesis [14–17]. Caveolins and cavins can, in the presence of chemical cross-linkers, be purified

as a single caveolar coat complex that has the size and shape of the membrane bulb of caveolae

[18, 19]. There are separate complexes at the neck of caveolae, made up from EHD (Eps15
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Homology Domain) proteins and potentially members of the pacsin and dynamin protein

families [20–24]. EHD proteins are important for the propensity of caveolae to form inter-

linked clusters or arrays, and may be important for reversible changes in caveolar morphology

[20]. Importantly, the caveolar coat complex has been highly purified after chemical cross-

linking, and analysed by mass spectrometry [18, 19]. There are no further abundant compo-

nents of the complex other that cavin and caveolin proteins.

Given the above, it is possible that the ‘parts list’ of key proteins required for the assembly

and structural integrity of caveolae is now complete [10]. There are, however, many aspects of

the cell biology of caveolae that are incompletely understood and are likely to involve still

unknown protein-protein interactions. If caveolae are involved in signal transduction pro-

cesses then mechanisms are likely to exist to relay signals from caveolae to the cytoplasm [8,

25]. The distribution of caveolae in the cell is clearly non-stochastic, caveolae migrating to the

back of motile cells and aligning parallel to actin stress fibres, and these distributions are likely

to be mediated by interactions between caveolae and the elements of the cortical cytoskeleton

[2]. Caveolae apparently bud from the plasma membrane and move through the cytoplasm on

linear microtubule tracks, implying recruitment of motor proteins and related factors [26, 27].

It is therefore likely that understanding the nature of the protein-protein interactions under-

gone by components of caveolae will provide considerable insights.

There is a large literature reporting interactions between caveolin1 and other proteins. The

physiological significance, however, of some of the reported interactions has been questioned

by more recent experiments showing that a putative caveolin binding domain found in several

interaction partners may not be structurally suitable to interact with caveolin1 [28]. Caveolin1

itself forms oligomers within the plasma membrane that are highly resistant to extraction with

non-ionic detergents, making co-immunoprecipitation experiments potentially difficult to

conduct and interpret [10, 29, 30]. Moreover, the types of interaction governing, for example,

sub-cellular localisation of caveolae could be transient, low affinity and regulated both tempo-

rally and spatially within the cell. These issues prompted us to take an alternative approach to

identifying interaction partners for cavin1, one of the core components of caveolae.

We employed proximity biotinylation to identify potential interaction partners for cavin1

[31, 32]. We successfully identified known components of caveolae, and 13 additional candi-

dates. Screening of the additional candidates using siRNA knockdowns and co-immunopre-

cipitation experiments revealed CSDE1 and CD2AP as especially likely to interact functionally

with caveolar components. We found that CSDE1 controls both protein and mRNA levels for

multiple components of caveolae, through an unknown mechanism. We found CD2AP to be

specifically co-precipitated with cavin1 and caveolin1, and hence this candidate was selected

for further investigation. We present data to show that CD2AP controls the recruitment of

caveolae to membrane zones adjacent to cell-cell junctions, providing a mechanistic link

between caveolae and the cortical cytoskeleton. We conclude that proximity biotinylation pro-

vides a useful approach with detecting interactions with caveolar components that may be

transient, of low affinity or otherwise refractory to conventional biochemical approaches.

Results

BirA� fusions for identification of proteins that interact with cavin1

Proximity biotinylation is potentially a powerful technique to detect transient, low affinity or

highly regulated interactions [31, 32]. Extensive controls are, however, required to facilitate

interpretation. We produced a construct for expression of cavin1 fused to the promiscuous

biotin ligase BirA�, and a range of constructs to serve as negative controls: 1. A version of

BirA� with myristoylation and palmitoylation sites that will effectively target the resultant
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fusion protein to the plasma membrane, 2. BirA� fused to both flotillin1 and to flotillin2,

plasma membrane proteins that reside in microdomains that are distinct from caveolae [33], 3.

BirA� fused to CD8, a plasma membrane protein with a trans-membrane domain, BirA� being

expressed on the cytoplasmic side of the membrane. 4. BirA� fused to CD20, a second trans-

membrane-domain plasma membrane protein (Fig 1A). A copy of the myc epitope was

included in all of the constructs (Fig 1A), and transient transfection of HeLa cells resulted in

similar expression levels (Fig 1B).

Initially, we carried out experiments to ascertain whether cavin1-myc-BirA� is recruited to

caveolae. Using the myc epitope included in the construct, we applied indirect immunofluo-

rescence to show that cavin1-BirA� is recruited to caveolin1-positive caveolae just as endoge-

nous cavin1 (Fig 1C). Furthermore, incubation with biotin followed by labelling with

fluorescent streptavidin confirmed that caveolin1- and cavin1-positive caveolae are the pre-

dominant sites of biotinylation within cells expressing the cavin1-myc-BirA� construct (Fig

1C). Comparison with the pattern of biotinylation produced by the negative control con-

structs, for example flotillin1/flotillin2-myc-BirA�, revealed that the negative controls pro-

duced a different pattern of biotinylation, with more uniform staining of the plasma

membrane (Fig 1C).

Labelling of the total population of biotinylated proteins on blots with streptavidin-HRP,

after incubation of the transfected HeLa cells with biotin, showed that different sets of proteins

are biotinylated by the cavin1-myc-BirA� construct and by the negative controls (Fig 1D).

Moreover, cavin1-myc-BirA� specifically biotinylated prominent bands with the correct size

to be caveolin1 and endogenous cavin1 (Fig 1D). Precipitation of all biotinylated proteins with

immobilised streptavidin was used to confirm that caveolin1 is specifically biotinylated in the

presence of cavin1-myc-BirA�, as Western blotting of the eluted precipitate with anti-caveo-

lin1 antibodies revealed caveolin1 to be present only when both exogenous biotin and cavin1--

myc-BirA� were added (Fig 1E). These pilot experiments show, therefore, that the

cavin1-myc-BirA� construct is recruited to caveolae and biotinylates a specific set of proteins

present at caveolae including caveolin1.

We carried out 7 separate experiments in which HeLa cells expressing cavin1-myc-BirA�

and cells expressing negative control constructs were incubated with exogenous biotin for 16–

20 hours before lysis and isolation of all biotinylated proteins using a streptavidin column, and

identification of these proteins using mass spectrometry. Mass spectrometry data from all of

the experiments is contained in S1 File. Pilot experiments had established 16–20 hours incuba-

tion with biotin as being sufficient to result in optimal biotinylation of a relatively small num-

ber of distinct bands, as in Fig 1D. In each individual experiment a score for enrichment of

each identified protein in the cavin-1-myc-BirA� samples over the parallel negative controls

was generated, and an overall enrichment score from all 7 experiments was calculated using

the product of the enrichment scores for each experiment normalised so that the known caveo-

lar component caveolin1 was set to 1. This method of aggregating the scores from individual

experiments was selected as it favours candidates that were consistently found in all experi-

ments over those with a high enrichment score in only a small subset of the experiments. Pro-

teins with an overall enrichment score greater than that of caveolin1 are listed in Fig 2, and

were selected for further analysis.

Fig 2 represents a set of potential interaction partners for cavin1. It contains cavin and

caveolin proteins known to be expressed in the HeLa cells used for these experiments (green

shading). It contains a number of proteins present in the nucleus, the function of which may

be related to the nuclear function of cavin1 in regulating ribosomal RNA synthesis (grey shad-

ing) [14]. Encouragingly, it contains one further protein, thioredoxin reductase 1, that has pre-

viously been shown to co-localise with components of caveolae [34].

Interaction partners for cavin1
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Fig 1. Expression of cavin1-myc-BirA� as a tool to label caveolar proteins. A. Schematic representation of constructs used in this study. B. Expression of

constructs used in this study, analysed by Western blotting with anti-myc antibodies. C. Distribution of biotin in transfected cells, compared with caveolae

Interaction partners for cavin1
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CSDE1 regulates the levels of mRNAs for components of caveolae

We employed siRNA to deplete expression of selected candidate interaction partners for

cavin1, and then Western blotting to ask whether expression of known caveolar components

was altered (S1 Fig). Of the candidates tested, only siRNAs to CSDE1 produced a clear

decrease in caveolin1 expression as revealed by both Western blotting and indirect immuno-

fluorescence, using multiple independent siRNAs (Fig 3A, Fig 3B, S1 Fig). CSDE1 (Cold Shock

Domain-containing E1), also called Unr (Upstream of N-ras), is an RNA-binding protein

thought to control gene expression by post-translational mechanisms [35–37]. To confirm that

CSDE1 is required for correct expression of caveolar proteins we carried out Western blotting

to assess levels of caveolin1, caveolin2, cavin1, cavin3 and EHD2 in cells transfected with a

combination of CSDE1 siRNAs that produces highly efficient reduction in CSDE1 expression

(Fig 3C). Expression of all 5 caveolar components was clearly reduced. As an additional test of

whether caveolae are perturbed by CSDE1 siRNAs, we stained siRNA-treated cells with anti-

bodies to the caveolar protein EHD2 (Fig 3D). The siRNA-treated cells displayed a marked

change in EHD2 distribution, consistent with the loss of the punctate, caveolin1-positive struc-

tures to which EHD2 is normally recruited (Fig 3D). Quantitative PCR revealed that there is a

marked decrease in caveolin1 mRNA levels in CSDE1-siRNA-treated cells, in contrast to the

effect of cavin1 siRNAs which increase caveolin1 mRNA levels (Fig 3E). This suggests that

CSDE1 has an important role in regulating mRNA levels of caveolar proteins. In agreement

labelled with antibodies against caveolin1. Anti-myc antibodies reveal the location of the indicated BirA� construct. Streptavidin reveals the location of

biotinylated proteins. Arrowheads highlight examples of streptavidin-stained caveolae. Bar is 20 microns. Single confocal sections acquired with 63x objective.

D. Blot of biotinylated proteins labelled with streptavidin-HRP. Cells were transfected with the myc-BirA� construct indicated at the top of each lane on the

blot, and incubated with exogenous biotin before solubilisation. The band labelled 1 in the cavin1-myc-BirA� lane is the correct size to be cavin1-myc-BirA�, 2

is the correct size to be endogenous cavin1, and 3 is the correct size to be caveolin1. E. Western blot labelled with caveolin1 antibody. Cells were transfected

with cavin1-myc-BirA� and incubated with exogenous biotin for the times shown, before solubilisation and precipitation of biotinylated proteins with

immobilised streptavidin.

https://doi.org/10.1371/journal.pone.0209856.g001

Fig 2. Candidate cavin1-interacting proteins identified by BioID. To show all proteins from 7 pooled BioID experiments with a normalised product

of enrichment scores greater than that of caveolin1 –the known caveolar protein to which the scores were normalised. A score of zero means that the

specified protein was not detected in that experiment. Protein names are colour coded: green–known caveolar component, grey–nuclear protein. To aid

visualisation, enrichment scores are shaded with a higher score having stronger shading.

https://doi.org/10.1371/journal.pone.0209856.g002
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with this, when CSDE1 is overexpressed there is a pronounced increase in the levels of

mRNAs for both cavin1 and caveolin1 (Fig 3E).

CD2AP co-precipitates with cavin1 and caveolin1 and regulates the sub-

cellular distribution of caveolae

One of the potential cavin1 interaction partners, CD2AP, has previously been reported to co-

precipitate with caveolin1 [38]. We expressed CD2AP as a GFP fusion in cells also expressing

cavin1-mCherry. After solubilisation of caveolar proteins using Triton X100 and ultracentrifu-

gation to remove insoluble material [19], the GFP fusion proteins were immunoprecipiated,

and the presence of cavin-1-mCherry in the immunoprecipitates was assayed using anti-

cavin1 antibodies. As shown in Fig 4A, GFP-CD2AP specifically co-precipitated cavin1-m-

Cherry. Even though both proteins were overexpressed in these experiments, the data suggest

that CD2AP-GFP and cavin1-mCherry can, under these conditions, enter the same protein

complexes. Consistent with previous reports [19, 30], solubilisation in TX100 was sufficient to

separate caveolins from cavins, as immunoprecipitation of caveolin1-GFP did not result in co-

precipitation of cavin1 under these conditions (Fig 4A). We therefore carried out complimen-

tary experiments using previously established cross-linking and solubilisation conditions that

allow isolation of a large caveolar coat complex containing caveolin and cavin proteins [19],

and asked whether under these conditions GFP-CD2AP co-precipitates caveolin1. Specific co-

precipitation of GFP-CD2AP and caveolin1 was observed (Fig 4B). Although both the deter-

gent-resistance of caveolin1 and the instability of cavin- and caveolin-containing complexes in

detergent mean that this type of co-precipitation data must be interpreted with caution [1, 19,

28], our experiments combined with previous observations suggest that CD2AP can enter into

the same complexes as components of caveolae [38]. For this reason we focussed further exper-

iments on characterising the functional relationship between CD2AP and caveolae.

CD2AP links the cell adhesion protein nephrin to the actin cytoskeleton, binds to actin-reg-

ulating proteins, such as CAPZ and cortactin, and specifically interacts with the C-terminal

domain of Rac1 [39–47]. We began by identifying an antibody against CD2AP that provides

specific labelling in indirect immunofluorescence experiments, as judged by depletion of

CD2AP expression using siRNAs (S2 Fig). Indirect immunofluorescence using CD2AP and

caveolin1 antibodies and confocal microscopy revealed although CD2AP was absent from the

great majority of caveolin1-positive caveolae, it was clearly recruited to a small sub-population

(Fig 5A). In order to gain increased resolution in the Z direction, and therefore reduce the pos-

sibility of artifactual co-localisation due to superimposition of objects in different Z locations,

we supplemented confocal microscopy with Total Internal Reflection (TIR) imaging of

CD2AP and Caveolin1 labelling at, or adjacent to, the plasma membrane (Fig 5B). Again,

although most caveolin1-positive puncta did not have CD2AP in them, some clear co-localisa-

tion was observed. In order to quantify this, we calculated Pearson’s correlation coefficient

between the caveolin1 and CD2AP channels for both images where the channels were

Fig 3. CSDE1 controls expression of components of caveolae. A. SiRNAs against CSDE1 reduce caveolin1 levels, as judged by

Western blotting with the antibodies shown. Three different single siRNA species were used, as well as a pooled population. B. SiRNAs

against CSDE1 reduce caveolin1 levels, as judged by indirect immunofluorescence. Two different single siRNA species were used. Cell

nucleii are stained with propidium iodide. Bars 20 microns. Maximum intensity projections of multiple confocal sections acquired at 1

micron intervals, with 63x objective. C. SiRNAs against CSDE1 reduce levels of multiple caveolar components, as judged by Western

blotting with the antibodies shown. A pooled population of siRNAs was used. D. SiRNAs against CSDE1 cause delocalisation of

EHD2, consistent with loss of recruitment to caveolae. Bars 20 microns. Maximum intensity projections of multiple confocal sections

acquired at 1 micron intervals, with 63x objective. E. Quantitative PCR to measure changes in cavin1, caveolin1 and CSDE1 mRNA

levels relative to mock-transfected cells. Cells were transfected with the pooled siRNAs shown, or with plasmid for transient over-

expression of CSDE1. Bars are SD, N = 3. The experiment was repeated twice with equivalent results.

https://doi.org/10.1371/journal.pone.0209856.g003
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correctly aligned, and when the channels had been offset by approximately 0.5 microns. This

provides an empirical method to assess whether the detected co-localisation in specific or due

to stochastic overlap of signals [26, 48]. The correlation between caveolin1 and CD2AP was, by

this criterion, specific (Fig 5C).

Overexpression of GFP-CD2AP has been previously observed to induce the formation of

characteristic cell protrusions (Fig 5D) [49]. In order to facilitate detection of all three markers,

GFP-CD2AP was overexpressed in NIH3T3 cells genome-edited to express cavin1-mCherry

Fig 4. CD2AP co-precipitates specifically with cavin1 and caveolin1. A. Western blots labelled with anti-cavin1

antibodies to show input lysates from cells transfected with cavin1-mCherry and constructs shown for each lane, and

eluates after immunoprecipitation with anti-GFP antibodies. Cells were solubilised in 0.1% TritonX100 and lysates

cleared of insoluble material by centrifugation at 100,000g. Note that even low concentrations of detergent separate

complexes of cavin and caveolin proteins. B. Western blots labelled with anti-caveolin1 antibodies to show input

lysates from cells transfected with the constructs shown for each lane, and eluates after immunoprecipitation with anti-

GFP antibodies. Cells were cross-linked with 0.5mM DSP prior to solubilisation in 1% octylglucoside, 1% TritonX100.

Each transfection and precipitation was carried out in duplicate.

https://doi.org/10.1371/journal.pone.0209856.g004
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from an endogenous CAVIN1 locus [26]. Cavin1-mCherry and caveolin1 were recruited to

GFP-CD2AP-induced protrusions at precisely the same peripheral location at GFP-CD2AP

(Fig 5E). These observations provided additional evidence that CD2AP can enter the same

complexes and caveolar components and thereby, at least in this artificial situation, influence

their the sub-cellular distribution.

CD2AP is required for recruitment of caveolae to characteristic parallel

arrays adjacent to cell-cell junctions

While the observations outlined above are consistent with CD2AP entering the same protein

complexes as cavin1, the functional significance of this potential interaction was not clear.

Accordingly, we studied a situation where CD2AP has been shown to redistribute dynamically.

In HeLa cells over-expressing the constitutively active form of Rac1, Rac1Q61L, CD2AP is

recruited to cell-cell contacts where it participates in the control of epithelial barrier function

[45]. We asked how caveolar components are distributed under similar conditions, as it has

already been reported that the distribution of caveolin1 is regulated by the formation of cell-

cell contacts [50]. In HeLa cells overexpressing Rac1Q61L beta-catenin was specifically

recruited to cell-cell contacts, indicating that a functional connection between cells was formed

(S3 Fig). In these cells GFP-CD2AP was also concentrated close to the beta-catenin-positive

junction (Fig 6A). Caveolin1 had a distinctive, and to our knowledge previously unreported,

distribution. Caveolin 1 was observed in two parallel linear arrays around 0.5 microns apart,

on either side of the Rac1Q61L-induced cell-cell junction. GFP-CD2AP was also present in

this junctional region, where it partially overlapped with the distribution of caveolin1 (Fig 6A).

EHD2, an additional caveolar protein that does not form part of the same complex as cavins

and caveolins, had the same distribution (Fig 6B).

It was important to ascertain that the distinctive parallel arrays of caveolae described above

are not only found in cells overexpressing Rac1Q61L. We examined MDCK cells at early stages

of polarisation, where beta catenin is prominently recruited to points of cell contact (Fig 6C).

Strikingly, parallel arrays of caveolae on either side of the junction were observed in this situa-

tion also (Fig 6C). In addition, parallel arrays were not solely induced by CD2AP over-expres-

sion, as they could readily be observed in these untransfected MDCK cells (Fig 6C, S4 Fig).

Transfection with siRNAs to reduce expression of CD2AP allowed us to ask whether

CD2AP is involved in the re-localisation of caveolar components to parallel arrays at cell-cell

contacts. These experiments were performed using HeLa cells overexpressing Rac1Q61L as a

model, as the siRNA knockdown of CD2AP is efficient in these cells (Fig 7A). The distribution

of caveolin1 at contacts defined by the recruitment of beta-catenin (Fig 6A and S3 Fig) was

classified according to the presence or absence of parallel arrays (Fig 7B). CD2AP siRNAs had

a profound effect on the distribution of caveolin1, reducing the recruitment to parallel arrays

(Fig 7C). The recruitment of beta-catenin to cell-cell contacts was not visibly altered by the

Fig 5. CD2AP co-localises with components of caveolae. A. HeLa cells labelled with anti-caveolin1 and anti-CD2AP

antibodies. The region in the yellow box is shown magnified in the lower panels. Bar 20 microns. Maximum intensity

projections of multiple confocal sections acquired at 1 micron intervals, with 63x objective. Yellow arrowheads

indicate co-localisation. B. HeLa cells labelled with anti-caveolin1 and anti-CD2AP antibodies. The region in the

yellow box is shown magnified in the lower panels. Bar 20 microns. Total Internal Reflection imaging, with 63x

objective. Yellow arrowheads indicate co-localisation. C. Quantification of Pearson’s correlation coefficient in multiple

cell areas from TIR images as shown in B, in either images where the two fluorescence channels are correctly aligned or

where they were manually offset by approximately 0.5 microns. Statistical comparison is by t-test (� denote P<0.05).

Each dot represents one cell. D. Cell projection induced by overexpression of GFP-CD2AP Bar 5 microns. E. Co-

localisation between GFP-CD2AP, caveolin1 antibody labelling, and cavin1-mCherry, in the cell projection shown in

D. Single confocal sections acquired with 63x objective, bar is 5 microns. White arrows indicate co-localisation.

https://doi.org/10.1371/journal.pone.0209856.g005
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same siRNAs (S5 Fig). These findings suggest that CD2AP has an important function in con-

trolling the sub-cellular distribution of caveolae under these conditions.

Discussion

Several factors suggest that our list of potential interaction partners for cavin1 contains pro-

teins that do indeed interact with cavin1 in a biologically relevant way.

Fig 6. Recruitment of caveolin1 adjacent to cell junctions. A. HeLa cells overexpressing Rac1Q61L-myc and GFP-CD2AP, labelled with anti-

caveolin1 and anti-beta-catenin antibodies. The region in the yellow box is shown magnified in the lower panels. Bar 20 microns. Maximum

intensity projections of multiple confocal sections acquired at 1 micron intervals, with 63x objective. B. HeLa cells overexpressing Rac1Q61L-myc,

labelled with anti-caveolin1 and anti-EHD2 antibodies. The region in the yellow box is shown magnified in the lower panels. Bar 20 microns.

Maximum intensity projections of multiple confocal sections acquired at 1 micron intervals, with 63x objective. C. MDCK cells labelled with anti-

caveolin1 and anti-beta-catenin antibodies. The region in the yellow box is shown magnified in the lower panels. Bar 10 microns. Single confocal

section, with 63x objective.

https://doi.org/10.1371/journal.pone.0209856.g006

Fig 7. CD2AP is required for recruitment of caveolin1 to cell junctions. A. Western blot of cells transfected with the siRNAs shown, using

antibodies as indicated. CD2AP siRNAs were either three separate single species or a pooled population containing all three. B. Hela cells

overexpressing Rac1Q61L-myc, showing different degrees of recruitment of caveolin1 to cell-cell junctions. These categories were used in the

analysis shown in C below. Bars 5 microns, single confocal sections acquired with 63x objective C. Analysis of the recruitment of caveolin1 to cell-

cell junctions, as in B, in cells treated with the siRNAs shown stained with anti beta-catenin and anti caveolin 1 antibodies. N = total number of

beta-catenin-positive cell-cell junctions analysed.

https://doi.org/10.1371/journal.pone.0209856.g007
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First, the list contains other cavin and caveolin proteins expressed in the HeLa cells we

used, and the enrichment scores for the novel candidates we have identified are all greater

than that obtained for caveolin1. Caveolin proteins are difficult to detect by mass spectrome-

try, presumably because of their high hydrophobicity [19]. Successful identification of a set of

cavin and caveolin proteins provides a strong indication that our BirA�-fusion-based approach

is suitable for identifying proteins that interact with cavin1.

Second, the list contains a further protein, thioredoxin reductase, previously shown to be

recruited to caveolae [34].

Third, our initial characterisation of the potential interaction partners reveals that one

(CSDE1) regulates mRNA and protein levels for multiple components of caveolae, implying a

functional relationship, and a second (CD2AP) controls the recruitment of caveolae to cell-cell

junctions. Additionally, CD2AP can be specifically co-precipitated with cavin1 [38].

We have not detected extensive co-localisation between any of the new potential interaction

partners and cavin1 (S6 Fig). It may be that the reagents we used, including commercially-pro-

duced antibodies and fluorescent protein fusions, do not correctly report the distribution of

the relevant endogenous proteins. Another possibility is that the actual interactions in cells are

spatially and temporally regulated so that only a minor fraction of the total amount of each

protein present in cells is involved in the pertinent interaction at any one time. Our co-immu-

noprecipitation data for CD2AP and cavin1 reveal that the complex containing both proteins

comprises less than 5% of the total amount of each protein present in cells. A third possibility,

which we clearly cannot exclude, is that some of the potential interaction partners we have

identified do not, in fact, interact with cavin1 or other caveolar components in cells.

CSDE1 (also called Unr) is an RNA binding protein that functions in post-transcriptional con-

trol of gene expression. It may regulate entry of mRNAs to ribosomes, stability of mRNAs, and

translation-coupled mRNA degradation [35–37, 51–53]. An interaction between CSDE1 and

cavin1 could conceivably, therefore, relate either to the role of cavin1 in regulating ribosomal RNA

biosynthesis or the role of cavin1 at caveolae. The fact that depletion or overexpression of CSDE1

influences levels of both cavin1 and caveolin1 mRNAs favours the latter possibility, and clearly

much more remains to be discovered about the molecular interactions leading to these effects.

CD2AP is an actin barbed-end capping protein [44], and acts to recruit cortactin to the cell

periphery to facilitate formation of lamellipodia [49]. The absence of CD2AP causes reduced

mechanical resilience of cell-cell adhesions in epithelial layers in cultured cells [44], and

increases in both permeability of the endothelial blood-brain barrier and glomerular perme-

ability in the kidney [54–56]. There is, therefore, good evidence that this protein plays an

important role in maintaining cell-cell junctions of different kinds. Moreover, previous experi-

ments also show that the sub-cellular distributions of both CD2AP and caveolin1 are regulated

by Rac1 in a similar manner [57, 58], and it has already been reported that CD2AP and caveo-

lin1 co-precipitate [38]. The literature also provide indications that caveolin1 directly or indi-

rectly regulates the function of beta catenin and potentially further components of the

machinery responsible for the regulation and integrity of cell-cell junctions [2, 59–62].

Changes in the morphology of junctions between endothelial cells, and increased endothelial

permeability, have been observed in CAV1 knockout mice, which do not have caveolae in

non-muscle tissues [12, 63]. One possibility raised by our new observations in conjunction

with the literature is that binding of CD2AP to caveolar components is involved in recruitment

to specific locations in the cell, but further experiments will be needed to test this directly.

We suggest that recruitment of caveolae to membrane regions adjacent to cell-cell adhe-

sions of different kinds could play an important role in buffering tension within the plasma

membrane exerted by stretch forces across the cell-cell adhesion. Again, further functional

experiments will be required to test this hypothesis.
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Materials and methods

Cell culture and imaging

Hela cells were from ATCC (Cat# CCL-2), and were used at under 25 passages. NIH-3T3 cells were

from ATCC (Cat# CRL-1658). NIH-3T3 caveolin1-EGFP and NIH-3T3 cavin1-mCherry knock-in

cells have been described previously [26]. MDCK type IIG cells were from WJ Nelson lab, Stanford

University. Cells were grown at 37˚C in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen)

supplemented with penicillin/streptomycin and 10% of heat inactivated fetal bovine serum for

HeLa and MDCK cells and 10% calf serum for NIH3T3 cells. Cells were tested and free from myco-

plasma contamination (in house service using MycoAlert mycoplasma detection kit, Lonza).

Cells were fixed with 4% paraformaldehyde at room temperature for 15 min. After four

washes with PBS, the cells were blocked and permeabilised with 0.2% saponin, 10% FBS in

PBS. After brief washing with PBS, the cells were incubated with appropriate primary antibody

for 60 min at room temperature or overnight at 4˚C. The cells were then washed four times for

5 min with and then incubated with the Alexa-secondary antibodies or fluorescent streptavidin

for 1hr at room temperature.

DNA plasmids and transfection

BioID plasmids were generated as follows: cDNAs from full length rat Cavin1, mouse Flotillin

1, rat Flotillin 2, human CD20, human CD8 and a myristoylation/palmitoylation sequence

(GCGCSSHPEDDGGSGGSGGS) were cloned either with restriction digestion NheI and

BamHI or by PCR and Gibson Assembly (NEB, Cat# E2611) into pcDNA3.1(+) with BirA�

(R118G) followed by a GSGSGS linker and myc tag (EQKLISEEDL). To generate EGFP-C-

D2AP a 1914bp fragment corresponding to mouse CD2AP was cloned from mouse embryonic

fibroblasts (MEF) cDNA using the next primers Fwd 5’ gccgcagcatggttgactatattg
tggaatatgac and Rev 5’ gcaaagctgaagaaagctgttctgttgtct and cloned into

pEGFPC1 using Gibson Assembly Master Mix according to the manufacturer’s instructions.

IMAGE clone #5111213 was used to overexpress full length human CSDE1, mouse CKAP5

from IMAGE clone 8861354 was cloned into pEGFPC1 plasmid, and Addgene plasmid

#12983 was used to express constitutive active Rac1 (pRK5-myc-Rac1-Q61L). Rat cavin1-m-

Cherry is described in [64]. Plasmids were transfected in HeLa and MDCK cells using either

FuGeneHD (Promega, Cat# E2311) or PEIMAX (Polyethyleneimine MW 40,000, Polysciences

Cat# 24765) and NIH3T3 cells were electroporated using the Neon transfection system.

siRNA knockdown

Silencer select siRNAs were purchased from ThermoFisher Scientific (Ambion) and their

sequences are listed in S2 File. Three siRNAs for each gene were pooled and transfected at

5mM or used individually at 5mM concentration using Lipofectamine RNAiMAX (Thermo-

Fisher Scientific, Cat # 13778030) following manufacturer’s instructions. Unless otherwise

stated the pooled siRNAs were used–in some experiments single siRNAs were used, and this is

indicated in the relevant Figures.

Affinity capture of biotinylated proteins

The protocol for isolating proteins biotinylated by BirA� was adapted from the BioID method

[31, 32]. Briefly, HeLa cells at 60% confluence grown in 15cm dishes were transiently trans-

fected with FuGeneHD with 5ug of plasmid. One day after transfection, medium was removed

and replaced with fresh medium containing 50 μM biotin (10 mg.ml−1 stock in dimethylsulfox-

ide), and the cells were incubated for a further 16-20hrs before lysis. For lysis, cells were
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thoroughly washed 6 times with PBS at room temperature, all remaining solution exhaustively

removed and 1ml of lysis buffer (50 mM Tris pH 8, 300 mM NaCl, 5 mM EDTA, 1% Triton X-

100, 1% octyl-glucoside and cOmplete inhibitor cocktail (Roche, Cat# 04693159001)) was added

per dish. Cells were scraped immediately, vortexed briefly and incubated on ice for 30 min. After

centrifugation at 13,000g for 15 min at 4 ˚C, the supernatants were mixed with 1 ml of 50 mM

Tris pH 7.4. Five per cent of this sample was saved for immunoblotting, and the rest was added

to 500 μl Dynabeads MyOne Streptavidin C1 beads (Invitrogen) that had been pre-washed twice

in the same buffer. The beads were incubated at 4 ˚C overnight, washed twice in wash buffer 1

(2% SDS, cOmplete inhibitors), twice in wash buffer 2 (1% Triton X-100, 0.1% deoxycholate,

500 mM NaCl, 1 mM EDTA, 50 mM HEPES, cOmplete inhibitors, pH 7.5), once in wash buffer

3 (250 mM LiCl, 0.5% NP-40 alternative (IGEPAL), 0.5% deoxycholate, 1 mM EDTA, 10 mM

Tris pH 8, cOmplete inhibitors, pH 8.4) and twice in wash buffer 4 (50 mM Tris pH 7.4, 50 mM

NaCl, cOmplete inhibitors). Finally, the beads were incubated in 30 μl SDS sample buffer con-

taining 250 mM DTT and 3 mM biotin at 98 ˚C for 5 min to dissociate the biotinylated proteins

from the beads. A second elution was done and both elutions pooled. 40 ul was run on a gel for

mass spectrometry, with the remainder reserved for immunoblotting.

Immunoprecipitation

10 cm Petri dishes at 75% confluency were transfected with cavin1-mCherry and one of the

following EGFP plasmids: EGFP-CKAP5, EGFP-CD2AP, caveolin1-EGFP or empty

pEGFPN1 plasmid. Cells were thoroughly washed in PBS, lysed and scraped with lysis buffer

(0.1% TritonX100, 10 mM Tris pH8, 150 mM NaCl, 0.5 mM EDTA and protease inhibitors)

and incubated for 30 min on ice. Samples were centrifuged at 50.000 rpm (100,000 g) for 30

min at 4˚C and the GFP-tagged proteins from the supernatant were isolated by incubation

with 10 ul per sample of packed magnetic GFP-Trap agarose beds (Chromotek Cat# gtma-20)

overnight at 4˚C. Using magnetic stand separation the samples were washed 3 times with lysis

buffer without TritonX100 and eluted with 50ul 2X SDS buffer with 150 mM DTT.

For Fig 4B, transfected cells were chemically cross-linked as previously described [19] with

the only modification that the cells were cross-linked for 30min at room temperature with

0.5mM DSP. After quenching and washes, cells were scraped in 1% octylglucoside, 1% Tri-

tonX-100, 50mM Tris pH8, 300mM NaCl, 5mM EDTA and protease inhibitors. Immunopre-

cipitation was performed as described and washes done using the same 1% octylglucoside, 1%

TritonX-100 lysis buffer.

Quantitative PCR

Total RNA was extracted using RNeasy mini kit (Qiagen, Cat# 74104) following manufacturer

instructions and DNA was removed with on-column DNaseI digestion (RNase-free DNaseI,

Qiagen #79254). RNA was reverse transcribed using the High-Capacity RNA-to-cDNA Kit

(Applied Biosystems, Cat# 4387406). Quantitative PCR analysis was made using delta-delta-

CT method with TaqMan probes from ThermoFisher Scientific (FAM-MGB as dye-quencher)

using TaqMan Universal Master Mix II, with UNG (Applied Biosystems, Cat# 4440038) on a

ViiA7 Real-Time PCR System (Applied Biosystems). Hprt was used as a housekeeper gene for

normalization. The following human probes were used: Cav1 (Hs00971716_m1), Cavin1

(Hs00396859_m1), Hprt (Hs99999909_m1) and CSDE1 Hs00918650_m1).

Antibodies

The following antibodies were used: rabbit anti-caveolin1 (BD Biosciences Cat# 610060),

mouse anti-βeta-catenin (BD Biosciences Cat# 610153), rabbit anti-cavin1 (Abcam Cat#
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ab48824), rabbit anti CD2AP (A599 Cell Signalling, Cat# 5478) for WB and mouse anti-

CD2AP (Santa Cruz Biotechnology Cat# sc-25272) for immunostaining, YL1-2 anti-alpha

tubulin (in-house cell culture supernatant), mouse anti-GFP (Roche Cat# 11814460001),

mouse anti-flotillin-2 (BD, 610384), goat anti-EHD2 (Abcam Cat# ab23935), rabbit anti-

CSDE1 (N2C1 GeneTex, Cat# GTX116218), mouse anti-TXNRD1 (Novus Biologicals Cat#

NBP2-59489), mouse anti-vigilin (LSBio Cat# LS-C342610-100), rabbit anti-PRRC2C (Abcam

Cat#ab117790), rat anti-Nav1 (Abcam Cat#ab201920) and mouse anti-myc clone 9E10 (in-

house cell culture supernatant). Horseradish peroxidase (HRP)-conjugated secondary anti-

bodies were from DAKO and Streptavidin HRP from Cell Signalling (Cat# 3999). Streptavidin

Alexa 647 and Alexa Fluor fluorescent secondary antibodies were from Life Technologies

(Thermo Fisher).

Microscopy

All confocal imaging was carried out using a Zeiss LSM710 inverted confocal microscope with

a 63x/1.4NA oil objective, driven by Zen software. TIR imaging was carried out using a specifa-

lised 63x/1.4NA TIR objective on an Olympus CellView system.

Mass spectrometry

Samples were loaded on 4–12% Bis-Tris SDS–PAGE gels and run for 4–5 centimetres. Proteins

were stained with Coomassie InstantBlue (Expedeon), the entire gel lane was cut into eight

slices that were placed in a 96-well plate and destained with 50% v/v acetonitrile and 50 mM

ammonium bicarbonate, reduced with 10 mM DTT, and alkylated with 55 mM iodoaceta-

mide. Digestion was with 6 ng/μl trypsin (Promega, UK) overnight at 37˚C, and peptides

extracted in 2% v/v formic acid 2% v/v acetonitrile, and analysed by nano-scale capillary

LC-MS/MS (Ultimate U3000 HPLC, Thermo Scientific Dionex) at a flow of ~ 300 nL/min. A

C18 Acclaim PepMap100 5 μm, 100 μm x 20 mm nanoViper (Thermo Scientific Dionex),

trapped the peptides prior to separation on a C18 Acclaim PepMap100 3 μm, 75 μm x 250 mm

nanoViper. Peptides were eluted with an acetonitrile gradient. The analytical column outlet

was interfaced via a nano-flow electrospray ionisation source with a linear ion trap mass spec-

trometer (Orbitrap Velos, Thermo Scientific). Data dependent analysis was performed using a

resolution of 30,000 for the full MS spectrum, followed by ten MS/MS spectra in the linear ion

trap. MS spectra were collected over a m/z range of 300–2000. MS/MS scans were collected

using a threshold energy of 35 for collision-induced dissociation. LC-MS/MS data were

searched against the UniProt KB database using Mascot (Matrix Science), with a precursor tol-

erance of 10 ppm and a fragment ion mass tolerance of 0.8 Da. Two missed enzyme cleavages

and variable modifications for oxidised methionine, carbamidomethyl cysteine, pyroglutamic

acid, phosphorylated serine, threonine and tyrosine were included. MS/MS data were validated

using the Scaffold programme (Proteome Software Inc).

Quantification, statistical analysis

Enrichment scores for each protein in each individual BioID experiment were calculated as

follows. The number of unique peptides from that protein identified in the cavin1-BirA� sam-

ple (exclusive peptide count) was divided by 1 + the sum of exclusive peptide counts for that

protein in all of the negative control samples for that experiment. The negative controls

applied were not the same in all of the BioID experiments, their identity is detailed in S1 File,

which also includes mass spectrometry data for each experiment. The ‘normalised product of

scores’ was generated by multiplying together (enrichment score + 1) for each experiment, and

then normalising to the result in the case of caveolin1.
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The quantification of the effect of CD2AP knockdown on Cav1 recruitment to cell-cell con-

tacts in Rac1Q61L transfected cells (Fig 7C) was done as follows: 15 confocal images for each

condition (control without siRNA, siRNA negative control and siRNA CD2AP) in different

slide areas were acquired using 63X lens and no optical zoom. Then, the number of cell-cell

contacts positive for beta-catenin was manually counted and that corresponded to the total of

contacts. From those beta-catenin-positive contacts, caveolin1 recruitment was manually

quantified according to the presence or absence of parallel arrays of caveolae as shown in

Fig 7B.

Co-localisation between CD2AP and caveolin1 (Fig 5C) was quantified using the Coloc2

plugin implemented in ImageJ to calculate Pearson’s correlation coefficient between the two

fluorescence channels in manually defined cell areas. Channels were offset by approximately

0.5 microns by hand, and then the same cell areas were used for the control analysis.

Western Blots

Samples were lysed in 1X sample buffer (NuPage LDS Sample buffer, Invitrogen Cat#

NP0007) supplemented with 150mM DTT, boiled and run on precasted 4–12% Bis-Tris gels

(Invitrogen) in either 1X MOPS or 1X MES buffer. The gels were then transfer into PVDF

membranes and the membranes blocked in a PBS solution containing 5% dried skimmed milk

powder, incubated with the appropriate primary antibodies, washed 0.1% Tween-20/PBS solu-

tion and incubated with HRP conjugated secondary antibodies (DAKO). After washing, the

blots were then developed using Immobilon Western Chemiluminescent HRP Substrate

(Millipore) or ECL Western Blot Detection Reagent Kit GE Healthcare Cat# RPN2209 onto

Fuji Super RX X-ray films.

Supporting information

S1 Fig. Effect of siRNAs against potential caveolae-interacting proteins on caveolin1

expression. Western blots with the antibodies shown, in cells transfected with pooled siRNAs

as indicated. Approximate positions of molecular weight markers are indicated (kDa), and the

predicted molecular weight of each candidate is indicated in parentheses.

(TIF)

S2 Fig. SiRNAs against CD2AP demonstrate that indirect immunofluorescence labelling

with anti-CD2AP antibodies results in a specific signal. HeLa cells transfected with siRNAs

as shown fixed and stained with anti-CD2AP antibody.

(TIF)

S3 Fig. Overexpression of Rac1Q61L induces recruitment of beta-catenin to cell-cell con-

tacts in HeLa cells. A. Indirect immunofluorescence with anti-myc and anti-beta-catenin anti-

bodies. B. Indirect immunofluorescence with anti-beta-catenin antibodies, comparing fields of

Rac1Q61L-transfected and untransfected cells.)

(TIF)

S4 Fig. Caveolin1 staining in parallel arrays at junctions between polarising MDCK cells.

Indirect immuniflourescence with anti-caveolin1 antibodies. The zoomed-in regions are

highlighted by yellow boxes in the larger image. Bar 20 microns.

(TIF)

S5 Fig. CD2AP siRNAs to not perturb recruitment of beta-catenin to cell-cell contacts.

Indirect immunofluorescence with anti-caveolin1 and anti-beta-catenin antibodies in control
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cells and siRNA CD2AP treated cells. Cells overexpress Rac1Q61L-myc.

(TIF)

S6 Fig. Imaging of potential cavin1-interacting proteins and components of caveolae. All

images are single confocal sections. Unless otherwise indicates images are of indirect immuno-

fluoresnce staining using antibodies detailed in the Methods section. NAV1 was detected

using transient transfection with a GFP-Nav1 construct. Note that the distributions of MAP4

and PRRC2C were not analysed. Bars are 20 microns.

(TIF)

S1 File. Mass spectrometry data from BioID experiments. Number of exclusive peptides for

each protein is shown in the table. The identity of the BirA� fusion used in each sample is

given at the top of each column. ‘Control’ indicates a sample where no BirA� fusion was trans-

fected. Some experiments (F and G) were carried out in duplicate, and the values used in Fig 2

are simply the mean of the duplicates.

(XLSX)

S2 File. Sequences of siRNA oligonucleotides. As shown.

(XLSX)
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