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Abstract

Few of .150 published cell cycle modeling efforts use significant levels of data for tuning and validation. This reflects the
difficultly to generate correlated quantitative data, and it points out a critical uncertainty in modeling efforts. To develop a
data-driven model of cell cycle regulation, we used contiguous, dynamic measurements over two time scales (minutes and
hours) calculated from static multiparametric cytometry data. The approach provided expression profiles of cyclin A2, cyclin
B1, and phospho-S10-histone H3. The model was built by integrating and modifying two previously published models such
that the model outputs for cyclins A and B fit cyclin expression measurements and the activation of B cyclin/Cdk1 coincided
with phosphorylation of histone H3. The model depends on Cdh1-regulated cyclin degradation during G1, regulation of B
cyclin/Cdk1 activity by cyclin A/Cdk via Wee1, and transcriptional control of the mitotic cyclins that reflects some of the
current literature. We introduced autocatalytic transcription of E2F, E2F regulated transcription of cyclin B, Cdc20/Cdh1
mediated E2F degradation, enhanced transcription of mitotic cyclins during late S/early G2 phase, and the sustained
synthesis of cyclin B during mitosis. These features produced a model with good correlation between state variable output
and real measurements. Since the method of data generation is extensible, this model can be continually modified based on
new correlated, quantitative data.
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Introduction

Cell cycle research expanded dramatically after the discovery of

cell cycle regulating genes in yeast in the 1970’s [1]. A review of

yeast studies identified 475 proteins participating in 732 reactions

[2]. The mammalian cell cycle is more complicated, and as more

biochemical reactions are discovered and incorporated into a

narrative model, the ability to intuitively predict outcomes after

perturbation should diminish. Mathematical modeling forces

formalization of concepts in a precise language, and models allow

analytic evaluation of complex system behavior. Eventually, as a

model becomes more accurate, hypotheses can be tested in silico.

That is the promise of ‘‘Systems Biology’’ [3].

The cell cycle is a regulated, ordered sequence of compart-

mentalized, simultaneous (parallel) and serial chemical reactions

[4]. Presumably, order and compartmentalization are underlying

features, necessary for genomic stability, balanced cell growth and

division, and tissue formation. At one level, the cell cycle control

system is manifested physically by a large set of interacting

biomolecules. In particular, the ‘‘backbone’’ of the system is the

sequential activation of a series of cyclin-dependent kinases (Cdks).

Cdks were among the first discovered proteins/genes that evoked

the logic of the control system.

Cdks are regulated by three mechanisms: 1) cyclin availability -

the kinase subunits are expressed at high levels throughout the cell

cycle, but activities are regulated by oscillating levels of activating

cyclin partners; 2) phosphorylation – all cell cycle Cdks are

activated by Cdk activating kinases (CAK), and some cell cycle

Cdks are inhibited by Wee1 and Myt1 kinases or promoted by the

Cdc25 phosphatases, and 3) peptide inhibitors - active cyclin-Cdk

complexes are inactivated by binding Cdk inhibitors (CKIs) such

as the INK4 (p16, p15, p18, p19) and CIP/KIP (p21, p27, p57)

gene families [5,6].

Cyclin concentrations are determined by the opposing rates of

synthesis and degradation. Synthesis depends on specific tran-

scription factors and degradation depends on ubiquitin-depen-

dent proteolysis systems. Both are regulated by additional

controls. Coupled transcription/translation and degradation

sequentially orders the periods of high concentration of specific

cyclins. The levels of CKIs also depend on their production rate,

which is governed by regulated transcription and destruction

rates, which in part depend on the activity of Cdks (Cdk-

phosphorylated CKIs are rapidly ubiquitinated and degraded).

The interplay between these systems shifts the cell sequentially

through genome and centrosome duplication, and chromosome

and centrosome segregation.

We have identified .154 mathematical models of the cell cycle

(a large subset of these are listed in [7], also see Tables S1 and S2

in File S1). Most models have focused on understanding small,
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often hypothetical, parts of the cycle [8–12]. Others have focused

on specific cell cycle phases and transitions, such as the G1/S

transition and the G1 restriction point [13–20], or ‘‘G2+M’’

transition [21–24]. Recent models [17,25,26] have begun the

difficult task of assembling larger scope models aimed at a

regulatory system governing complete cell cycle transit. Coincident

with the use of yeast as the primary model organism in cell cycle

research, models of yeast cell cycles dominate the field [27–36].

Other models use the language and information from frog eggs

[22], sea urchins [37], drosophila [38], and mammalian cultured

cells [14,17,25,39]. Some efforts have been aimed at a generic

eukaryotic cell description [26]. Published cell cycle models cover

a wide range of purposes and techniques. The large majority use

ordinary differential equations (ODEs) based on chemical mass

action assumptions. However, stochastic [40], time delay [41],

partial differential equation models of spatiotemporal dynamics

[42], Boolean logic [43], and hybrid models [44] have also been

reported.

Most models are unsupported by quantitative biological data.

While these models force a formal description and test the validity

of hypotheses based on ideas from biology, especially on feedback

mechanisms, hysteresis, and bifurcation in cell cycle control, there

have been few attempts to fit these models to quantitative

measurements [45]. In tandem with common biological reasoning,

most models have been calibrated or validated against ‘‘qualita-

tive’’ observations or general information about the timings of

events. Model parameters are loosely tuned to produce stable

sequences of oscillations in molecules known to be active in

corresponding cell cycle phases. The use of genetic perturbations

for qualitative validation of the proposed system structure extends

this approach. Chen et al. [27], for example, utilized over 100

genetically engineered strains to confirm the canonical ‘‘wiring

diagram’’ of the yeast cell cycle and constrain the calibration of a

computational model. The use of quantitative dynamic data in

models of the cell cycle is rare. Exceptions include the use of

Xenopus laevis embryo extracts [11,46], limited measurements of

yeast proteins [47,48], and synchronization, timed sampling, and

immunoblotting of human cell lines [14,39]. One effort used flow

cytometric data, similar to that used here, but in conjunction with

a hybrid model [44]. Here, we evaluated two mammalian models

with correlated cytometric measurements of cyclin A2, cyclin B1,

and phosphorylation of histone H3 at serine 10 (PHH3). However,

to achieve agreement between model and data, we combined the

two and structurally modified the new model.

It has been difficult to obtain precise quantitative data of cell

cycle regulatory proteins. Cultured cells are naturally asynchro-

nous and so most approaches use synchronization and relative,

visual estimates of quantities or densitometry to quantify

immunoblots to measure oscillating proteins in timed sampling

over the course of one or two cell cycles. For mammalian cells,

synchronization by physical or chemical means is always less than

perfect and synchronization of many cell lines by chemical means

results in altered cyclin expression [49], growth imbalance [50–

52], and altered transit times [53]. The resulting data provide a

good sense of expression versus time, but are imprecise both with

respect to relative ‘‘normal’’ quantities and precise timing of cell

cycle related oscillations for epitopes that will later be state

variables in mathematical models. However, using quantitative

cell-based methods, the information for the programmed expres-

sion of these same state variables is contained in a single, randomly

sampled, asynchronous population. Asynchronous cells are

distributed at each state within the data space of the programmed

expression of said state variable. Therefore, because the cell cycle

is a closed loop, single cell measurement data contain a sampled

version of the dynamic expression profile of the measured

molecules [54–57]. In a cycling population, the frequency of cells

in each phase or state is proportional to the time spent in that

state. In cell cycle flow cytometry, if correlated parameters are

chosen to unambiguously isolate a continuum along an expression

profile, that expression profile can be unambiguously derived.

Guided by heuristics assembled from canonical cell-cycle knowl-

edge, we have derived a methodology to extract the embedded

dynamic profiles of cell-cycle proteins from statically sampled,

multiparameter cytometry data. This approach is illustrated in

previous publications [54–57] and the results for K562 cells are

presented in Figure 1. With this method, time is relative and

expressed as a fraction of cell cycle time (Tc). To convert to real

time values, measurements of population doubling time can be

used to estimate Tc and the time scale transformed accordingly.

The doubling time of K562 cells has been reported as 24–30 hours

[58]; under our growth conditions the rate is variable - we have

measured it as 18 and 22 hours. A reasonable guess for Tc in

Figure 1 might be at the higher end of values (e.g., 30 hours), since

G1 accounted for only 21% of Tc, which would equal a TG1 of 6

hours.

In the work presented herein, our goal was to ask whether

calibrating an ODE-based cell cycle model to correlated, dense

expression data forced a substantive modification. We focused on

the mitotic cyclins because the expression of cyclin A2 and B1 are,

in general, very similar in immortalized, transformed, tumor-

derived cell lines, and primary cells (e.g., stimulated lymphocytes)

and also similar between differentiated cells (epithelial, mesenchy-

mal, hematopoietic, etc.). We found that while published models

capture the major features of mitotic cyclin expression, modifica-

tions were required to achieve agreement between model

dynamics and quantitative expression data.

Results

Figure 1 presents the expression profiles of cyclin A2, cyclin B1,

and PHH3 in the K562 cell line. Cyclin A2 synthesis begins at or

near the start of S phase (Figure 1E; for further corroboration, see

the supplementary data and discussion in [44]). Synthesis

continues into M, wherein it abruptly decreases as expected

(Figure 1F). The data show a two-phase increase – approximately

linear through S phase, followed by a rapid increase in expression

in G2 phase (Figure 1A). The pattern of cyclin B1 expression is

similar, however, its expression begins earlier than cyclin A2

(Figure 1E), and the primary increase in expression is non-linear

and the secondary rate of increase is more rapid than cyclin A2

(Figure 1B). Cyclin B1 decays later in mitosis than cyclin A2

(Figure 1F). PHH3 is a marker of mitotic cells, increasing very

early and remaining elevated through to cytokinesis. Histone H3 is

likely phosphorylated at serine 10 by Aurora kinase B during

mitosis [59–61], and any link between Cdk1 and Aurora kinase B

activations is indirect. Since cyclin B1/Cdk1 is also activated at the

beginning of mitosis, the onset of cyclin B1/Cdk1 activity should

be approximately coincident with the onset of elevated PHH3

expression during early mitosis. While we did not measure cyclin

B1/Cdk1 activity directly, we used PHH3 as a proxy for the

timing of cyclin B1/Cdk1 activity.

Having obtained these expression profiles, our goal was to

determine how closely published models and rate constants

matched the data, and if the fits were not close, what changes

were needed in existing models to make them fit – in essence, we

were attempting to calibrate the published models.

We tested two existing models, both of which captured

canonical knowledge. They incorporated growth factor-induced

Cell Cycle Model
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activation of D cyclins that phosphorylate Rb, activating E2F, and

resulting in the synthesis of E, A, and B cyclins. E cyclin initiated

the deactivation of APC/Cdh1 and allowed cyclins A and B to

accumulate. At the end of the cycle, B cyclin activated APC/

Cdc20, which in turn degraded cyclins A and B, completing

mitosis and resetting the cell cycle control system. Both models

also incorporated the antagonistic relationship between a CKI,

such as p27, and the cyclin/Cdks. However, beyond these basics,

there were key differences between the models and each captured

different aspects of the K562 expression profiles for cyclins A2 and

B1, as shown in Figures 2 and 3.

The most recent comprehensive model of the mammalian cell

cycle, by Conradie et al. [25], appears to be an updated version of

that used to investigate restriction point control [17]. It therefore

Figure 1. Cell cycle expression. Normalized expression profiles of cyclin A2 (A), cyclin B1 (B), and PHH3 (C), and DNA content (D). A magnified
view of the first 25% of the cell cycle is presented in E, and the final 3% of the cell cycle in F. K562 cells were stained, measured by flow cytometry,
and sample data were analyzed to produce expression profiles as described in Materials and Methods. Dotted lines demark the G1/S, S/G2, and G2/M
boundaries as determined by cell cycle analysis of DNA content and gated enumeration of PHH3 positive mitotic cells.
doi:10.1371/journal.pone.0097130.g001
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incorporated detailed mechanisms and equations for cyclin D

activation, E2F interactions with Rb, and the role of cyclin E.

Notably absent from the model were Wee1 and Cdc25, which

regulate cyclin B/Cdk1 activity, or any mechanisms to account for

the net rates of synthesis for cyclins A and B during interphase.

Figure 2 presents a diagram of this model’s interactions and a

comparison of the published model outputs with K562 derived

expression profiles. The model captured basic trends in the

expression of cyclins A and B, but the model outputs did not

display the two distinct biphasic rates of synthesis evident in the

K562 data. Furthermore, because the model lacked Wee1/Myt1

and Cdc25, it did not capture the delayed activation of Cyclin B

and abrupt onset of mitosis demonstrated by the PHH3 expression

profile.

The second model we examined is the mammalian implemen-

tation of a ‘‘generic cell cycle’’ model by Csikasz-Nagy et al. [26].

This model did not include any entry point signaling, and included

limited dynamics of cyclin D (modeled as an initial concentration

which grows exponentially) and E2F activation (approximated

with an ultrasensitive Goldbeter-Koshland function [62]). The

model included more comprehensive dynamics for the core

downstream modules including cyclins A and B and incorporated

Wee1 and Cdc25 regulation of cyclin B/Cdk1. Additionally, a G2

transcription factor was modeled for cyclin B, to implement

secondary, auto-catalytic transcriptional control. These interac-

tions and a comparison of the published model outputs to our data

are shown in Figure 3. Cyclin B and activated cyclin B dynamics

were captured fairly well with the model. Cyclin A dynamics

started immediately and were only transcribed at one character-

istic rate throughout the cycle. The K562 data, however,

demonstrated a delay in cyclin A expression for the first 21% of

the total cell cycle time and showed an increase in expression at

the start of G2.

Although the published model state variable outputs do not fit

our expression profiles well, both models captured canonical cell

cycle dynamics. To better fit these models to our data, we used the

ideas of Chen et al. [27] and worked backwards through the

hierarchy of model assumptions: numerical rate constants,

mathematical approximations, and the underlying biological

network. However, without structural changes, we were unable

to satisfactorily calibrate either of these models with our data. The

outputs in Figures 2 and 3 represent the published models and

parameters.

Manual and automated parameter optimization routines failed

to significantly improve the fit between the previous models and

our data [25,26]. However, while a framework exists for applying

Figure 2. Model Schematic and comparison of model outputs to expression data I. A: schematic derived from the Conradie model [25].
Solid lines indicate chemical reactions and dashed lines indicate reaction modification (regulation). B, C, D: normalized comparison of model outputs
with K562 data. Simulations were carried out using the published protocols and kinetic rate constants. Since antibodies do not discriminate between
active/inactive, free/bound levels, total protein amounts (bound and free, inactive and active) from the model were compared to K562
measurements. As discussed in the text, PHH3 is used as a proxy for the timing of cyclin B/Cdk1 activity onset (identical to total cyclin B/Cdk1
expression in this model).
doi:10.1371/journal.pone.0097130.g002
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mathematical optimization to the estimation of parameters via the

so-called inverse problem, biochemical models are usually non-

convex and multi-modal [63]. Additionally, functional relation-

ships often exist between parameters such that each cannot be

uniquely determined from a given set of observations [64]. Despite

its critical importance, few methodologies exist for examining

these dependencies a priori [65]. Calibration therefore requires

broad and repeated searches through the parameter space

[14,66,67]. State of the art algorithms often couple global

stochastic searches (to cover space and leap local minima) with

deterministic local methods (to refine the broad search). We tried

three global algorithms: simulated annealing [68], a genetic

algorithm [69], and the stochastic ranking evolutionary strategy

(SRES) [70]. We searched both the entire parameter space and

subspaces defined by the most sensitive 10% and 30% of the

parameters. Despite evaluating well over 105 parameter sets with

each of these methods, we were unable to obtain satisfactory fits.

This is most easily explained by the model structures, which define

the space of possible system trajectories and preclude capturing

certain data features (for example, the increase in cyclin A2

expression during G2). It bears noting however, that it is

impossible to fully invalidate a model structure through calibration

attempts alone. Algorithms are imperfect (in this case convergence

is purely stochastic) and there are nearly infinite combinations of

parameters. Nevertheless, our results strongly implied that certain

unmodeled dynamics were likely significant in capturing features

of the data.

We obtained a better fit to data by modifying a published

model. The Csikasz-Nagy model [26] provided the closest fit, and

we therefore used this model as a base for this study and

modification. The simulated output of cyclin B was similar to our

data, but simulated cyclin A synthesis was unsatisfactory. In the

next sections, we discuss modifications that were made to improve

the model fit. The modified model was calibrated manually, using

the methods and software listed in Materials and Methods, the

pathway diagram in Figure 4, and differential equations provided

in File S2 (Table S3) as guidance to adjust the strengths of relevant

rate equations.

For most, perhaps all, of G1, we did not detect cyclin A2

expression in K562 cells. As shown in Figure 3 however, cyclin A

in the Csikasz-Nagy model was produced throughout G1. The

measured delay in cyclin A2 is due to at least two mechanisms.

Firstly, transcription is delayed by the requirement for cyclin D to

inhibit Rb and free the E2F transcription factors. Secondly, cyclin

A is actively degraded by the APC/Cdh1 complex [71].

The Csikasz-Nagy model did not include detailed mecha-

nisms of cyclin D, Rb, or E2F, but instead modeled the

activation of E2F using a Goldbeter-Koshland approximation.

Figure 3. Model Schematic and comparison of model outputs to expression data II. A: Schematic derived from the Csikasz-Nagy model
[26]. Solid and dashed line representations are as in Figure 2. B, C, D: normalized comparison of model outputs (simulated total protein levels (as in
Figure 2) of cyclin A and cyclin B, and cyclin B/Cdk1 activity) to K562 expression data. Simulations were carried out using the published protocols and
kinetic rate constants.
doi:10.1371/journal.pone.0097130.g003
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E2F therefore switched on abruptly near the start of the

simulation and remained at a constant level until switching off

abruptly near the end. While lacking in its ability to capture

cyclin A and cyclin B dynamics, an advantage of the Conradie

model is its detailed dynamics of E2F, Rb, and cyclin D. The

model decomposed the Goldbeter-Koshland function, used in

an earlier incarnation of the model [17], into elementary mass

action reaction rates and represented E2F activation in greater

detail. Furthermore, cyclin D was modeled in more detail,

incorporating transcription and proteolysis, as well as binding to

a CKI such as p27. To better model G1 phase and the

restriction point, we therefore replaced the Csikasz-Nagy

Figure 4. Diagram of a new model. The models presented schematically in Figures 2 and 3 were combined and modifications were introduced to
provide better fits to the K562 data. The schematics of the original Csikasz-Nagy model [26] is shown in black, the Conradie model portion [25] is
shown in gray, and the new modifications from this study are presented in red. Solid lines indicate chemical reactions and dashed lines regulatory
effects. The apparent autocatalytic regulation of cyclin B/Cdk1 synthesis here represents a stabilization of B cyclin synthesis dependent on active
cyclin B/Cdk1, whereas the same representation in Figure 2 (Conradie model) represents a Hill equation that is dependent on cyclin B, which is
removed here. Thus, the dashed arrow represents a new modification here.
doi:10.1371/journal.pone.0097130.g004
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mechanisms with those from the Conradie model. As an added

benefit, the model incorporated ‘‘highly stylized’’ dynamics for

basic upstream signaling pathway activity (representing, for

example, MAPK), which provides an entry point for future,

more complex models that include growth factor signaling, an

essential element of cell cycle regulation.

Also, the Csikasz-Nagy model did not include degradation of

cyclin A by APC/Cdh1. Other mechanisms such as Skp2 likely

contribute to the proteolysis of cyclin A during G1 [72], but

including Cdh1 regulation provides an effective and easily

incorporated modification. As shown in Figure 5, including this

regulation allowed us to model the delay in detectable cyclin A2

levels until close to the start of S phase. Biologically, this second

mechanism is likely dominant, since cells like DU-145 with

inactivating mutations in Rb (resulting in constitutively active E2F)

do not express appreciable cyclin A2 in G1 [73].

As evident in Figure 1B, the synthesis of cyclin B1 during S

phase is markedly nonlinear. The Csikasz-Nagy model considered

two sources of cyclin B synthesis: constitutive, which synthesized

cyclin B at a constant rate, independent of cell cycle progression;

and enhanced, autocatalytic transcription during G2. Neither of

these rates are capable of producing the S phase nonlinearity

evident in the K562 data. However, there are a large number of

transcription factors that activate cyclin B synthesis. E2F is among

these [74] and represents an easily incorporated modification. E2F

was modeled, in the Conradie portion adopted here, as active at

nearly constant levels throughout S phase, without independent

synthesis or degradation terms (only converted between active and

inactive forms at the beginning and ends of the cell cycle).

Therefore, simply tying cyclin B synthesis to E2F does not

significantly change the character of cyclin B expression. However,

E2F is autoregulatory and E2F promoters contain E2F binding

sites [75]. This provides a mechanism where E2F may increase

nonlinearly throughout the cell cycle. Data are not available to

precisely tune the shape of E2F expression, but assuming

autocatalytic synthesis of E2F and E2F-regulated synthesis of

cyclin B allowed the model to be calibrated much more closely to

the K562 data.

E2F regulation is quite complex, consisting of both activator

(E2F1-3) and repressor (E2F3b,4-8) isoforms. Besides regulation

through Rb binding, A and B cyclin/Cdk complexes phosphor-

ylate E2F1-3. Phosphorylation by cyclin A/Cdk2 has been shown

to inhibit the DNA binding of E2F1 and E2F3 (and mostly likely

E2F2) [76,77], while cyclin B/Cdk1 phosphorylation does not

seem to have an appreciable effect [76]. However, APC/Cdc20

and APC/Cdh1 have been shown to target phosphorylated E2F1

for degradation during mitosis [78]. Both A and B cyclin/Cdks

may prime E2F for this step, via phosphorylation and release from

its transcriptional partner DP.

The E2F portion of our model, adopted from [25], captured

these steps in broad strokes, including the phosphorylation of E2F

by cyclins A and B. However, the model did not consider the

synthesis or degradation of E2F. We added the autocatalytic

synthesis of E2F to reproduce the character of cyclin B1 synthesis.

In addition, we’ve incorporated the degradation of phosphorylated

E2F by Cdc20 and Cdh1. This step was necessary to create a

stable model that would repetitively cycle. To maintain the

increase in expression needed to fit our measured increase in

cyclin B1, the model required minor cyclin A/Cdk regulation of

E2F compared to cyclin B/Cdk1. A more accurate representation

of E2F dynamics requires some validating data. In particular,

measurement of E2F levels, phospho-E2F levels, and E2F activity

as a function of the cell cycle are needed to validate and refine the

E2F dynamics modeled here.

Figure 5. Normalized comparison of the modified model outputs to K562 data. A, B, D, E, F: total simulated levels (bound and free,
inactive and active) of cyclins A and B, and cyclin B/Cdk1 activity (C) are compared to the measured expression profiles of cyclins A2 and B1, and
PHH3. D, E: magnified view of early cyclin A and B expression. F: magnified view of the final 3% of the cell cycle. Symbols = data; lines = simulated
output. The correlation between PHH3 expression and B cyclin/Cdk1 activity is for mitotic onset only. Since PHH3 is a proxy for B cyclin/Cdk1 activity,
there isn’t a rationale for an exact match to the shape on the front side (onset) and we expect the activity to decrease as cyclin B is degraded, whereas
it is known that phosphorylation levels of histone H3 (PHH3) decrease after B cyclin degradation (e.g., [59]).
doi:10.1371/journal.pone.0097130.g005

Cell Cycle Model

PLOS ONE | www.plosone.org 7 May 2014 | Volume 9 | Issue 5 | e97130



The Csikasz-Nagy model considered cyclin B/Cdk1 as the key

antagonist of Wee1 and activator of Cdc25, and created an

ultrasensitive, bistable, feedback cycle where cyclin B/Cdk1

essentially activated itself. Ultrasensitivity has been identified in

several biochemical systems [79,80] and competition between

Wee1 and alternative cyclin B/Cdk1 substrates generates ultra-

sensitivity in Xenopus oocytes [81]. However, in mammalian cells,

evidence has been accumulating that Wee1 inactivation may be

triggered by cyclin A/Cdk [82–84]. It has similarly been suggested

that ultrasensitivity may arise from the competition between Wee1

and other cyclin A/Cdk substrates in human somatic cells [84].

The Csikasz-Nagy model approximated Wee1 activity with a

Goldbeter-Koshland function, and so ultrasensitivity was inherent.

Here, we modified the driving force of the inactivation from cyclin

B/Cdk1 to cyclin A/Cdk to update the model in accordance with

recent literature. Once Wee1 is inactivated, cyclin B/Cdk1

activates Cdc25 in an autocatalytic loop, which is responsible for

the rapid activation of cyclin B/Cdk1. The inactivation of Wee1 is

a trigger mechanism that allows a small amount of active cyclin B/

Cdk1 to accumulate and start an abrupt autocatalytic rise in

activity.

Cyclin B1 has constitutive and cell-cycle dependent transcrip-

tional start sites [85]. As a key regulator of mitosis, cyclin B1

transcription is known to continue through G2. Key transcription

factors include USF, NF-Y, B-Myb, and FoxM1 [86,87]. In

addition to constitutive synthesis, a mechanism for elevated G2

transcription of cyclin B was already in the Csikasz-Nagy model.

This secondary transcription was modeled as being dependent on

active cyclin B/Cdk1 levels. While it is known that cyclin B/Cdk1

can indirectly influence its own transcription, for example, through

the activation of Bora, Plk1, and FoxM1, it is difficult to see how it

could accomplish significant effect prior to appreciable cyclin B/

Cdk1 activity, without invoking non-catalytic activity. Further,

FoxM1 has been shown to require the phosphorylation of an

autoinhibitory domain by cyclin A/Cdk before the transcription of

cyclin B and other G2 phase targets [88]. Similarly, B-Myb also

requires activation by cyclin A/Cdk [74,89,90]. This evidence

supports basic reasoning that cyclin A/Cdk, which is already

active, might drive the accumulation and activation of cyclin B.

We therefore modeled the G2 cyclin B transcription factor (TFAB)

as dependent on cyclin A/Cdk both to keep the model consistent

with current literature, and to serve as a testable hypothesis for

future cell cycle studies.

Similar to cyclin B1, our data indicate a change in the net

synthesis rate of cyclin A2 in late S/G2. We therefore also

propose, and modeled, two phases for cyclin A transcription.

Without evidence, we assume cyclins B1 and A2 share a common

transcription factor - although this transcription factor has a lesser

effect on cyclin A2 compared to cyclin B1. This is not

unreasonable - E2F, NF-Y and B-Myb, for example, have been

shown to bind both cyclin A and cyclin B promoters [74,90].

The modifications thus far discussed improved the simulation of

interphase relative to the K562 expression profiles. Turning to

mitosis, we encountered an additional inconsistency. The Csikasz-

Nagy model degraded cyclins A and B simultaneously upon the

activation of the APC/Cdc20 complex. To our knowledge, this is

the case for all published differential equation models that include

mitotic cyclin degradation. However, Figure 1 clearly illustrates

the known delayed degradation of cyclin B1 relative to cyclin A2.

There are several possibilities which might explain this.

It has been shown that cyclin B is subject to the spindle

assembly checkpoint (SAC), while cyclin A is not. Cyclin A is

degraded soon after APC/C phosphorylation by active cyclin

B/Cdk1, while cyclin B and other critical mitotic proteins (e.g.,

securin) are protected by SAC-promoted sequestering of Cdc20

by Mad2 and the formation (with BubR1 and Bub3) of the

inhibitory mitotic checkpoint complex (MCC) which binds to

and inactivates the APC/C [91]. Cyclin A is degraded

regardless of SAC activity by either or both of two proposed

mechanisms: cyclin A may have a high enough affinity to

compete with Mad2 for free Cdc20 before being targeted to the

APC/C by Cks, or cyclin A may activate MCC-inhibited

Cdc20 even after it has bound to APC/C [92]. The different

degradation pathways of cyclins A and B enforced by the SAC

likely explain at least a portion of the staggered degradation of

the K562 cyclins. However, incorporating these mechanisms in

a computational model is difficult at present. Progress has been

made in dissecting the full molecular details of the SAC, and

several simplified models have been constructed [93], but a

more refined description requires additional quantitative data to

clarify crucial gaps in pathway knowledge (for example, how

SAC inhibition is relieved and the MCC dissociates), and

additional modeling approaches may be required to couple the

mass action style ODE models explored here with the

biophysical modeling of microtubule forces and spatial distribu-

tions of molecules, required to account for the fine structural

mechanisms underlying the SAC [94].

A much simpler explanation might also be sufficient for

explaining the staggered degradations of cyclins A and B. Unlike

other cyclins, synthesis of cyclin B has been found to continue

through mitosis [95]. The G2 transcription factor, shared between

cyclins A and B is currently modeled such that it degrades as cells

enter mitosis. Introduction of an additional source of synthesis,

here presumed to be dependent on active cyclin B/Cdk1, can

effectively prolong cyclin B expression through mitosis and delay

its degradation by APC/Cdc20. This is demonstrated in Figure 5.

The mechanics underlying this continued synthesis are compli-

cated, but including a synthesis rate proportional to the

concentration of active cyclin B/Cdk1 provides a convenient

way to model continued expression of cyclin B through mitosis and

serves as a placeholder for future, more mechanistically detailed

studies.

An additional modification was made to the model that does

not affect the simulation output but improves the model’s

fidelity with known biology and allows the model to be easily

extensible. The Csikasz-Nagy model only considered one

population of cyclin A. However, cyclin A is known to bind

both Cdk1 and Cdk2. Cyclin A preferentially binds Cdk2,

which was shown to be enforced by differential activation by

CAK (cyclin H/Cdk7) until a significant fraction of available

Cdk2 is bound in complex [96]. Considerable cyclin A binds

Cdk1 only as the level of cyclin A/Cdk2 reaches a threshold in

late S. However, Cdk2 has been estimated to be present at

levels at least 8-times the maximum levels of either cyclin E or

cyclin A [97]. Whether the level of cyclin A/Cdk2 truly reaches

a plateau, or whether this is an artifact of the measurement

process, remains to be determined. Most previous models,

including Csikasz-Nagy, did not explicitly consider the binding

of cyclins to Cdks, as Cdk levels are relatively constant and in

excess of their cyclin partners [97]. Binding and activation is

presumed to occur sufficiently fast as to be ignored. Similarly, in

our model, we propose and modeled the synthesis of two

distinct cyclin A fractions. The binding preference for Cdk2 was

enforced by appropriately proportioning the two synthesis rates.

Presumably, the two fractions perform separate regulatory tasks.

However, little evidence exists as to their distinct functions.

We’ve modeled the two fractions as preparation for future

efforts, which can further refine the model once more is known
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about Cyclin A/Cdk2 and Cdk1 specific functions. For now,

both are modeled as acting in unison. In keeping with the

Csikasz-Nagy model, we did not consider inhibitory phosphor-

ylation of cyclin A/Cdk2, which was shown to be unimportant

in unperturbed cells [98]. Similarly, we considered the

inhibition cyclin A/Cdk1 by Wee1 and activation by Cdc25

to be insignificant [99–101].

By including these mechanisms and tuning several relevant

parameters (explained in Materials and Methods), we were able to

obtain an improved fit to data, capturing the key data

characteristics discussed earlier. These results are presented in

Figure 5. Although the fits are significantly improved over earlier

models, we think there are parts of the data that illustrate a need

for more complexity. The S phase of cyclin A expression in the

model is shifted slightly to a later time (Figure 5A); both cyclin A2

and B1 expression data display a rapid initial increase that

becomes slightly asymptotic before assuming a linear or exponen-

tial S phase rise (Figure 5D, 5E). Finally, while the decay of cyclins

A and B in the model occur at the correct time, the exact shape of

this decay is not the shape of the data. While there is some

variability that is evident in the data, the shape of the decay curve

is likely to be accurate [57]. Despite these shortcomings, forcing

the model to represent correlated, dense data did drive model

modification, and overall, the current model better represents the

data.

We performed some in silico tests of the model. The first was to

determine that the model was stable by setting it up to repeat

cycles (Figure 6). This required resetting some G1 variables to

starting conditions. These included the delayed response genes

(DRG) and D cyclin variables. Significantly, our modifications did

not introduce instabilities. Second, we performed D and E cyclin

elimination experiments as described by Csikasz-Nagy et al

(Figure 8C, 8D, [26]). These experiments lengthened G1,

demonstrating that our model maintained the behavior of the

Csikasz-Nagy model (Figure S1).

Discussion

Comparing data and models, we found a mismatch between

expression data for two mitotic cyclins from an asynchronously

growing human hematopoietic cell line and the state variable

output from previously published computational models. Exten-

sive calibration attempts were unable to tune the model

parameters and improve the fit. We therefore created a model

that combined features of both published models. This was

done to cover the important expression features in S, G2, and

M phases. Past that, it was necessary to add mechanistic

features to improve the correspondence between output and

data. We believe this to be a significant forward step, in that it

tests the idea that this type of data can drive model synthesis (as

opposed to direct measurements of rate constants that are much

harder to obtain). Including additional mechanisms improved

the model fit to data and provides a starting point for

experimental validation of the new ideas introduced by

modeling. Mathematical modeling formalizes descriptive knowl-

edge and helps to understand data that represent a large

network of interacting variables. Comparing an existing model

to data, we discovered previously unmodeled dynamics to be

significant factors determining the dynamic expression profiles of

cyclins A2 and B1. This emphasizes the importance of data,

and indicates the value of data obtained by our methodology

[55,57]. The majority of these model additions are well-

supported by published biological experiments. However, the

cyclin A-dependent activation of a G2 transcription factor,

shared by both cyclins A and B, represents one model imposed

hypothesis that needs to be tested. We’ve shown this hypothesis

to be consistent with dynamic expression profiles in unperturbed

cells, and previously published observations do not contradict it.

Modeling therefore also generated a testable hypothesis.

Mathematical approximations represent one level of the

hierarchy of modeling assumptions. A simple cyclin A/Cdk-

activated transcription factor that abruptly ‘‘turns on’’ at the start

of G2 (due to an ultrasensitive, Goldbeter-Koshland switching

function) is a simplification of the biochemistry. Such simplifica-

tions are limitations of the model. They allow us to reason about

the organization of the cell cycle regulatory network and the

relationship of our measured markers to that system, but do not

generate the highly refined expression data we’ve observed. Future

work requires models that are more complex, based on

information that is available now, but such models invoke a need

for significantly more data for model calibration. The system of

data generation is described in two papers [55,57], one of which

provided the data used here. This approach provides correlated

data that covers the different time scales and many state variables

of the whole system. A current aim would be a better

understanding of transcriptional regulation of cyclins A and B,

and the reflection of this understanding in working, complex

models. An area that needs to be addressed is the use of an

Figure 6. Simulated expression over three successive cell
cycles. Model outputs were normalized to zero and one prior to
plotting. cycB = total B cyclin; cycA = total A cyclin, and actCycB = active
B cyclin (CycB:Cdk1 in Figure 4).
doi:10.1371/journal.pone.0097130.g006
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exponential increase in E2F activity, which we modeled based on

the ability of E2F to activate its own transcription, and which

required a commensurate mechanism to reduce E2F activity to a

reproducible low level at the end of the cycle, much like the

cyclins.

A common method of validating models is to simulate

perturbation experiments that have known outcomes. We

performed two simulations that eliminate cyclin D or cyclins D

and E to confirm that the outputs agree with those of Csikasz-

Nagy et al (Figure 8C, 8D, [26]). The outputs from our model are

presented in Figure S1 and show that we have not substantively

changed the G1 aspects of the Csikasz-Nagy model except as

modified by Conradie et al [25]. Thus, we infer that other findings

of Csikasz-Nagy remain valid for our model.

Here, our purpose was not to produce a drastically altered,

comprehensive cell cycle model. Our purpose was to test the

value of the expression data obtained through multiparametric

cytometry. We focused on mitotic cyclins because the chances

that the underlying model would describe the expression was

high. The same is not true for the regulatory system describing

early control of the cell cycle. For example, expression of D and

E cyclins in cell line models, especially tumor derived lines, is

often regulated differently than in primary cells. Real expression

data for cyclin E demonstrates that it peaks at the G1/S

interface then decreases through S phase to low levels in G2.

For many tumor-derived cell lines, cyclin E expression reaches a

maximum at G1/S but remains high through most of the cell

cycle [102]. The two base models that we used each produce

outputs reflecting the unimodal, skewed cyclin E expression of

primary cells except that in Csikasz-Nagy et al., the peak occurs

at the beginning of the cycle (Figure 8A, 8E, [26]), and in

Conradie et al. the peak occurs in G1, just after the restriction

point. S begins when half of cyclin E is degraded and

degradation is complete by mid-S (Figure 2 in [25]). In our

model, cyclin E expression remains very much like the Conradie

model except that our S phase expression is higher. Real cyclin

E expression in K562 cells appears to peak at the G1/S

interface; degrade in early S, then level off at abnormal, high

levels [103]. Therefore, all three models get cyclin E expression

right in broad concept and wrong in the details. We think that

this is the nature of cell cycle modeling without dense,

quantitative expression data. Currently, our model could be

improved significantly by a data-focused effort to improve the

mechanisms that move cells from a pre-committed to committed

state in G1 (restriction point). The drive would be to remove

the sharp, linked transitions that define Cdh1 loss, cyclin E

gain, and improve the onsets of cyclin A2 and cyclin B1

expression in G1.

Currently, quantitative expression data in absolute terms for

human cell cycle regulatory proteins are limited. While estimates

are available for a small subset of proteins [56,97], the vast

majority are unknown. Frisa and Jacobberger provided a

technique to couple absolute concentration calculations with the

multi-parametric flow cytometric methods discussed previously

[56]. Until such methods are fully implemented, the outputs of the

discussed models are in terms of arbitrary units of magnitude, and

therefore, the rate constants of the models only capture the time-

scales of processes. When quantitative concentration data are

available, this information can be incorporated into the model by

appropriately scaling the magnitudes of the kinetic rate constants

for the reactions in which a given protein participates.

In this model, we assumed a single compartment, freely mixed,

aqueous solution (as do all mass action -based models). However,

the cell cycle regulatory network (like all events in a cell), is

compartmentalized and includes both solution and solid state

chemistry. The model does not consider details such as the

shuttling of proteins between the nucleus and cytosol or the

localization of proteins to solid substrates (such as cyclin B

association with the centrosome and mitotic spindle). As it stands,

these events are implicit in the equations and rate constants of the

vast majority of published models. We’ve sought to improve

existing models through dense, quantitative data as a driving force.

Future data-driven models could incorporate simplistic compart-

ments (plasma membrane, cytosol, nuclear membrane, nucleus,

centrosome) through similar data acquisition by laser scanning

cytometry [104].

Finally, single cell measurements of an asynchronous population

were used to derive a median expression profile. The correspond-

ing model therefore simulates a ‘‘typical’’ cell of this population.

Cytometry data provide some information on the distribution of

values in individual cells in a population, and so future work could

involve expanding simulation architectures to model the variation

of cells about the median trajectory.

Added note: Two recent papers illustrate additional concepts,

technology, and algorithms to extract time and expression from

static data [105,106].

Materials and Methods

Cell line and culture conditions: K562 cells were grown in

RPMI 1640 with 10% fetal bovine serum at 5% CO2, at 37uC.

Cells were kept at or below 106 ml. K562 cells [58,107] were a gift

from Keith Shults and are available from ATCC (www.atcc.org)

or DSMZ (www.dsmz.de).

Fixation and Staining: Aliquots of 26106 cells were fixed with

0.25% formaldehyde followed by 90% MeOH then stored at 2

20uC. Washed, fixed cells were stained with antibodies to cyclin

B1, cyclin A2, and phospho-S10-histone H3 by indirect and direct

staining as described [55].

Cytometry and expression profile extraction: Measurements

were made with an XL (Beckman Coulter, Miami, FL) or LSR II

(BD Biosciences, San Jose, CA). Instrument filters were stock

configurations. The expression profiles were extracted as described

[55].

Cell cycle analysis on DNA content measurement was

performed with ModFit LT 3.0 (Verity Software House,

Topsham, ME). Mitotic cell frequency was measured by bivariate

analysis of DNA content and PHH3 expression and enumeration

of PHH3 positive, 4C cells. WinList 7.0 was used (Verity Software

House).

The Systems Biology Toolbox 2 and SBPD packages for

MATLAB [108] were used for calibration. Both automated

(particularly the simulated annealing, genetic, and SRES algo-

rithms) and manual approaches were used. The modified model

presented in this paper was calibrated manually and iteratively as

model changes were introduced.

The first model we examined, by Conradie et al. [25], was

composed of 23 ordinary differential equations (ODEs) and 74

kinetic rate constants. The mammalian implementation of

Csikasz-Nagy et al.’s cell cycle model [26] was composed of 13

ODEs and 66 kinetic rate constants. The Csikasz-Nagy model was

modified, combined with the initiating portion of the Conradie

model, and expanded to include 25 ODEs and 103 kinetic rate

constants. The equations and kinetic rate constant values are

provided in Table S3 in File S2. Equations were solved in

MATLAB using the ode15s solver.
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Data and model output collection and processing were done

with Microsoft Excel 2010 (Redman, WA). GraphPad Prism 6.03

(La Jolla, CA) was used for normalization and plotting.

Supporting Information

Figure S1 Replication of the experiments performed
with the Csikász-Nagy model. To test whether the structural

changes that we introduced in our model have substantively

changed G1 behavior, we performed the experiments described in

Figure 8C, D, and E of Csikász-Nagy et al. [26]. The ‘‘wild type’’

(WT) cell cycle time for our model was set to 1. A shows output for

the WT condition (left: entire cycle; right: time period covering

‘‘mitosis’’). B shows cyclin D was ‘‘deleted’’ (DD). This

corresponds to Figure 8C in [26]. The effect when compared to

the unperturbed cycle demonstrates a severe lengthening of the

‘‘G1’’ period that is partially rectified by the contraction of the

committed period. C shows the results of deleting both cyclins D

and E (DDDE). This corresponds to Figure 8D in [26] and results

in a similar but more profound first effect (compared to DD) that is

also partially rectified by contraction of the committed period of

the cycle. Both the DD and DDDE effects are similar to those of

Csikász-Nagy et al. [26]. Color coding and variable names are as

in Csikász-Nagy et al. The mapping is CKI = Kip1; actCycE = -

CycE:Cdk2; Adj CycA = CycA:Cdk1,2; Adj actCycB = -

CycB:Cdk1, and Cdh1 = Cdh1.

(TIF)

File S1 Contains the files: Table S1. Classification of

published cell cycle models. Table S2. Scope of published

mammalian cell cycle models.

(PDF)

File S2 Contains the file: Table S3. Model Description.

(PDF)
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