
1. Introduction
Timely and accurate large-scale data on agricultural activity are important for tracking and identifying 
management practices, cropland distribution, and for supporting food security programs. Needs of agricul-
tural monitoring community involve a combination of high (<4 m) to moderate (<30 m) spatial resolutions, 
frequent revisit time, and open access, operational coverage for large spatial extents (Fritz et al., 2019). Be-
cause a majority of agricultural fields are just over 2 hectares in size, spatial resolutions should ideally be 
on the order of 100 m or less to adequately capture agricultural conditions and change (Yan & Roy, 2016). 
Revisit times on the order of weeks or less are desirable, because agricultural fields may undergo substantial 
change on diurnal or greater timescale due to processes such as tilling or precipitation (McNairn & Bri-
sco, 2004). Collectively, since agriculture is closely tied to global markets and food security, there is a strong 
need for accurately monitoring agricultural activity at global scale (Becker-Reshef et al., 2019).

Since retrievals made by Synthetic Aperture Radar (SAR) systems now meet or exceed these needs, they 
are well-suited for large-scale agricultural monitoring. Spaceborne SAR, such as the European Space Agen-
cy's (ESA) Sentinel-1 can map the Earth once every 6 to 12-days at moderate spatial resolution (Torres 
et al., 2012). SAR data provide valuable information useful for cropland identification, crop type classifica-
tion and estimating yield (Betbeder et al., 2016; Huang et al., 2019; Whelen & Siqueira, 2018). For example, 
these data can be used to estimate biomass using backscatter magnitude, crop heights using interferometry 
and crop structure using polarimetry (Erten et al., 2016; Ferrazzoli et al., 1997; Wiseman et al., 2014). Also, 
unlike optical sensors, SAR can collect high quality data day and night and is largely unimpacted by atmos-
pheric conditions, therefore having excellent potential for collecting dense time series. For these reasons, 
plus an increasing adoption of open data access policies, cheaper cloud computing resources, and a steady 
pipeline of future platforms, there has been a rapid increase in the use of SAR data sets with regards to ag-
ricultural applications and decision support systems.

Abstract Synthetic Aperture Radar (SAR) data are well-suited for change detection over agricultural 
fields, owing to high spatiotemporal resolution and sensitivity to soil and vegetation. The goal of this work 
is to evaluate the science algorithm for the NASA ISRO SAR (NISAR) Cropland Area product using data 
collected by NASA's airborne Uninhabited Aerial Vehicle SAR (UAVSAR) platform and the simulated 
NISAR data derived from it. This study uses mode 129, which is to be used for global-scale mapping. 
The mode consists of an upper (129A) and lower band (129B), respectively having bandwidths of 20 and 
5 MHz. This work uses 129A data because it has a four times finer range resolution compared to 129B. The 
NISAR algorithm uses the coefficient of variation (CV) to perform crop/noncrop classification at 100 m. 
We evaluate classifications using three accuracy metrics (overall accuracy, J-statistic, Cohen's Kappa) and 
spatial resolutions (10, 30, and 100 m) for crop/noncrop delineating CV thresholds (CVthr) ranging from 0 
to 1 in 0.01 increments. All but the 10 m 129A product exceeded NISAR's mission accuracy requirement 
of 80%. The UAVSAR 10 m data performed best, achieving maximum overall accuracy, J-statistic, and 
Kappa values of 85%, 0.62, and 0.60. The same metrics for the 129A product respectively are: 77%, 
0.40, 0.36 at 10 m; 81%, 0.55, 0.49 at 30 m; 80%, 0.58, 0.50 at 100 m. We found that using a literature 
recommended CVthr value of 0.5 yielded suboptimal accuracy (65%) at this site and that optimal CVthr 
values monotonically decreased with decreasing spatial resolution.
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The NASA ISRO SAR (NISAR) mission, slated for deployment in 2022, is designed to meet specific science 
requirements for applications pertaining to Ecosystems (e.g., agriculture, biomass), solid Earth and the 
cryosphere. NISAR will have frequent global observations, repeating approximately every 12  days, with 
L-band (1.26 GHz) having global coverage and S-band (3.2 GHz) collecting data specific areas, such as India 
(NISAR Science Team, 2020). NISAR's focus on agriculture is reflected in its science requirement of having 
the capability of routinely producing a global cropland area product and close collaboration with the United 
States Department of Agriculture (USDA), GEO Global Agricultural Monitoring (GEOGLAM), Joint Exper-
iment for Crop Assessment and Monitoring (JECAM), and other stakeholders for calibration and validation 
efforts (NISAR Science Team, 2020).

Accuracy requirements of NISAR's Cropland Area product are to be met using an algorithm based on the 
coefficient of variation (CV), computed over time at each pixel, to identify those locations with relatively 
higher change from crop growth stages and field activities. The theory behind using the temporal CV is that 
areas experiencing greater change over time are consistent with agricultural activity (cropland) and areas 
that do not change as much are considered noncrop such as built-up areas or forests. Waterbodies also tend 
to have large CV values, mostly owing to having low signal-to-noise due to predominantly specular scat-
tering. It is therefore important to obtain a waterbody mask to remove classifications over water. Crop and 
noncrop areas are then delineated by comparing the temporal CV values to a threshold (CVthr). The use of a 
single delineating threshold for crop and noncrop had been tested in several prior studies, usually achieving 
accuracies in the 80% range. Whelen and Siqueira (2017) applied the temporal CV approach to AgriSAR and 
ALOS PALSAR data collected over Germany and Minnesota, respectively (Whelen & Siqueira, 2017). While 
ALOS PALSAR has a revisit period of 46 days, the AgriSAR data consisted of a dense time series collected 
on 12 dates between April and August 2006. Classification accuracies of 87%, 79%, and 78% were achieved 
for AgriSAR L-band, AgriSAR C-band, and ALOS PALSAR, respectively. They also applied the temporal CV 
approach in a subsequent study, but using ALOS PALSAR data over 11 agricultural sites within the contig-
uous United States (Whelen & Siqueira, 2018). That study used three approaches for setting CVthr values for 
crop/noncrop classifications: it was set according to (1) the threshold of maximum separation of histograms 
of CV values for crop and noncrop classes, (2) the threshold corresponding to the largest Youden J-statistic 
value (Youden, 1950), and (3) using a fixed CVthr value of 0.5. Averaged over the 11 sites investigated, the 
approaches performed nearly identical, all of them falling in a 74%–75% range.

Apart from Whelen and Siqueira (2017), the temporal CV approach had not been tested over agricultural 
areas using temporally dense (i.e., approximately biweekly) L-band time series or simulated NISAR data. 
There is an important need to use dense timeseries for computing CV values, because the biweekly ob-
servations would be better able to capture processes and management such as tilling, irrigation and rain, 
vegetation growth, and harvesting and result in more representative CV values. Furthermore, CV and ergo, 
the optimal CVthr values for crop/noncrop delineation, will also depend on factors such as: the frequency 
of observation, cropping practices, landscape heterogeneity, and the spatial resolution of the data. There-
fore, there had been a strong need to collect dense L-band time series over hydrologically dynamic regions 
to evaluate the NISAR science algorithms such as that to be used to calculate cropland area (Chapman 
et al., 2019). Thus, NASA conducted the “Uninhabited Aerial Vehicle SAR (UAVSAR) AM/PM Campaign” 
throughout summer 2019, consisting of repeat flights approximately every 2 weeks over forests and agricul-
tural areas in the Southeast at local times of approximately 6 a.m. and 6 p.m. (Chapman et al., 2019). Data 
obtained during this campaign were also used to generate simulated NISAR products that more closely 
resemble the quality of data to be collected by NISAR (JPL, 2020).

Simulated NISAR data had not yet been studied in context of generating a cropland area product. This work 
focuses on providing first estimates on likely accuracy levels of NISAR's crop/noncrop classifications using 
approximately biweekly simulated NISAR data over an agricultural area near Stoneville, MS. Additionally, 
we also explore how CVthr values depend on spatial resolution, and how accuracy metrics differ when using 
the best available data (UAVSAR) compared to the simulated NISAR products on 10 × 10 m grids. The sim-
ulated NISAR data were evaluated at three spatial resolutions: (1) 10 m which approximately corresponds 
to the 12 × 6.2 m slant-range grid spacing of the simulated NISAR multi look complex (MLC) product; (2) 
100 m which corresponds to that of NISAR's Cropland Area product; and (3) 30 m which is an in-between 
spatial resolution that matches that of the annually produced USDA Cropland Data Layer (CDL) which 
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this study uses as reference data set for evaluating the crop/noncrop classifications (Boryan et al., 2011). 
Our hypotheses are: (1) UAVSAR data would perform the best due to these data having less noise and finer 
spatial resolution than any of the simulated data, (2) that classification performance deteriorates with spa-
tial resolution and (3) that optimal CVthr values have some, but limited, dependence on spatial resolution.

2. Study Area, Data Sets, and Processing
2.1. Study Area

The study area is located in the Lower Mississippi River Basin and is part of the Big Sunflower River water-
shed within the Yazoo River Basin. The study area (“Stoneville Site” in Figure 1) is located near Stoneville in 
Washington County, MS. The site mainly consists of agricultural fields and riparian- and bottomland-wet-
lands which make a useful feasibility experiment given their dynamic range. Agriculture predominantly 
consists of soybeans, corn, and cotton. USDA Agricultural Research Service's (ARS) Crop Production Sys-
tems Research Unit farms are also located within the marked region. These research fields are routinely 
monitored for crop (e.g., growth stage) and soil conditions (e.g., soil moisture), and therefore are a valuable 
resource for evaluating NISAR algorithms.

2.2. USDA CDL

This study uses the CDL as reference for the accuracy assessments. The CDL is produced using observa-
tions from various spaceborne platforms such as Landsat 8 and Sentinel 2, provided on 30 × 30 m grids, 
and encompasses 106 different crops (Boryan et al., 2011). CDL accuracy with respect to ground truth is 
estimated to be in the 85%–95% range for major crop types. The CDL of the prior year is usually made 
available early the following year, is freely available to the public, and is produced operationally by the 
USDA National Agricultural Statistics Service (NASS). CDL data from 1997 onwards can be obtained at 
https://nassgeodata.gmu.edu/CropScape/.
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Figure 1. The study area is located in the western part of Mississippi, close to Stoneville. The swath of SAR data 
collected during the 6 a.m. is indicated by the blue box. The red box indicates the region of interest this study used for 
crop/noncrop classification. The site is located between an incidence angle of 33–47 degrees, matching the range to be 
covered by NISAR. SAR, Synthetic Aperture Radar; NISAR, NASA ISRO SAR; UAVSAR, Uninhabited Aerial Vehicle 
SAR.

https://nassgeodata.gmu.edu/CropScape/
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Figure 2 shows the original and the binary crop/noncrop result obtained from assigning CDL layers to crop/
noncrop (Table 1). The image consists of a total of 718828 pixels (1,054 columns and 682 rows) of which 
501378 (69.7 %) and 166978 (23.2 %) pixels are crop and noncrop, respectively. The remaining 50472 (7.0%) 
pixels were masked if they fell into the CDL classes indicated in Table 1 and according to whether pixel 
locations fell outside the “Stoneville Site” shapefile (Figure 1). It is necessary to mask out open water and 
orchard crops because the temporal CV is not well-suited to these land cover classes. Temporal CV is not 
expected to be able to detect substantial change over orchards, since the difference between a harvested 
tree to one with fruits is expected to be negligible at L-band, and the soils underneath the trees do not vary 
from bare/tilled though vegetated over a season. We also masked CDL classes related to open water, because 
these areas have a low signal-to-noise ratio and may often indicate relatively large CV values that would be 
falsely classified as crop. It is important to note that the CDL contains three categorization codes referring 
to wetlands: “Wetlands” with code 87 under “Other”; “Woody Wetlands” and “Herbaceous Wetlands” with 
codes of 190 and 195, respectively. Because this study masked any items falling under “Other,” code 87 was 
masked. The wetlands shown in Figure 2 correspond to both codes 190 and 195, making up 96% and 4% of 
the wetland pixels, respectively.

After excluding masked cells from comparisons 668356 “valid” pixels remain, with a percent breakdown of 
75% for crop and 25% for noncrop. Because the CDL is categorical and posted at 30 × 30 m grids, to make 
comparisons at 10, 30, and 100 m, we subdivided each CDL grid into nine 10 × 10 m grids.

Unfortunately, the CDL is limited in spatial extend to CONUS. While other land cover data sets are available 
at global scale, they might not be updated as frequently, have as high spatial resolution or as fine of a granu-
lation with respect to the crop and noncrop classes (Friedl et al., 2002; Loveland et al., 2000). Since all global 
data sets include flags for water, and waterbodies also are readily identified using radar data, it is relatively 
straightforward to reproduce comparable waterbody masking globally. However, orchards are not routinely 
included as a land cover type in the global data sets and will therefore present an additional source of error 
(misclassification as a noncrop).

2.3. UAVSAR and Simulated NISAR Data

SAR data were collected by the UAVSAR as part of the NISAR UAVSAR AM/PM campaign. The NISAR 
UAVSAR AM/PM was conducted in the Southeast during the crop season of 2019. Key features of this 
campaign are high frequency repeat observations at L-band (1.26 GHz), occurring approximately every two 
weeks and at NISAR observing times of 6 a.m. and 6 p.m. (local time). The campaign's main purpose was 
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Figure 2. The 2019 USDA/NASS Crop Data Layer at study site (a) and the binary crop (yellow) noncrop (purple) classification (b) according to Table 1. Some 
CDL classes for which CV approach is known to not perform applicable were masked. CDL, Cropland Data Layer; CV, coefficient of variation; NASS, National 
Agricultural Statistics Service; USDA, United States Department of Agriculture.
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to obtain data for testing and developing NISAR ecosystem science algorithms, and hence predominantly 
focused on agricultural and forested targets (Chapman et al., 2019).

UAVSAR is NASA Jet Propulsion Laboratory's (JPL) airborne platform providing high signal-to-noise and 
fully polarimetric SAR observations at various frequencies (e.g., L-band at 1.26 GHz) and at 80 MHz band-
width (Rosen et al., 2006). All UAVSAR data are freely available and provided as MLC data in slant-range co-
ordinates and in ground-range projected (GRD) format (https://uavsar.jpl.nasa.gov/). Single look complex 
(SLC) data and interferometric data sets are also available for download, but only for some of UAVSAR's 
flight lines and dates.

Simulated NISAR data are generated from UAVSAR data. UAVSAR observations have relatively higher sig-
nal-to-noise and spatial resolution compared to what will be collected by NISAR. Therefore, additional steps 
were taken by NASA JPL to generate simulated NISAR products using UAVSAR SLCs as input, mainly by 
reducing spatial resolution and adding noise (JPL, 2020). Simulated data are available for each of NISAR's 
observing mode (129, 138, and 143). Each mode is split into two frequency bands (A or B) with the band-
width of each depending on mode. This study uses frequency A of observing mode 129 (i.e., 129A), because: 
(1) mode 129 is NISAR's main observing mode and will have nearly global coverage and (2) 129A has a four 
times better spatial resolution in range compared to 129B, because the former has a bandwidth of 20 MHz 
compared to 5 MHz for the latter.

The simulated data sets also have additional features compared to other UAVSAR data provided by NASA 
JPL. For example, the simulated NISAR GRD products of a given flight line are all coregistered and posted 
on a common grid, facilitating time series analysis. Furthermore, the GRD product also comes with a radi-
ometric terrain correction (RTC) calibration file. The RTC calibration file has the same dimensions as the 
GRD data and contains the calibration factors to be applied at each grid cell in order to obtain radiometric 
and terrain corrected γ0 backscatter in linear power units.

The MLC data have units of power and are the result of taking the complex products between the different 
SLC data. This study only uses the “HVHV” complex product, which is calculated by HV*conjugate(HV). 
The HVHV data had also been multilooked using 12 pixels in azimuth (along-track of airplane) and 3 pix-
els in range (perpendicular to azimuth). We only tested crop/noncrop delineation using the HVHV data, 
because previous studies indicated that this complex product performed best for agricultural crop/noncrop 
classifications (McNairn & Shang, 2016; Whelen & Siqueira, 2017).

The study area described in Section 2.1 is covered by the UAVSAR Stoneville 6 a.m. flight line. Seven ap-
proximately biweekly images were used to compute CV values at each pixel (Table 2). However, ahead of 
computing CV values (Section 3.1), we applied further data processing steps as described below (Section 
2.3.3).
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CDL class ranges CDL class type Crop/noncrop/masked

1–60 Crop (e.g., cotton, rice …) Crop

61–65 Noncrop (e.g., fallow, forest …) Noncrop

66–80 Tree crops (e.g., cherry, peach …) Masked

81–109 Other (e.g., water, clouds …) Masked

110, 112–195 NLCD classes (e.g., developed, forest, wetland) Noncrop

196–255 Crops (e.g., carrots, garlic …) Crop

111 Open water Masked

Abbreviations: CDL, Cropland Data Layer; NASS, National Agricultural Statistics Service; USDA, United States 
Department of Agriculture.

Table 1 
Rules Used for Reclassifying the 2019 USDA NASS Crop Data Layer Into Binary Crop/Noncrop Grids

https://uavsar.jpl.nasa.gov/
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2.4. SAR Data Processing

The input SAR data consist of (1) the high bandwidth UAVSAR (80  MHz) and (2) the relatively lower 
bandwidth (20 MHz) and noisier simulated NISAR products that was generated from the UAVSAR data 
(Section 2.3). Users may find it more convenient to use the GRD product rather than the MLC because the 
data had already been coregistered and the RTC calibration are also provided. However, this study used a 
separate workflow using MLC data as input to produce coregistered radiometrically and terrain corrected 
imagery, because: (1) this methodology is applicable to all available UAVSAR data, because the RTC calibra-
tion files are only available for the simulated data sets of the NISAR AM/PM campaign; and (2) we were able 
to ensure that an identical workflow is used for processing both the UAVSAR and simulated NISAR data.

Data were subjected to further processing using the InSAR Scientific Computing Environment (ISCE) 
Docker Tools (IDT) (Kraatz et al., 2020). IDT is a dockerized version of ISCE 2.3.1, additionally modified 
for automated processing of UAVSAR MLC time series data and is available at https://github.com/UMass-
MIRSL/isce_docker_tools. It automatically applies processing Steps 1 through 5 (Figure 3).

The first processing step is to map the slant-range data to the DEM using a forward geometry mapping via 
the ISCE function “topo.py.” This step determines the geographic coordinates and other information such 
as flat earth and local incidence angles at every pixel. The former is the incidence angle with respect to the 
ellipsoid, while the latter is the incidence angle with respect to the terrain (DEM). This step is only con-
ducted for the reference image, here the earliest data collected (June 6, 2019). All subsequent data will also 
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Date UAVSAR Simulated NISAR

6-Jun NISARA_27900_19033_000_190606_L090HVHV_CX_02 NISARA_27900_19033_000_190606_
L090HVHV_CX_129A_03

20-Jun NISARA_27900_19038_003_190620_L090HVHV_CX_02 NISARA_27900_19038_003_190620_
L090HVHV_CX_129A_03

16-Jul NISARA_27900_19048_001_190716_L090HVHV_CX_01 NISARA_27900_19048_001_190716_
L090HVHV_CX_129A_02

25-Jul NISARA_27900_19051_001_190725_L090HVHV_CX_01 NISARA_27900_19051_001_190725_
L090HVHV_CX_129A_02

12-Aug NISARA_27900_19053_013_190812_L090HVHV_CX_01 NISARA_27900_19053_013_190812_
L090HVHV_CX_129A_02

23-Sep NISARA_27900_19069_001_190923_L090HVHV_CX_01 NISARA_27900_19069_001_190923_
L090HVHV_CX_129A_02

30-Sep NISARA_27900_19070_003_190930_L090HVHV_CX_01 NISARA_27900_19070_003_190930_
L090HVHV_CX_129A_02

Notes. The naming fields (in order) consist of the campaign name (“NISARA”), the aircraft heading value for Stoneville (27900), flight id number (e.g., 19033), 
data take number (e.g., 000), the date of observation (e.g., 190606), the frequency band, steering angle polarization (e.g., L090HVHV), the cross talk calibration 
flag (“CX”), and the processing version number (e.g., “_02”).
Abbreviations: NISAR, NASA ISRO SAR; UAVSAR, Uninhabited Aerial Vehicle SAR.

Table 2 
The File Names of the UAVSAR and Simulated NISAR Datasets Used as Inputs (2019), Omitting File Extension “.mlc”

Figure 3. Flowchart showing the six data processing steps. Steps 1 through 5 were applied using the InSAR Scientific Computing Environment software via an 
automated workflow (ISCE Docker Tools). CDL, Cropland Data Layer; CV, coefficient of variation; ISCE, InSAR Scientific Computing Environment; NISAR, 
NASA ISRO SAR; UAVSAR, Uninhabited Aerial Vehicle SAR; UTM, Universal Transverse Mercator.

https://github.com/UMassMIRSL/isce_docker_tools
https://github.com/UMassMIRSL/isce_docker_tools
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be posted on this grid. This step also required a digital elevation model, and we used and the Shuttle Radar 
Topography Mission (SRTM) 30 m data.

The second step relates to coregistering the subsequent imagery to the reference. Here we use the ISCE 
function “geo2rdr.py,” to determine the pixel offsets in range and azimuth. This is a decimal number, be-
cause offsets need to be known to a 100th or better of a pixel for when for when this ISCE function is used to 
prepare data for interferometry. One reason for this offset is that subsequent UAVSAR flights are not exactly 
repeated. Another reason for often substantial offsets in azimuth (100s of rows) is that the SAR instrument 
does not record data for the same duration and at the same flight velocity.

The third processing step uses the pixel offsets to coregister each image to the reference image using “resa-
mpleSLC.py.” Fourth, we use the flat earth and local incidence angles that were obtained in step 1 to apply 
the RTC and to project the results into γ0 at every pixel (Small, 2011; Ulander, 1996). Fifth, the slant range 
MLCs were projected to Universal Transverse Mercator (UTM) zone 15N using 10 × 10, 30 × 30 × 100 m 
grids. Steps 1, 4, and 5 use routines that are specific to IDT and provided as python scripts at the GitHub 
link referenced above.

Sixth, we then computed CV values at each spatial resolution (Section 3.1). Because the CDL (30 × 30 m) 
and CV grids (10 m, 30 m, 100 m) have different spatial resolutions all data were subdivided into 10 × 10 m 
grids for making comparisons. Because the CDL and CV gridded data were produced independently, their 
grids are offset with respect to each other. Therefore, we coregistered the data sets by interpolating the CV 
values to the CDL grids.

3. Methods
This section focuses on the evaluation of the algorithm to be used to meet NISAR's Level 2 Cropland Area 
product science requirements. The algorithm is to have 80% accurate crop/noncrop classifications when 
evaluated at 100 × 100 m spatial resolution (NISAR Science Team, 2020). The algorithm is based on the 
temporal CV approach which had also been used in past studies (Whelen & Siqueira,  2017, 2018). The 
basic premise of the CV approach for delineating crop and noncrop areas is that actively cultivated lands 
(i.e., crop) experience more substantial change over time as compared to unmanaged lands (i.e., noncrop). 
Because of differences due to the types of crops, soil conditions and management practices within a given 
region of interest, we do not have a priori knowledge of what CVthr values provide accurate crop/noncrop 
delineation. Therefore, we iterate through a range of CVthr values, from 0.00 through 1.00 in 0.01 increments 
and classify each valid pixel of the CV image as crop or noncrop (Section 3.1). For each CVthr value, we use 
the results of the confusion matrix to compute three different accuracy metrics: the overall accuracy, Youd-
en's J-statistic, and Cohen's Kappa (Section 3.2).

3.1. Crop Classification Using the Coefficient of Variation

The CV metric represents the amount of variation in HVHV backscatter over time, with higher values indi-
cating greater variation, and is calculated as

CV �
�
�

 (1)

where σ and µ respectively are the standard deviation and mean values of the backscatter data at each pixel, 
computed over time.

Crop/noncrop classification is determined using a fixed CVthr value, applied to the region of interest where




thr for ROI
pixel

thr for ROI

CV ,noncrop
CV

CV ,crop (2)
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3.2. Performance Metrics

Our crop/noncrop results (Equation  2) are compared to the reference 
data set (the CDL, Section 40) using a confusion matrix. The confusion 
matrix tabulates the number of pixels for which both data sets agreed 
on the crop and noncrop pixels, respectively the true positive (TP) and 
true negative (TN) counts. It also tabulates classification errors where 
our classifications indicated crop but the CDL did not (false positive, FP) 
where our classifications indicated noncrop but the CDL did not (false 
negative, FN).

The Overall Accuracy is calculated from the confusion matrix (Table 3) 
as:

 
(3)

Youden's J-statistic indicates the threshold for which the difference between the true positive (Sensitivity) 
and false positive (1-Specificity) rate is the greatest (Youden, 1950; Habibzadeh et al., 2016). In that context, 
it gives an equal weight to false positive and false negative values. Youden's J-statistic is calculated as

  Sensitivity Specificity 1J (4)




TPSensitivity
TP FN

 (5)




TNSpecificity
TN FP

 (6)

According to this performance metric, the optimal CVthr value is the one that yields the greatest value of J. 
In a visual representation, J is the vertical distance between a 1:1 line (the line of no discrimination) to a 
point on the Receiver Operating Characteristic (ROC) curve. The ROC curve is the result from plotting the 
Sensitivity versus 1-Specificity. The ROC curve allows for easy interpretation of classification performance. 
Classifications are generally poor if the curve falls relatively close to the 1:1 line.

Cohen's Kappa indicates the threshold for which two data sets show the best agreement, also attempt-
ing to account for random chance using standard assumptions (Cohen,  1960; McHugh,  2012). As in 
McHugh  (2012), we calculate Kappa in terms of the four confusion matrix categories (TP, TN, FP, FN) 
shown in Table 3:





Kappa

1
O e

e

p p
p (7)

where pO is the observed proportionate agreement, given by




  
TP TN

TP FP FN TNOp (8)

and pe is the overall random agreement probability, given by

 e Y Np p p (9)

where pY and pN respectively are the expected probability of random agreement and disagreement, given by

   
 

  


  
2

TP FP TP FN

TP FP FN TN
Yp (10)

 
 


 

  

TP TN
Accuracy 100

TP FP FN TN
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Reference (the CDL)

Model (the SAR-based 
classifications) Crop Noncrop

Crop True positive (TP) False positive (FP)

Noncrop False negative (FN) True negative (TN)

Abbreviations: CDL, Cropland Data Layer; SAR, Synthetic Aperture 
Radar.

Table 3 
Confusion Matrix for Crop/Noncrop Classification
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2

FN TN FP TN

TP FP FN TN
Np (11)

Kappa may range between −1.0 and 1.0. Values below zero indicate poor agreement while 1.0 represents a 
perfect agreement between the CDL and the SAR-based crop/noncrop classifications.

4. Results and Discussion
CV values of UAVSAR and simulated NISAR data range from about 0 to 2.5 (Figure 4). The UAVSAR re-
trievals have low noise and can clearly delineate individual fields and other small features at high contrast 
(Figure  4a). As expected, the simulated NISAR data are noisier and have less contrast (Figures  4b–4d). 
There is a considerable amount of speckle in the simulated NISAR data at 10 m (Figure 4b): intrafield CV 
variations are quite large, which may be problematic for accurate crop/noncrop classification. The speckle 
is not entirely surprising as the simulated NISAR MLCs had only been multilooked twice in azimuth with 
respect to the SLC and have a 12 (azimuth) × 6.2 m (range) posting. For comparison, UAVSAR's SLC reso-
lution is 0.6 (azimuth) × 1.67 m (range) and the MLC product had been multilooked 12 × in azimuth and 
3 × in range for a posting of 7.2 m by 5 m.

In general for the simulated NISAR data—especially at 10 m—features have lower contrast because the CV 
values have a smaller dynamic range across the scene (Figure 4b). Scene-wide CV values of the 10 m sim-
ulated NISAR data (mean: 0.63, median: 0.62) are smaller than those obtained from UAVSAR data (mean: 
0.64, median: 0.66). Furthermore, for the simulated NISAR data CV values monotonically decrease with 
spatial resolution, and there is nearly no difference between their mean and median values over the scene: 
the mean/median CV values are 0.53 and 0.46 at 30 m and 100 m, respectively. These statistics indicate that 
finer-scale products also show relatively more frequent and higher valued CV pixels. At the same time, there 
is still noticeable speckle even when using 30 m grids. Due to reduced speckle and also larger pixel sizes at 
100 m (Figure 4d), even fields that had large variability in CV at finer resolutions now have relatively uni-
form CV values, that is, the bright green field approximately centered at pixel 300,175. Because the subfield 
variations had been smoothened out at 100 m, and the field has much greater than average CV values (1.8 
vs. 0.46), this should lead to relatively improved crop/noncrop delineation when applying a single CVthr 
value over the entire scene.

ROC curves (Section 3.2) also provide valuable insight on the relative performance of crop/noncrop clas-
sifications using the different input data sets (Figure 5). ROC curves of the UAVSAR (Figure 5a) and 10 m 
simulated NISAR classifications (Figure 5b) have the greatest and least separation from the line of no dis-
crimination (the 1:1 line), respectively. This indicates that classifications using the UAVSAR data perform 
best while the 10 m simulated NISAR data perform worst. Classifications using the 30 m (Figure 5c) and 
100 m (Figure 5d) simulated NISAR data perform about equally and have a degree of separation from the 
1:1 line falling closer to that of the UAVSAR retrievals. The notable difference between the 30 and 100 m 
classifications is that to obtain the same vertical separation from the 1:1 line at 100 m, a smaller CVthr value 
must be used at the coarser resolution. This is result is consistent with the above-noted decrease of mean 
and median CV values at coarser spatial resolutions.

Figure 6 shows the results of pixel-wise comparisons between the UAVSAR and simulated NISAR data, 
compared to the CDL at specific CVthr values. For all data sets, using small CVthr values lead to crop overes-
timation errors, while high CVthr value lead to crop omission errors. Visual inspection of the result indicates 
that the best CVthr values occur around 0.4, 0.5, 0.4, and 0.3 respectively for UAVSAR and simulated NISAR 
data at 10 m, 30 m, and 100 m. The latter three values are consistent with the results of the ROC plots and 
the monotonically decreasing CV values at coarser resolution. Furthermore, visual inspection also shows 
relatively clearly that UAVSAR data perform the best, 10 m simulated NISAR the worst, and that the 30 
and 100 m simulated NISAR results are comparable to one another and fall somewhere in between results 
obtained using the 10 m and UAVSAR data.
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A breakdown of optimal CVthr values by accuracy metric reveals that values obtained for Youden's J-sta-
tistic and Cohen' Kappa are comparable, whereas optimal CVthr according to accuracy fall relatively lower 
(Table 4). There is a large range of optimal CVthr values for the 10 m simulated NISAR data, indicating that 
the best agreement occurs when using CVthr of 0.4, 0.6, and 0.5 for accuracy, J-statistic, and Kappa, respec-
tively. Figure 6 shows that using CVthr of 0.4 leads to many misclassifications of noncrop as crop. But as 
75% of the landscape is crop, the relative contribution of these errors is relatively smaller and high accuracy 
is achieved. Whereas the J-statistic weighs both types of errors equally, resulting in a map that appears 
to have somewhat comparable rates of crop omissions and overdetections, as proportion of the total crop 
and noncrop classes: at a CVthr of 0.57, 48972 out of 166978 noncrop grids (29%) are misclassified as crop, 
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Figure 4. CV values for (a) UAVSAR 10 × 10 m and (b–d) simulated NISAR data interpolated to 10, 30, and 100 m grids and (e) the CDL classified as crop and 
noncrop according to Table 1. Some CDL land covers (e.g., aquaculture) were masked according to Table 1 and are shown in white. CDL, Cropland Data Layer; 
CV, coefficient of variation; UAVSAR, Uninhabited Aerial Vehicle SAR.
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while 154095 out of 501378 crop grids (31%) are misclassified as noncrop. In the 10 m simulated NISAR 
case, Kappa settles on a value in the middle, but approaches the threshold identified by the J-statistic with 
coarser resolution.

Plots of the three performance metrics versus CVthr reveal that accuracy is relatively less sensitive to chang-
es in CVthr, compared to the other metrics (Figure 7). Overall accuracy remains fairly constant until CVthr 
values exceed 0.5. Whereas, the J-statistic and Kappa values have much sharper peaks, occurring at compa-
rable CVthr values. Results for J-statistic and Kappa are close to zero for CVthr values less and greater than 
0.2 and 0.8, respectively. The figure also clearly shows how optimal values trend toward smaller CVthr with 
coarser spatial resolutions: there is a particularly large contrast between the locations of peaks of the simu-
lated NISAR data at 10 m as compared to 30 and 100 m: for J-statistic and Kappa, there is a CVthr difference 
of about 0.1 or greater between them.

Figure 7 shows that all but the simulated NISAR classifications at 10 m are able to meet the 80% accu-
racy requirement. Results using the 30 and 100 m data only barely exceed the 80% requirement. For the 
interpretation of accuracy over the region of interest, it is important to point out that the CDL indicated a 
breakdown between crop and noncrop of 75% and 25%. Thus in the trivial cases of “assuming” everything 
is a crop (CVthr = 0) or noncrop (high CVthr such as CVthr = 1.0), accuracy will be equal to the crop/noncrop 
breakdown. This is supported by the J-statistic and Kappa metrics being close to zero in these cases, indicat-
ing random chance rather than predictive skill. We also note that there appears to be a relatively large range 
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Figure 5. Receiver operating characteristic curves for (a) UAVSAR at 10 × 10 m and (b–d) simulated NISAR at 10 × 10, 30 × 30 × 100 m spatial resolution. The 
marked points on the curve indicate the Sensitivity and 1-Specificity values for the annotated value of the crop/noncrop delineating threshold (CVthr). The 1:1 
line indicates the line of no discrimination. CV, coefficient of variation; UAVSAR, Uninhabited Aerial Vehicle SAR.
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of CVthr values, approximately ranging from 0.2 to 0.4, that could also be used to achieve accuracies close to 
or greater than the 80% requirement. This indicates that there could be a considerable leeway in obtaining 
good accuracies even when only using a single CVthr value over a large region. Given NISAR mission re-
quirements of 80% at 1 hectare scale, the simulated NISAR products meet these goals.

While our findings are generally consistent with our initial hypotheses, we note that classification perfor-
mance only slightly decreased between using 30 (81%) and 100 m (80%) data. More notable is that the op-
timal CVthr values, greatly varied according to spatial resolution and accuracy metric used, and that a wide 
range of CVthr values ranging from 0.2 to 0.4, could be used to achieve near 80% accuracy.
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Figure 6. Crop/noncrop confusion matrix results for the UAVSAR (10 × 10 m) and simulated NISAR (10 × 10, 30 × 30 × 100 m) products (rows) as function 
of crop/noncrop delineating threshold (CVthr, columns). Results show that to maintain the best classification accuracy with spatial resolution, it is necessary 
to employ smaller CVthr values as the spatial resolutions become coarser. CV, coefficient of variation; NISAR, NASA ISRO SAR; UAVSAR, Uninhabited Aerial 
Vehicle SAR.
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5. Conclusions
This main goal of this work was to evaluate the proposed algorithm for 
generating crop/noncrop classifications using NISAR data. Crop/non-
crop classifications were evaluated at spatial resolutions consistent with 
the finest NISAR products (around 10 m), that of the CDL (30 m) and that 
at which NISAR crop/noncrop classifications are to be evaluated (100 m). 
Using UAVSAR at 10 m resolution, we achieved crop/noncrop classifica-
tion accuracy of 85%. Using the best currently available approximation of 
data to be collected by NISAR, we found that the mission requirement of 
80% could be met in all but the 10 m case (77%). Speckle was substantial 
when using the 12 × 6.2 m MLCs on 10 × 10 m grids, resulting in mis-
classifications. And while results were not substantially better using 30 
(81%) or 100 m (80%) grids, we found that a fairly large range of CVthr 
values (0.2–0.4) may be used to approach or exceed the mission accuracy 
requirement of 80%.

In addition to overall accuracy, this study also used Youden's J-statistic and Cohen's Kappa to measure 
classification performance. Both metrics were found to be substantially more sensitive to performance dif-
ferences, compared to overall accuracy. Classifications were substantially worse using the simulated NISAR 
data at 10 m (J-statistic: 0.40, Kappa value: 0.36) compared to those made at 30 m (J-statistic: 0.55, Kappa: 
0.49) and 100 m (J-statistic: 0.58, Kappa: 0.50). All performance metrics considered, there was little differ-
ence between a 30 and 100 m product, showing that accurate cropland products could also be produced at 
finer spatial resolutions.

Optimal CVthr values varied considerably depending on which spatial 
resolution and the performance metric was used. Optimal CVthr values 
decreased monotonically with spatial resolution, for every performance 
metric. At all spatial resolutions, optimal thresholds for overall accuracy 
were smallest, followed by those obtained for Kappa and the J-statistic. 
For example, using CVthr = 0.5 at 100 m, overall accuracy was only 65%. 
Using CVthr = 0.26 instead, improved overall accuracy by 15%. Therefore, 
it will likely be necessary to consider CVthr values different from 0.5 to 
not only for maximizing the product's accuracy, but also for achieving the 
80% accuracy mission requirement.
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The data supporting the conclusions of this manuscript are freely avail-
able. The UAVSAR and simulated NISAR data are available from NASA 
JPL at https://uavsar.jpl.nasa.gov/cgi-bin/data.pl using the search term 
“27900.” This search results in data listed under Stoneville, MS according 
to dates. For each date, there will be one data labeled simulated NISAR 
data and another as UAVSAR data. To find the data sets used in this study, 
the user should then select the type of data and the data and click on the 
corresponding link. Within the new page that is opened, the user is then 
able to download the file of the same name as provided in Table 2.

The CDL layer used in this study may be obtained through Crop-
Scape at https://nassgeodata.gmu.edu/CropScape/, by selecting 2019 in 
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Optimal CVthr UAVSAR N_10 N_30 N_100

Accuracy 0.39 (85%) 0.4 (77%) 0.34 (81%) 0.26 (80%)

J-statistic 0.5 (0.62) 0.57 (0.4) 0.46 (0.55) 0.4 (0.58)

Kappa 0.43 (0.59) 0.5 (0.36) 0.41 (0.49) 0.38 (0.50)

Notes. The values in parentheses is the maximum value of the respective 
metric, with Accuracy reported as percentage and J-statistic and Kappa 
are reported on a 0.00 to 1.00 scale. N_10, N_30, and N_100 respectively 
refer to the simulated NISAR data at 10, 30, and 100 m grids.
Abbreviations: CV, coefficient of variation; UAVSAR, Uninhabited Aerial 
Vehicle SAR.

Table 4 
Optimal CVthr Values as Function of Performance Metric (Rows) and 
Product or Resolution (Columns)

Figure 7. Plot of three performance metrics (Accuracy, J-statistic, and 
Cohen's Kappa) versus crop/noncrop delineating threshold for UAVSAR at 
10 × 10 m (“U”) and simulated NISAR at 10 × 10 m (“N_10”), 30 × 30 m 
(“N_30”) and 100 × 100 m (“N_100”) spatial resolution. UAVSAR, 
Uninhabited Aerial Vehicle SAR.

https://uavsar.jpl.nasa.gov/cgi-bin/data.pl
https://nassgeodata.gmu.edu/CropScape/
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the Cropland Data Layers category. This layer can then be subset to the same extent used in this study by 
providing a polygon shapefile having these corner coordinates in the UTM 15 (EPSG: 32615) projection: (1) 
688956.0519184095 3704431.626407656, (2) 699413.1631274965 3704131.230218298, (3) 699489.5084457516 
3697620.260962357, (4) 688964.5833900904 3697847.959192821.
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