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Abstract
Coronary luminal dimensions change during the cardiac cycle. However, contemporary volumetric intravascular ultrasound 
(IVUS) analysis is performed in non-gated images as existing methods to acquire gated or to retrospectively gate IVUS images 
have failed to dominate in research. We developed a novel deep learning (DL)-methodology for end-diastolic frame detection 
in IVUS and compared its efficacy against expert analysts and a previously established methodology using electrocardio-
graphic (ECG)-estimations as reference standard. Near-infrared spectroscopy-IVUS (NIRS-IVUS) data were prospectively 
acquired from 20 coronary arteries and co-registered with the concurrent ECG-signal to identify end-diastolic frames. A 
DL-methodology which takes advantage of changes in intensity of corresponding pixels in consecutive NIRS-IVUS frames 
and consists of a network model designed in a bidirectional gated-recurrent-unit (Bi-GRU) structure was trained to detect 
end-diastolic frames. The efficacy of the DL-methodology in identifying end-diastolic frames was compared with two expert 
analysts and a conventional image-based (CIB)-methodology that relies on detecting vessel movement to estimate phases 
of the cardiac cycle. A window of ± 100 ms from the ECG estimations was used to define accurate end-diastolic frames 
detection. The ECG-signal identified 3,167 end-diastolic frames. The mean difference between DL and ECG estimations 
was 3 ± 112 ms while the mean differences between the 1st-analyst and ECG, 2nd-analyst and ECG and CIB-methodology 
and ECG were 86 ± 192 ms, 78 ± 183 ms and 59 ± 207 ms, respectively. The DL-methodology was able to accurately detect 
80.4%, while the two analysts and the CIB-methodology detected 39.0%, 43.4% and 42.8% of end-diastolic frames, respec-
tively (P < 0.05). The DL-methodology can identify NIRS-IVUS end-diastolic frames accurately and should be preferred 
over expert analysts and CIB-methodologies, which have limited efficacy.
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Introduction

Intravascular ultrasound (IVUS) is the preferred intravascu-
lar imaging modality for the evaluation of coronary plaque 
burden and the efficacy of emerging therapies targeting Retesh Bajaj and Xingru Huang have contributed equally to this 
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plaque evolution [1]. Grayscale-IVUS analysis in intravas-
cular imaging studies is usually performed at 1-mm intervals 
ignoring the phase of the cardiac cycle [2], even though this 
approach neglects cyclical changes in luminal dimensions 
and the longitudinal motion of the IVUS catheter within the 
vessel, which can affect accurate quantification of atheroma 
[3–5]. It has been suggested that gated-IVUS analysis may be 
more accurate and reproducible [6, 7]; however, commercial 
catheters in contemporary use do not incorporate an electro-
cardiographic (ECG)-signal to allow the end-diastolic frame 
to be discerned. Whilst hardware for gated-IVUS acquisition 
has been developed, it has not found widespread use partly 
due to the increased time required for image acquisition 
[8]. Moreover, the automated methodologies developed to 
retrospectively-gate IVUS images, taking advantage of the 
relative movement of the lumen with regards to the IVUS 
catheter, have failed to dominate in research as most of them 
have not been robustly validated against ECG estimations 
as reference standard or they have not been incorporated 
in user-friendly software [9–17]. Over recent years, deep 
learning (DL) algorithms have gained interest as potential 
solutions for the rapid and accurate analysis of large datasets 
in cardiac imaging [18]. These approaches rely on the use 
of a pre-defined reference standard to train algorithms that 
can detect features on a training dataset and then apply these 
algorithms on new data. Despite the potential value of this 
approach, its application in intravascular imaging has not 
been fully explored yet [19–24].

It is hypothesised that a DL-based methodology will be 
able to detect end-diastolic frames in IVUS datasets and 
may be superior to human experts and previous automated 
methodologies. The aims of this study are: (a) to develop 
and train a novel DL-based methodology for automated 
detection of end-diastolic frames in IVUS sequences, (b) 
examine the reproducibility of expert analysts in detecting 
end-diastolic IVUS frames and (c) validate the performance 
of DL, the expert analysts and an established, conventional 
image-based (CIB)-methodology in detecting end-diastolic 
frames in patients with co-registered IVUS images and 
ECG-recordings.

Methods

Study population

Twenty coronary arteries from six consecutive patients in 
sinus rhythm who were recruited to the “Evaluation of the 
efficacy of computed tomographic coronary angiography 
(CTCA) in assessing coronary artery morphology and physi-
ology” study (NCT03556644), were included in the present 
analysis. The rationale, study design, and inclusion and 
exclusion criteria have been presented in detail elsewhere 

[25]. Briefly, patients with stable angina and obstructive 
coronary disease on coronary angiography referred to Barts 
Heart Centre for invasive assessment were considered eli-
gible for participation. All patients underwent CTCA fol-
lowed by coronary catheterisation and 3-vessel near-infrared 
spectroscopy (NIRS)-IVUS imaging. Only native vessels 
were included in the study. The study protocol complied 
with the Declaration of Helsinki and was approved by the 
local research ethics committee. All recruited patients gave 
written informed consent.

Intravascular ultrasound analysis and ECG 
co‑registration

NIRS-IVUS imaging was performed using the 50 MHz 
Dualpro system (Infraredx, Burlington, Massachusetts, 
United States) according to a standardised protocol. After 
administration of 400mcg of nitrates the NIRS-IVUS probe 
was advanced to the distal part of the vessel and an angio-
graphic projection was obtained under contrast agent injec-
tion to identify the location of the probe. The probe was 
pulled back at a constant speed of 0.5 mm/s using an auto-
mated pullback device (frame-rate: 30 frames per second 
(fps)). A concurrent ECG tracing was recorded at the time 
of pullback. The NIRS-IVUS data and the ECG tracing were 
imported in a viewer-mixer that enabled simultaneous visu-
alisation of the two recordings; the displays of the viewer-
mixer were recorded at 120fps and digital video files were 
transferred to an offline workstation for further analysis.

Manual end‑diastolic frame detection

Analysis was performed by two well-trained analysts (RB 
and YK) who have segmented > 375,000 NIRS-IVUS 
frames. The two analysts reviewed the digital-video files 
that simultaneously portrayed the NIRS-IVUS pullback and 
the ECG tracing and identified each NIRS-IVUS frame that 
corresponded to the peak of the R-wave as an end-diastolic 
frame. These ECG estimations were checked by a third ana-
lyst (CVB); any conflicts were resolved by consensus.

Two months after this process the two analysts reviewed 
the original NIRS-IVUS sequences blindly to the ECG and 
manually identified the end-diastolic frames; in this analysis, 
it was assumed that the NIRS-IVUS frame with the minimal 
lumen motion before the largest movement of the lumen in 
relation to the NIRS-IVUS catheter corresponded to the end-
diastolic frame. The 1st-analyst performed the analysis twice 
(3 weeks apart) to report intra-observer variability while 
the estimations of the 2nd-analyst were used to report inter-
observer variability.

To explore the effect of frame rate on the estimations of 
the two analysts, a second analysis was performed in NIRS-
IVUS sequences with a frame rate of 15fps; these data were 
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obtained after excluding 1 of every 2 frames from each 
sequence. Again, intra- and inter-observer variability were 
reported and their estimations compared to ECG estima-
tions, which were calculated by halving the frame number 
of the initial ECG estimations.

Conventional image‑based gating algorithm

CIB-gating was performed in the NIRS-IVUS data using a 
special version of the QCU-CMS software (version 4.69, 
Leiden University Medical Center, Leiden, The Nether-
lands) by implementing an established solution, the only 
one that has previously been incorporated in a user-friendly 
software package for IVUS analysis [10]. This approach is 
further described in the Data Supplement. The CIB algo-
rithm processed the NIRS-IVUS sequences twice and its 
intra-observer variability was reported.

Deep learning methodology

We propose a novel DL-methodology for identifying end-
diastolic frames in NIRS-IVUS sequences. The methodol-
ogy consists of several steps (Fig. 1). First, a median filter 

was applied to reduce the impact of noise on the overall 
changes in the pixel intensity between consecutive NIRS-
IVUS frames. Then, the absolute pixel-intensity difference 
between corresponding pixels in the entire image in con-
secutive NIRS-IVUS frames was calculated and these dif-
ferences were summed up across the entire pullback. The 
obtained values indicate the relative motion of the vessel 
with regards to the NIRS-IVUS probe; this data was further 
smoothened by the Hanning smoothing algorithm applied 
on a 13-frame sliding window. The aim was to reduce the 
impact of noise on the frame-to-frame change data which 
forms the foundation for the subsequent vessel motion fea-
ture extraction process.

This sequence was processed by the DL-methodology 
which consists of a network model designed in a bidirec-
tional gated-recurrent-unit (Bi-GRU) structure (Supplemen-
tary Fig. 1), capable of analysing data sequentially in both 
temporal directions, taking advantage of patterns extracted 
from frames before and after the end-diastolic frame [26]. 
This approach was found to be superior to a long short-term 
memory network model which was also tested as a poten-
tial solution. It is necessary to input a complete cardiac 
cycle into the network to identify the end-diastolic frame; 

Fig. 1  Schematic representation 
of the DL-methodology intro-
duced for accurate detection of 
end-diastolic frames: (1) imple-
mentation of a Median filter to 
reduce noise in NIRS-IVUS 
images, (2) estimation of the 
absolute difference of grayscale-
intensity of corresponding 
pixels identified in sequential 
frames, (3) schematic represen-
tation of the sum of the pixel 
differences that indicates the 
relative movement of the lumen 
with regards to the NIRS-IVUS 
probe; a segment of 64 frames is 
created that incorporates at least 
one cardiac cycle and sweeps 
the NIRS-IVUS sequence, (4) 
these data are used as a training 
set and entered into a 64-cell 
Bi-GRU (bidirectional-gated 
recurrent unit) neural network, 
(5) the trained network is used 
to process 64-frame segments 
generated in the test set and 
identify in this set the end-
diastolic frames
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however, an extra cardiac cycle can help the network bet-
ter identify the motion of the vessel and localise the frame 
of interest. Based on these considerations, a meaningful 
sequence-length for training the DL-algorithm was assumed 
to contain at least two full cardiac cycles. The majority of 
end-diastolic frame intervals in the training dataset were 
between 19 and 30 frames, therefore a segment length of 64 
frames was used. That segment started from the beginning 
of the smoothened sequence and advanced frame-by-frame 
until this swept the entire studied vessel. In this way, for 
every NIRS-IVUS sequence n-63 segments of 64 frames 
were generated where n is the number of NIRS-IVUS 
frames. These segments were regarded as the basic units for 
training the DL model; training was performed separately 
in the left anterior descending (LAD), left circumflex (LCx) 
and right coronary artery (RCA) using the ECG-defined end-
diastolic frames to generate models for each vessel type.

The choice of loss function used for the Bi-GRU model 
was mean square error and learning rates in all experiments 
were set to 1e−3 . The maximum training epoch was 50 with 
batch size set to 1 during all experiments. As the model is 
ready-trained using the data without any manual fine tuning 
of hyperparameters, no validation set was required in this 
experiment.

Testing of the DL models was performed using the leave-
one-out cross-validation approach—all pullbacks performed 
in the LAD, or the LCx, or the RCA were used for training 
apart from one vessel from each vessel type (LAD/LCx/
RCA) that was used for testing. This process was repeated 
sequentially leaving a different vessel out from the train-
ing set until all vessels were used for testing. Similar to the 
training set, a 64-frame segment was generated that swept 
the entire NIRS-IVUS sequence. For each segment, the 
probability of the 32nd frame to be the end-diastolic frame 
was calculated and the frames with the highest probability 
amongst neighbouring frames were selected and constituted 
the network output. The DL-methodology analysed the 
NIRS-IVUS images twice and its intra-observer variability 
was reported.

Statistical methods

Numerical variables are presented as mean ± standard 
deviation (SD) while categorical variables are reported as 
absolute values and percentages. Comparison between cat-
egorical variables was performed using the Chi-square test. 
Bland–Altman analysis was used to assess the intra- and 
inter-observer variability of the analysts and compare their 
estimations and the estimations of the CIB- and DL-meth-
odology against the end-diastolic frames identified by the 
ECG. The root mean square error (RMSE) between the esti-
mations of the analysts, the CIB, the DL-methodology and 

the ECG were computed and compared. Considering that 
the temporal resolution of NIRS-IVUS imaging is 33.3 ms 
(30fps) we used a fixed cut-off range of ± 100 ms from the 
peak of R-wave on ECG to define correct end-diastolic frame 
detection (Fig. 2). In the absence of “true/false negatives” 
we defined the accuracy of each of the above approaches as 
the percentage of the correct end-diastolic frames from the 
end-diastolic frame estimations corresponding with a car-
diac cycle. A P-value of < 0.05 was taken to be statistically 
significant. Statistical analyses were performed using SPSS 
for Mac version 23 (IBM, Armonk, New York).

Results

Studied patients

The baseline characteristics of the included patients are 
shown in Table 1. NIRS-IVUS imaging was performed in 
20 vessels [6 LAD, 9 LCx (3 performed in the main vessel 
and 6 in major obtuse marginals) and 5 RCA]; the total num-
ber of acquired frames was 92,526, of which 3271 frames 
were classified as end-diastolic frames by ECG-signal. 
From these, we excluded 104 frames due to image artefacts 
obscuring detection of the peak of R-wave or identifica-
tion of frame number. Therefore, in total 3167 frames were 
included in the final analysis.

End‑diastolic frame detection in NIRS‑IVUS 
sequences with a frame‑rate of 30fps

The representative analysis time for an analyst identifying 
end-diastolic frames manually for a representative 5000-
frame vessel was approximately 15 min. Automated meth-
odologies were significantly quicker: the CIB-methodology 
required 135 s while the DL-methodology required 15 s for 
the same number of frames to be analysed.

The 1st-analyst identified 3144 end-diastolic frames; 
3034 estimations corresponded with the ECG-defined car-
diac cycle; 133 estimations could not be matched with the 
ECG estimations as there were other annotations closer to 
the peak of R-wave, while in 110 cases the analyst failed to 
identify an end-diastolic frame for a cardiac cycle. Simi-
lar results were reported when analysis was repeated by 
the 1st-analyst or when end-diastolic frame detection was 
performed by the 2nd-analyst (Table 2). There was no dif-
ference between the analysts and the CIB-methodology in 
the incidence of frames that were matched with the ECG 
estimations, of frames that could not be matched to ECG 
estimations and to missed end-diastolic frames for a car-
diac cycle (P = 0.182). Conversely, the DL-methodology 
missed cardiac cycles more frequently than the analysts 
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or the CIB-methodology (P ≤ 0.010). Vessel-level analysis 
demonstrated that this difference was mainly due to a larger 
number of missed end-diastolic frames in the LAD. In the 
LCx, the analysts were more likely to detect additional end-
diastolic frames not corresponding to ECG estimations than 
the CIB- and DL-methodologies. Finally, in the RCA, the 
CIB- and DL-methodologies were found to more frequently 
identify extra end-diastolic frames not detected on ECG than 
the two analysts.

Bland–Altman analysis demonstrated an intra- and inter-
observer variability for the detected end-diastolic frames 
in all the studied vessels of 13 ± 224 ms and 23 ± 227 ms, 
respectively. This was in contrast to the CIB- and DL-meth-
odologies which were perfectly reproducible, identifying 
exactly the same end-diastolic frames in repeated analyses. 
The vessel type did not impact the intra- or inter-observer 
agreement (Fig. 3).

Figure 4 illustrates the Bland–Altman analyses between 
ECG estimations and the estimations of the 1st-analyst, 
2nd-analyst, CIB- and DL-methodologies. The differences 
between the estimations of the analysts and ECG or between 
the CIB-methodology and ECG were similar (86 ± 192 ms 
for the 1st-analyst, 78 ± 183  ms for the 2nd-analyst, 
59 ± 207 ms for the CIB-methodology); conversely the DL-
methodology was more accurate, with a smaller mean dif-
ference between its estimations and the ECG (3 ± 112 ms). 
These findings were consistent in all three coronary arter-
ies. RMSE analysis also confirmed the superiority of DL-
methodology (Table 3).

Using a cut-off of ± 100 ms difference from ECG esti-
mations to define correct end-diastolic frame detection, we 
found that the 1st-analyst correctly identified 1182 frames 

(39.0%), the 2nd-analyst 1333 (43.4%), the CIB-methodol-
ogy 1306 (42.8%) and the DL-methodology 2401 (80.4%) 
frames (Fig. 5, P < 0.05). The accuracy of the analysts was 
significantly better for the LAD and LCx, compared to the 
RCA (P < 0.05), while the CIB-methodology was more accu-
rate in the LAD and RCA compared to the LCx (P < 0.001). 
DL had excellent accuracy and was superior to the analysts 
and the CIB-methodology in all 3 coronary arteries and 
appeared to perform better in the LCx than the LAD. Results 
were not different when accuracy was defined as the ratio of 
correctly identified end-diastolic frames versus all frames 
estimated by each approach (Fig. 6).

The results were similar when we took into account 
patient heart rate variability and defined accurate end-dias-
tolic frame detection as estimations falling within ± 10% of 
the R-R interval from the peak of R-wave. An accuracy of 
68.0% was reported for the DL-methodology; the accuracy 
of the 1st-analyst was 35.6%, of the 2nd 29.7% and of the 
CIB-methodology 29.7%.

End‑diastolic frame detection in NIRS‑IVUS 
sequences with a frame‑rate of 15fps

The results from analysis at a frame-rate of 15fps are shown 
in Table 4. The CIB-methodology in this dataset detected 
more end-diastolic frames that did not correspond with ECG 
compared to the analysts or the DL-methodology. Vessel-
level analysis indicated that this difference was driven by the 
performance of the CIB-methodology in the LCx and RCA. 
The DL-methodology performed similarly to the analysts in 
terms of detecting extra end-diastolic frames, but as before 

Fig. 2  ECG recording with the corresponding NIRS-IVUS frames 
acquired at different phases of the cardiac cycle. The IVUS frame 
corresponding to the peak of the R-wave was defined by the ECG as 
the end-diastolic frame (green line). The green shaded area represents 
a period within ± 100 ms of the peak of R-wave. Frames detected by 
the analysts or the CIB- or DL-methodologies that fell in the green 
shaded area were classified as correctly detected end-diastolic frames. 

It is apparent in the NIRS-IVUS frames above the ECG that there 
is no motion of the lumen with regards to the NIRS-IVUS probe in 
frames that correspond to the end-diastolic period (shown with a 
green or a yellow colour); conversely the relative movement of the 
lumen with regards to the NIRS-IVUS probe is increased in the 
frames that do not correspond to the end-diastolic period and are por-
trayed with an orange colour



1830 The International Journal of Cardiovascular Imaging (2021) 37:1825–1837

1 3

it missed more end-diastolic frames than the analysts or the 
CIB-methodology in the LAD.

Similar to the 30fps analyses, the intra- (26 ± 240 ms for 
all vessels) and inter-observer (26 ± 221 ms for all vessels) 
variability was higher for the estimations of the analysts 
when compared to the CIB- and DL-methodologies that 
were again perfectly reproducible (Fig. 3).

Bland–Altman analyses of frames identified by the ECG, 
1st-analyst, 2nd-analyst, CIB- and DL-methodologies are 
shown in the Supplementary Fig. 2. The agreement between 
DL and ECG estimations (3 ± 117 ms) was higher than the 
agreement between ECG and 1st-analyst (76 ± 315 ms), 2nd-
analyst (46 ± 186 ms) or CIB-methodology (13 ± 223 ms). 

These findings were consistent in all three coronary arteries. 
RMSE analysis again confirmed the superiority of the DL-
methodology (Table 3). The DL-methodology had a signifi-
cantly higher accuracy than the analysts or the CIB approach 
in detecting the correct end-diastolic frame in all 3 coronary 
arteries (Supplementary Fig. 3).

Discussion

In this study, we have introduced, trained and tested for the 
first time a novel DL-methodology for detecting end-dias-
tolic frames in NIRS-IVUS sequences using ECG-defined 
estimations as the reference standard. The novelty of the 
proposed framework relies on the use of a Bi-GRU network, 
for learning and processing in a bidirectional fashion the 
temporal information in IVUS sequences to detect end-dias-
tolic frames. We found that, (1) expert analysts have limited 
accuracy and reproducibility in identifying end-diastolic 
frames, (2) the CIB-methodology, while more reproduc-
ible, has similar accuracy to expert analysts, (3) the effi-
cacy of the analysts and CIB-methodology varies dependent 
on vessel type and (4) the DL-methodology is superior to 
expert analysts and the CIB-methodology, and has an excel-
lent accuracy in identifying end-diastolic frames in all three 
coronary arteries.

The merits of analysing IVUS images obtained at the 
same phase of the cardiac cycle to accurately quantify volu-
metric changes in atheroma burden in longitudinal IVUS 
studies are well recognised. Previous studies have demon-
strated that the lumen area can vary significantly, by as much 
as 10% in disease-free segments, during the cardiac cycle 
[4, 5]. Moreover, reports have demonstrated that the longi-
tudinal motion of the IVUS catheter in the vessel during a 
cardiac cycle can reach up to 5.5 mm [3, 27]. A simulation 
study conducted by de Winter et al. showed that these fac-
tors can impact the efficacy of non-gated IVUS analysis in 
detecting changes in plaque burden in longitudinal studies; 
in their analysis, to detect a 3% decrease in plaque burden 
at follow-up, gated-IVUS analysis would require 26 vessels, 
while non-gated IVUS 254 vessels [7]. These findings were 
not confirmed by a report which included 19 vessels which 
were assessed twice by gated and non-gated IVUS; in this 
study, the differences in lumen, external elastic membrane 
and plaque volume between the two IVUS examinations 
were numerically smaller when analysis was performed 
using an ECG-gated device, but not statistically significant 
from the differences reported in the non-gated IVUS analy-
sis [28]. This may be explained by the fact that the study 
is lacking the power to demonstrate the superiority of the 
ECG-gated analysis.

Hardware designed to selectively acquire gated IVUS 
frames [8] and automated image-based methodologies 

Table 1  Baseline demographics of the studied patients

CAD coronary artery disease, LV left ventricle, PCI percutaneous 
coronary intervention
*Renal failure was defined as an estimated glomerular filtration rate 
of < 60 ml/min/1.73  m2

**Normal LV function was defined as LV ejection fraction ≥ 50%; 
impaired LV function was defined as LV ejection fraction > 30% 
and < 50%

All patients (N = 6)

 Age (years) 61.7 ± 10.3
 Gender (male) 5 (83.3%)
 Current smoker 0 (0%)
 Family history of CAD 4 (66.7%)

Co-morbidities
 Diabetes mellitus 3 (50.0%)
 Hypertension 4 (66.7)
 Hypercholesterolemia 4 (66.7)
 Renal failure* 0 (0%)
 Anemia 0 (0%)
 Previous PCI 2 (33.3%)

LV function**
 Normal LV function 5 (83.3%)
 Impaired LV function 1 (16.7%)
 Studied vessels (n = 20)

Left anterior descending artery 6 (30.0%)
 Number of frames 32,171
 Number of end-diastolic frames 1219

Left circumflex artery 9 (45.0%)
 Number of frames 31,306
 Number of end-diastolic frames 1070

Right coronary artery 5 (25.0%)
 Number of frames 29,049
 Number of end-diastolic frames 1008

Medications at discharge
 Aspirin 6 (100.0%)
 Thienopyridines 6 (100.0%)
 Beta-blocker 2 (33.3%)
 Statin 6 (100.0%)
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Table 2  Vessel-level analysis of end-diastolic frame estimations of the 1st- and 2nd-analyst and of the CIB- and DL-methodologies in the NIRS-
IVUS sequences acquired at 30fps

CIB conventional image-based, DL deep learning, ECG electrocardiogram

Studied vessel Segmentation approach End-diastolic frames 
corresponding to ECG 
estimations

End-diastolic frames not 
corresponding to ECG 
estimations

Missed cardiac cycles P

All studied vessels 1st-analyst 1st estimation 3034 (92.6%) 110 (3.4%) 133 (4.1%)
1st-analyst 2nd estimation 3014 (93.1%) 72 (2.2%) 153 (4.7%)
2nd-analyst 3069 (93.5%) 117 (3.6%) 98 (3.0%)  < 0.001
CIB-methodology 3052 (93.5%) 96 (2.9%) 115 (3.5%)
DL-methodology 2987 (91.6%) 95 (2.9%) 180 (5.5%)

Left anterior descending 
artery

1st-analyst 1st estimation 1141 (94.7%) 23 (1.9%) 42 (3.4%)
1st-analyst 2nd estimation 1136 (94.4%) 22 (1.8%) 46 (3.8%)
2nd-analyst 1140 (94.7%) 22 (1.8%) 42 (3.5%)  < 0.001
CIB-methodology 1119 (93.9%) 10 (0.8%) 63 (5.3%)
DL-methodology 1062 (88.8%) 14 (1.2%) 120 (10.0%)

Left circumflex artery 1st-analyst 1st estimation 976 (92.8%) 41 (3.9%) 35 (3.3%)
1st-analyst 2nd estimation 968 (94.3%) 16 (1.6%) 43 (4.2%)
2nd-analyst 976 (92.6%) 43 (4.1%) 35 (3.3%)  < 0.001
CIB-methodology 972 (94.0%) 23 (2.2%) 39 (3.8%)
DL-methodology 971 (94.5%) 16 (1.6%) 40 (3.9%)

Right coronary artery 1st-analyst 1st estimation 917 (89.9%) 46 (4.5%) 57 (5.6%)
1st-analyst 2nd estimation 910 (90.3%) 34 (3.4%) 64 (6.3%)
2nd-analyst 953 (92.9%) 52 (5.1%) 21 (2.0%)  < 0.001
CIB-methodology 961 (92.7%) 63 (6.1%) 13 (1.3%)
DL-methodology 954 (91.8%) 65 (6.3%) 20 (1.9%)

Fig. 3  Bland–Altman analyses between the first and second set of 
estimations of the 1st-analyst at the NIRS-IVUS sequences acquired 
at 30fps (a) and 15fps (b) and between the estimations of the 1st- and 
2nd-analyst in the same data set (c at 30fps; d at 15fps). Results are 

shown for the left anterior descending (LAD), left circumflex (LCx), 
and right coronary artery (RCA). The blue line represents the mean 
difference and the red lines correspond to the limits of agreement 
i.e., ± 1.96 standard deviation (SD)
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[9–17] to estimate end-diastolic frames have failed to 
dominate in clinical research. The lack of commercial 
availability of ECG-gated hardware and the increased time 
required for their use has limited their utility, while most 
of the CIB-methodologies have not been validated robustly 
against ECG estimations or incorporated in user-friendly 
software.

In the present study, we validated the efficacies of a CIB-
methodology and expert analysts in 3,167 end-diastolic 

frames from 20 vessels assessed by NIRS-IVUS imaging 
against an ECG-defined reference standard. We found that 
the analysts had high intra- and inter-observer variability in 
detecting end-diastolic frames and that there were significant 
differences between their estimations and the ECG and that 
their performance varied between vessels. Both analysts per-
formed better in the LAD and worse in the RCA where there 
is a higher relative motion of the lumen with regards to the 
catheter. In our analysis, the CIB-methodology was perfectly 

Fig. 4  Bland–Altman analyses in the NIRS-IVUS sequences acquired 
at 30fps for the estimations of the ECG and the 1st-analyst (a), of 
the ECG and the 2nd-analyst (b), of the ECG and the CIB-method-
ology (c) and of the ECG and the DL-methodology (d). Results are 
shown for the left anterior descending (LAD), left circumflex (LCx), 

and right coronary artery (RCA). The blue line represents the mean 
difference and the red lines correspond to the limits of agreement, 
i.e. ± 1.96 standard deviation (SD). The green shaded area denotes 
estimations falling within ± 100 ms from the ECG estimations

Table 3  Root mean square 
errors of the end-diastolic frame 
estimations of the analysts of 
the CIB- and DL-methodologies 
compared to ECG estimations

CIB conventional image-based, DL deep learning

1st-analyst 2nd-analyst CIB-meth-
odology

DL-meth-
odology

P

Analysis at 30fps
 All studied vessels (ms) 194 184 199 103  < 0.001
 Left anterior descending artery (ms) 154 156 157 100  < 0.001
 Left circumflex artery (ms) 193 188 234 104  < 0.001
 Right coronary artery (ms) 228 207 203 104  < 0.001

Analysis at 15fps
 All studied vessels (ms) 204 177 207 108  < 0.001
 Left anterior descending artery (ms) 188 154 167 105  < 0.001
 Left circumflex artery (ms) 175 179 240 108  < 0.001
 Right coronary artery (ms) 245 198 212 112  < 0.001
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Fig. 5  Accuracy of expert analysts, the CIB- and DL-methodology 
in the NIRS-IVUS sequences acquired at 30fps. (Red colour asterisk) 
Indicates statistically significant (P < 0.05) differences between the 
accuracy in left circumflex (LCx) or the right coronary artery (RCA) 
and the accuracy in the left anterior descending artery (LAD) within 
the same methodology. (Red colour double asterisk) Indicates statis-

tically significant differences between the accuracy of the RCA and 
LCx within the same methodology. (Red colour bullet) Indicates sta-
tistically significant differences between the 1st-analyst and the 2nd-
analyst, CIB- or the DL-methodology while red colour plus symbol 
indicates statistically significant difference between the CIB- and DL-
methodology

Fig. 6  Accuracy of the expert analysts, the CIB- and DL-methodol-
ogy in the NIRS-IVUS sequences acquired at 30fps. In this analysis 
accuracy was defined as the percentage of the correct estimations ver-
sus the number of all the estimated end-diastolic frames. (Red col-
our asterisk) Indicates statistically significant (P < 0.05) differences 
between the accuracy in left circumflex (LCx) or the right coronary 
artery (RCA) and the accuracy in the left anterior descending artery 

(LAD) within the same methodology. (Red colour double asterisk) 
Indicates statistically significant differences between the accuracy of 
the RCA and LCx within the same methodology. (Red colour bullet) 
Indicates statistically significant differences between the 1st-analyst 
and the 2nd-analyst, CIB- or the DL-methodology while red colour 
plus symbol indicates statistically significant difference between the 
CIB- and DL-methodology
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reproducible but its performance in detecting end-diastolic 
frames was limited and not different from the experts’. Sig-
nificant variations were noted in the performance of the CIB-
methodology in different vessels, with better performance in 
the LAD compared to the LCx and RCA.

Conversely, the proposed DL-methodology trained on 
the reference standard, taking into account the different pat-
terns of motion in different vessels, appeared superior to the 
analysts and CIB-methodology with excellent accuracy in 
detecting end-diastolic frames overall and was not affected 
by the type of vessel.

The results were not different when we took into account 
the variability in the R-R interval between patients and used 
a cut-off of ± 10% of the R-R to define accurate end-diastolic 
frame detection. DL was again superior to the analysts and 
the CIB-methodology but it had a smaller accuracy than 
the one reported with the fixed cut-off of ± 100 ms. This 
should be attributed to the fact that the average heart rate of 
the studied patients was 73 ± 18 bpm but also to the limited 
temporal resolution of NIRS-IVUS imaging (33.3 ms). For 
the latter reason we believe that the fixed cut-off may allow 
a more accurate estimation of the performance of the DL-
methodology especially in patients that had an increased 
heart rate during pullback.

The fixed cut-off that we used in our study also allowed 
us to examine the performance of the DL-methodology in 
IVUS sequences with a frame-rate of 15fps. The analysts had 
poor reproducibility and, similar to the CIB-methodology, 
limited efficacy in detecting end-diastolic frames while the 
DL-methodology did not appear to be affected by the lower 
spatial resolution and had excellent performance. These 
findings highlight the potential value of DL in processing 
intravascular imaging data acquired at a higher pull-back 
speed, or a lower frame-rate such as the NIRS-IVUS images 
acquired by the MC-9 system which obtains images at 14fps 
or the upcoming IVUS-photoacoustic imaging catheters that 
are expected to acquire images at a lower frame-rate than 
conventional IVUS systems [29].

Another advantage of the developed DL-methodology is 
that it is rapid, enabling processing of large datasets within 
a few seconds: analysis of an IVUS sequence of 5000 frames 
takes less than 15 s in a computer with an Intel-i5 proces-
sor and 16 GB RAM. The proposed approach has also been 
incorporated in the user-friendly QCU-CMS software, 
widely used for the processing of intravascular imaging data 
and this is likely to facilitate its utility in research. Moreo-
ver, the DL-methodology is expected to have applications in 
future computational fluid dynamic (CFD) studies assessing 
the implications of the local hemodynamic forces on plaque 

Table 4  Vessel-level analysis of the end-diastolic frame estimations of the 1st- and 2nd-analyst and of the CIB- and DL-methodology in the 
NIRS-IVUS sequences acquired at 15fps

CIB conventional image-based, DL deep learning, ECG electrocardiogram

Studied vessel Segmentation approach End-diastolic frames 
corresponding to ECG 
estimations

End-diastolic frames not 
corresponding to ECG 
estimations

Missed cardiac cycles P

All studied vessels 1st-analyst 1st estimation 2924 (90.4%) 68 (2.1%) 243 (7.5%)
1st-analyst 2nd estimation 2940 (90.9%) 66 (2.0%) 227 (7.0%)
2nd-analyst 3020 (93.2%) 72 (2.2%) 147 (4.5%)  < 0.001
CIB-methodology 3036 (90.1%) 202 (6.0%) 131 (3.9%)
DL-methodology 2993 (93.4%) 39 (1.2%) 174 (5.4%)

Left anterior descending 
artery

1st-analyst 1st estimation 1121 (93.5%) 17 (1.4%) 61 (5.1%)
1st-analyst 2nd estimation 1182 (100.0%) 0 (0.0%) 0 (0.0%)
2nd-analyst 1121 (93.3%) 19 (1.6%) 61 (5.1%)  < 0.001
CIB-methodology 1111 (92.2%) 23 (1.9%) 71 (5.9%)
DL-methodology 1093 (91.6%) 11 (0.9%) 89 (7.5%)

Left circumflex artery 1st-analyst 1st estimation 887 (86.7%) 12 (1.2%) 124 (12.1%)
1st-analyst 2nd estimation 949 (89.8%) 46 (4.4%) 62 (5.9%)
2nd-analyst 965 (93.2%) 24 (2.3%) 46 (4.4%)  < 0.001
CIB-methodology 973 (90.4%) 65 (6.0%) 38 (3.5%)
DL-methodology 958 (94.0%) 8 (0.8%) 53 (5.2%)

Right coronary artery 1st-analyst 1st estimation 916 (90.4%) 39 (3.8%) 58 (5.7%)
1st-analyst 2nd estimation 809 (81.4%) 20 (2.0%) 165 (16.6%)
2nd-analyst 934 (93.1%) 29 (2.9%) 40 (4.0%)  < 0.001
CIB-methodology 952 (87.5%) 114 (10.5%) 28 (2.0%)
DL-methodology 942 (94.8%) 20 (2.0%) 32 (3.2%)
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evolution. Recently, convincing evidence has emerged high-
lighting the role of coronary blood flow patterns on plaque 
progression and destabilisation [30, 31], while reports have 
shown that multimodality intravascular imaging combined 
with CFD estimations enables more accurate assessment 
of plaque pathophysiology and progression [32]. However, 
accurate reconstruction of coronary anatomy requires fusion 
of angiography with intravascular images at the end-diastolic 
phase of the cardiac cycle. None of the recently developed 
high-resolution IVUS or hybrid-IVUS systems incorporate 
ECG-gated hardware or are able to visualise the ECG along-
side the acquired IVUS images. The developed DL-meth-
odology overcomes these limitations, enabling retrospec-
tive, fast and accurate identification of end-diastolic frames 
necessary for reliable reconstruction of vessel architecture.

Limitations

The present study has several limitations that should be 
acknowledged. Firstly, the number of vessels included was 
small and thus we could not examine the implications of 
the erroneous estimations of the analysts and of the CIB-
methodology on the quantification of the lumen and vessel 
volumes [6]. Secondly, there was a variability in the number 
of vessels between LAD, LCx and RCA groups; however, 
the number of end-diastolic frames in each group was rela-
tively large (> 1000 frames/group, Table 1) and similar in 
the 3 vessel groups, while the non-end-diastolic frames add 
up to around 85,000; both end-diastolic frames and non-end-
diastolic frames are considered in training to highlight the 
differences of positive and negative training samples. Using 
leave-one-out cross-validation scheme, the size of train-
ing set for each validation is approximately 25,000 frames. 
Therefore, we believe that the obtained data were sufficient 
to adequately train the DL-methodology [33].

All included patients were in sinus rhythm, with a 
heart rate between 45 and 85 beats-per-minute and had 
a relatively stable R-R interval; nevertheless, premature 
atrial or ventricular ectopics were often seen during the 
pull-back and were included in the analysis. Therefore, 
the developed DL-methodology should be used only in 
patients in sinus rhythm as it is uncertain how significant 
rhythm variability might affect its performance. Moreo-
ver, the present analysis excluded stented segments where 
the friction effect between the catheter and the protruded 
struts may affect the movement of the lumen with regards 
to the IVUS probe—further research is needed to exam-
ine the performance of the proposed methodology in such 
segments. Finally, this study did not examine the value of 
IVUS-gating in the accurate quantification of atheroma 
burden compared to non-gated IVUS; this should be tested 
in a large-scale appropriately sized study.

Conclusion

In conclusion, the proposed DL-methodology is capable 
of detecting end-diastolic frames in 50 MHz NIRS-IVUS 
datasets of all three coronary arteries rapidly and repro-
ducibly, with greater accuracy than both expert analysts 
and a CIB-methodology. The DL-methodology’s perfor-
mance is unaffected by the rate at which IVUS images 
are acquired. These features render it a useful tool for the 
analysis of IVUS datasets in longitudinal studies and in 
studies that fuse IVUS and X-ray angiographic data to 
assess the implication of the haemodynamic forces on 
plaque evolution.
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