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Abstract: Inter-individual and sex differences in pain responses are recognized but their mechanisms
are not well understood. This study was intended to provide the behavioral framework for analyses
of pain mechanisms using fear extinction learning as a predictor of phenotypic and sex differences
in sensory (mechanical withdrawal thresholds) and emotional-affective aspects (open field tests for
anxiety-like behaviors and audible and ultrasonic components of vocalizations) of acute and chronic
pain. In acute arthritis and chronic neuropathic pain models, greater increases in vocalizations
were found in females than males and in females with poor fear extinction abilities than females
with strong fear extinction, particularly in the neuropathic pain model. Female rats showed higher
anxiety-like behavior than males under baseline conditions but no inter-individual or sex differences
were seen in the pain models. No inter-individual and sex differences in mechanosensitivity were
observed. The data suggest that vocalizations are uniquely suited to detect inter-individual and sex
differences in pain models, particularly in chronic neuropathic pain, whereas no such differences
were found for mechanosensitivity, and baseline differences in anxiety-like behaviors disappeared in
the pain models.

Keywords: vocalizations; fear extinction; pain; sex differences

1. Introduction

Inter-individual and sex differences have been well documented with regard to
anxiety- and depression-like conditions [1–3] and in pain [4–6]. However, neural mech-
anisms and biomarkers related to pain vulnerability and resilience, including potential
sexual dimorphisms, have yet to be fully elucidated. Intricate interactions of sensory,
cognitive, and emotional-affective dimensions form the highly complex and intense expe-
rience of pain. The strong negative affective component of pain presents a challenge for
effective therapeutic strategies, as patients suffering from chronic pain are at increased risk
of developing mood and anxiety disorders, and vice versa [7–10]. This suggests that pain
may share neurobiological mechanisms, including emotional network neuroplasticity, with
negative emotions such as fear [11,12]. Fear learning and extinction networks have been
implicated in neuropsychiatric disorders such as anxiety disorders, post-traumatic stress
disorder (PTSD), and obsessive compulsive disorder (OCD) [13–15]. Vulnerability to these
disorders has been predicted using fear extinction (FE) learning ability as a biomarker for
inter-individual differences in the preclinical [16] and clinical [17] setting.

Behavioral studies are a crucial tool for the validation of pain mechanisms and for
the assessment of potential pharmacological therapies. A variety of behavioral methods
have been developed in preclinical pain models for the evaluation of traits pertaining to
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sensorimotor function, anxiety- and depressive-like behavior, social interactions, cogni-
tive function, and emotional-affective responses [18]. Higher integrated pain behavior
at supraspinal levels has been assessed using vocalizations. Vocalizations are an impor-
tant method of communication among rodents [19], with frequencies in the audible and
ultrasonic ranges. Audible vocalizations of rats in response to a noxious stimulus indi-
cate a nociceptive reaction, whereas ultrasonic vocalizations of the 22 kHz type represent
negative emotional-affective responses [20,21]. Ultrasonic vocalizations are considered
an effective indicator for measuring negative emotional status and have been used in
different experimental models of pain, including arthritis pain [21–24], chronic cancer
pain [25,26], and neuropathic pain [27–30]. However, some have called into question the
reliability of vocalizations in assessing pain-related behavior [31] and others have found
that vocalizations may occur as a response to handling [32]. While a valuable behavioral
measure, vocalizations as a pain assessment may be most informative when used in combi-
nation with other pain indicators [33]. Inter-individual and sex differences in audible and
ultrasonic vocalizations, particularly in the context of pain and fear interactions, have not
been determined.

The purpose of this study was to examine the predictive value of fear extinction
(FE) learning ability for inter-individual differences in pain-related behavioral responses,
particularly emotional-affective pain aspects, with regard to sex. We subjected adult male
and female rats to cued fear learning and FE tests and correlated inter-individual differences
with pain responses in models of acute arthritis pain and chronic neuropathic pain. We
also investigated sex differences in FE phenotypes for measures of sensory (mechanical
withdrawal thresholds) and emotional-affective (open field tests for anxiety-like behaviors
and audible and ultrasonic components of vocalizations) pain-related behaviors.

2. Materials and Methods
2.1. Animals

A total of 215 male and 190 female Sprague-Dawley rats (150–350 g, 6–12 weeks of age)
were group-housed in a temperature-controlled room under a 12 h light/dark cycle with
unrestricted access to food and water. On each experimental day, rats were transferred from
the animal facility and allowed to acclimate to the laboratory for at least 1 h. Experimental
procedures were approved by the Institutional Animal Care and Use Committee (IACUC;
protocol #14006) at Texas Tech University Health Sciences Center and conformed to the
guidelines of the International Association for the Study of Pain (IASP) and of the National
Institutes of Health (NIH).

2.2. Experimental Protocol

Naïve rats were subjected to fear conditioning and FE trials. Rats were then randomly
assigned to the arthritis pain model (see Section 2.3) or the neuropathic pain model (see
Section 2.4). One week later, the neuropathic pain model was induced or sham surgery was
performed. Four weeks after surgery, neuropathic pain-related behavioral changes reach
a stable plateau in this model [29]. The arthritis pain model was induced in a separate
group of rats at the four-week time point to achieve age-matched experimental groups.
Behavioral studies were performed four weeks after surgery or 6 h after arthritis induction
when behavioral and neurobiological changes are known to reach a maximum plateau [21].
The experimenter was blinded with regard to the FE phenotype, the neuropathic versus
sham condition, and the arthritis versus untreated control condition. The experimental
design is illustrated in Figure 1.
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the leg for 15 min. A carrageenan solution (2% in sterile saline, 100 μL) was then injected 
into the knee joint cavity and the leg was flexed and extended for another 5 min. This 
treatment paradigm (the K/C arthritis model) reliably produces a localized inflammation 
in only one knee joint with damage to the cartilage within 1–3 h. K/C arthritis persists for 
at least a week and is associated with pain behaviors and neural activity changes in the 
central and peripheral nervous system. Naïve rats that underwent similar handling but 
did not receive intraarticular injections were used as a control group, as data from our 
previous studies demonstrated no differences in the behavior of untreated rats and of 
those that received intraarticular saline injection [34] or needle insertion [35]. This justified 
the use of naïve rats as an appropriate control for the K/C pain model, which is well es-
tablished in our laboratories [36–38]. 
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The well-established spinal nerve ligation (SNL) model of neuropathic pain [39] was 

used, which creates stable and long-lasting neuropathic pain behaviors. Rats were anes-
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sterile surgery where the left L5 spinal nerve was exposed and tightly ligated using 6–0 
sterile silk. In the sham-operated control group, the nerve was exposed but not ligated. 
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of a near infrared Video Fear Conditioning System (Med Associates Inc., Fairfax, VT, USA) 
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Figure 1. Experimental design. Rats underwent fear conditioning and extinction learning protocols before being separated
into FE+ and FE− groups for either the acute arthritis pain (vs. untreated control) groups or the chronic neuropathic pain
(vs. sham control) groups. FE: fear extinction.

2.3. Arthritis Pain Model

The well-established mono-arthritis pain model mimics the acute phase of the human
osteoarthritis condition and was induced in the left knee joint as described in detail
previously [21]. Rats were briefly anesthetized with isoflurane (2–3%; precision vaporizer,
Harvard Apparatus, Holliston, MA) and a kaolin suspension (4% in sterile saline, 100 µL)
was slowly injected into the joint cavity followed by repetitive flexions and extensions of
the leg for 15 min. A carrageenan solution (2% in sterile saline, 100 µL) was then injected
into the knee joint cavity and the leg was flexed and extended for another 5 min. This
treatment paradigm (the K/C arthritis model) reliably produces a localized inflammation
in only one knee joint with damage to the cartilage within 1–3 h. K/C arthritis persists for
at least a week and is associated with pain behaviors and neural activity changes in the
central and peripheral nervous system. Naïve rats that underwent similar handling but did
not receive intraarticular injections were used as a control group, as data from our previous
studies demonstrated no differences in the behavior of untreated rats and of those that
received intraarticular saline injection [34] or needle insertion [35]. This justified the use of
naïve rats as an appropriate control for the K/C pain model, which is well established in
our laboratories [36–38].

2.4. Neuropathic Pain Model

The well-established spinal nerve ligation (SNL) model of neuropathic pain [39] was
used, which creates stable and long-lasting neuropathic pain behaviors. Rats were anes-
thetized with isoflurane (2–3%; precision vaporizer, Harvard Apparatus) and underwent
sterile surgery where the left L5 spinal nerve was exposed and tightly ligated using 6–0
sterile silk. In the sham-operated control group, the nerve was exposed but not ligated.

2.5. Behaviors
2.5.1. Fear Conditioning and Extinction

Fear conditioning and extinction learning tests were conducted using two chambers
of a near infrared Video Fear Conditioning System (Med Associates Inc., Fairfax, VT,
USA) as described previously [40–42]. The conditioning chambers were located inside
a sound-attenuating isolation cabinet with a metal grid flooring that was connected to a
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grid stimulator to administer aversive foot shocks. Two distinct chambers with separate
visual, olfactory, tactile, dimensional, and lighting environments were used (context A:
white light, no fan in chamber, metal grid on chamber floor, lights on in experimental room,
rat transported to chamber in transparent box, chamber cleaned with 50% ethanol; context
B: near-infrared (NIR) light, fan on in chamber, flat chamber floor, lights off in experimental
room, rat transported to chamber in opaque box, chamber cleaned with 70% isopropanol,
colored insert with 3 drops of peppermint oil added to alter olfactory environment and
physical dimensions). Day 1 consisted of the training phase where rats were habituated
to the training chamber (context A) and allowed to explore freely for 5 min, followed by
fear conditioning that consisted of a foot shock (0.7 mA, 2 s; the unconditioned stimulus,
USA) delivered during the final 2 s of an auditory stimulus (white noise, 80 dB, 4.5 kHz,
30 s; the conditioned stimulus, CS). Two CS-US pairings were used (intertone interval, ITI,
120 s). On day 2, rats were placed in a different chamber (context B) and were habituated
for 5 min, followed by extinction training (30 CSs, ITI 5 s). A mounted video camera in
the conditioning chambers was used to record the behavior of each rat. Freezing behavior
(expressed as a percentage of each 30 s period) was analyzed and quantified using Video
Freeze software (Med Associates Inc.) as the conditioned response. Based on their FE
learning ability, rats were classified into strong (FE+), “normal” (FE+/−), and weak (FE−)
FE groups as determined by evidence of diminishing (below 50%) freezing responses
during Phase I (before 600 s), Phase II (600–900 s), or Phase III (after 900 s) of extinction
training (see the “Results” section for details). Rats in the two extreme groups (FE+ and
FE−) were selected for further behavioral testing and randomly assigned to groups in the
arthritis pain model (untreated FE+, untreated FE−, arthritis FE+, and arthritis FE−) or
in the neuropathic pain model (sham FE+, sham FE−, SNL FE+, and SNL FE−). Four
weeks after SNL or sham surgery, or 6 h after arthritis induction in an age-matched model,
behavioral assays (see next paragraphs) were performed.

2.5.2. Mechanosensitivity

Rats were briefly anesthetized with isoflurane (2–3%; precision vaporizer, Harvard
Apparatus) and were placed slightly restrained in a customized recording chamber that
permitted access to the hindlimbs (U.S. Patent 7,213,538) for stable testing. Hindlimb
withdrawal thresholds were evaluated after recovery from anesthesia and after habituation
to the recording chamber for 30 min. Hindlimb withdrawal thresholds were evaluated
using calibrated forceps with a force transducer whose output was displayed in grams on
an LED screen. The calibrated forceps were used to gradually compress the left knee joint
(arthritis pain model) or the left hindpaw (neuropathic pain model) with a continuously
increasing intensity until a withdrawal reflex was evoked as described in our previous
studies [21,35,37,38,43–45]. The withdrawal threshold, defined as the force required to
evoke a reflex response, was calculated using the average value from 2 to 3 trials.

2.5.3. Emotional Responses

Components of vocalizations in the audible (20 Hz–16 kHz) and ultrasonic (25 ± 4 kHz)
ranges were simultaneously measured after hindlimb withdrawal assays using an auto-
matic computerized vocalization system consisting of a full-spectrum USB ultrasound
microphone (max sampling rate: 384 kHz) and UltraVox XT four-channel recording and
analysis system (Noldus Information Technology, Leesburg, VA, USA). Rats were briefly
anesthetized with isoflurane (2–3%; precision vaporizer, Harvard Apparatus) and placed in
the customized recording chamber for stable recordings of vocalizations evoked by natural
stimulation. After the rat recovered from anesthesia and habituated to the recording cham-
ber for 30 min, hindlimb withdrawal thresholds were evaluated (see Section 2.5.2) and the
calibrated forceps with a force transducer were used for vocalization assays. Vocalizations
were evoked by a brief (10 s), continuous noxious stimulus applied to the left knee joint
(arthritis pain model; stimulus: 1500 g/30 mm2) or to the left hindpaw (neuropathic pain
model; stimulus: 500 g/6 mm2) as described in our previous studies [20,28,29,37,38,42].
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Vocalizations were automatically detected for 1 min and total durations of audible and
ultrasonic components of vocalizations following the onset of mechanical stimulus were
analyzed using UltraVox 3.2 software (Noldus Information Technology). For vocalization
analyses, audible calls were labeled using frequency ranges of 20 Hz–16 kHz and ultrasonic
components of calls were labeled using frequency ranges of 21–29 kHz. The following call
descriptions were also specified: minimum amplitude, 50 units; minimum duration, 1 ms;
maximum duration, 2000 ms; minimum gap between calls, 1 ms. Calls that fit these criteria
were detected for each recording. At the conclusion of each experiment, call statistics for
each recording were exported as a text file. The duration (in ms) for each individual call
was summed for each 1 min recording period to give the total duration of audible and
ultrasonic components of vocalizations for each rat.

2.5.4. Anxiety-Like Behavior

Animal movements within the open field test (OFT) were used to measure anxiety-like
behavior. Exploratory behavior in the central or peripheral zones of an arena (70 cm × 70 cm)
with acrylic walls (height, 45 cm) was recorded for 15 min using a computerized video
tracking and analysis system (EthoVision XT 11 software, Noldus Information Technology)
as described previously [42,46]. Time spent in the center of the arena (35 cm × 35 cm) was
calculated during the first 5 min. Avoidance of the center of the arena is interpreted to
suggest anxiety-like behavior [42,46–48].

2.6. Statistical Analysis

All averaged values are presented as the mean ± SE. Statistical significance was
accepted at the level p < 0.05. GraphPad Prism 9.0 software was used for all statistical
analyses. Statistical analyses were performed on the raw data. For multiple comparisons, a
two-way analysis of variance (ANOVA) was used with Bonferroni post hoc tests.

3. Results
3.1. Inter-Individual and Sex Differences in FE Learning Ability of Naïve Male and Female Rats

Fear learning and FE are well-established models of aversive learning that have been
used to correlate behavior with neural structure and function, which involve cortico-limbic
circuits centered on the amygdala [15]. We previously reported that the identification
of distinct behavioral phenotypes based on FE ability in naïve male rats can serve as a
predictor for inter-individual differences in pain sensitivity and amygdala neuronal activity
in chronic neuropathic pain [42]. Here, we chose to examine whether a similar correlation
existed between FE learning ability and acute arthritis pain-related behaviors and if this
predictive value could be expanded to include both sexes.

Fear learning and FE were measured in 215 male and 190 female naïve rats (see
Sections 2.1 and 2.5.1). During the fear learning session on day 1 of fear conditioning,
rats showed minimal freezing behavior during the habituation phase under context A,
indicating normal locomotor activity. All rats developed freezing responses after two
pairings of CS (white noise, 80 dB, 4.5 kHz, 30 s) and US (0.7 mA foot shock, 2 s) (Figure 2A).
During the fear training session on day 2, three groups emerged in both sexes based on
differences in the time course and magnitude of declining freezing behavior in the absence
of a foot shock (the US) (Figure 2B). For females, 36 rats (35.6%) exhibited a rapid (before
600 s; Phase I) decline in freezing to levels below 50% (per 30 s CS segment), reflecting
strong FE learning ability (FE+), while 18 rats (17.8%) maintained freezing levels above
50% past 900 s (Phase III), indicating weak FE learning ability (FE−). The remaining 47 rats
(46.5%) showed a decline to below 50% freezing levels between 600 and 900 s (Phase II)
of the FE session and were classified as exhibiting “normal” FE learning ability (FE+/−).
Males exhibited a different distribution of phenotypes, where 29 rats (19.8%) showed
strong FE learning ability (FE+), 47 rats (30.7%) showed weak FE learning ability (FE−),
and the remaining 77 rats (50.3%) showed normal FE learning ability (FE+/−) (Figure 2C).
Female FE− rats showed a significantly higher percent freezing per 30 s CS segment than
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those in the female FE+ group (p < 0.0001, F1,2080 = 512.8, two-way ANOVA; Bonferroni
post hoc test results are shown in Figure 2B). Similarly, males in the FE− group showed
a significantly higher percent freezing per 30 s CS segment than males in the FE+ group
(p < 0.001, F1,2960 = 1372, two-way ANOVA; Bonferroni post hoc test results are shown in
Figure 2B). Interestingly, FE+ males exhibited significantly lower percent freezing per 30 s
CS segment than FE+ females (p < 0.01, F12,520 = 12.42, two-way ANOVA with Bonferroni
post hoc tests) while FE− males showed significantly higher percent freezing per 30 s
CS segment than FE− females (p < 0.0001, F12,520 = 22.75, two-way repeated-measures
ANOVA with Bonferroni post hoc tests). Importantly, no differences in percent freezing
were observed between the three groups for either sex during the habituation phases of the
fear learning (Figure 2A) or the fear extinction (Figure 2B) sessions.
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Figure 2. Inter-individual and sex differences in fear extinction learning ability in naïve female and male rats. Fear
conditioning on Day 1 (A) and extinction (B) tests were conducted using two distinct context chambers. (A) Fear conditioning
on Day 1—rats were habituated to context A followed by fear conditioning (2 CS-US pairs, see Section 2.5.1). The diagram
illustrates the experimental protocol. Symbols in the line graph show freezing responses expressed in percent per 30 s
segment during fear conditioning with 2 CS-US pairings. (B) Fear extinction learning on Day 2—rats were habituated to
context B followed by extinction training (30 CSs, no US). The diagram illustrates the experimental protocol. Symbols in
the line graph show freezing responses to tone (CS) expressed in percent per 30 s segment. (C) Bar histograms show the
distribution of rats with strong (FE+), “normal” (FE+/−), and weak (FE−) fear extinction. The population (%) of FE+ was
larger in female rats compared to male rats. For details, see the “Methods” and “Results” sections. CS: conditioned stimulus;
US: unconditioned stimulus; ITI: intertone interval; FE: fear extinction.
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3.2. Inter-Individual and Sex Differences in Arthritis Pain-Related Behaviors of FE+ and
FE− Rats

Next, we examined whether inter-individual and sex differences in FE learning ability
would correspond with behavioral differences for males and females in an arthritis pain
model (K/C arthritis, see Section 2.3) and/or in the untreated control condition. Male and
female rats from the FE+ and FE− groups were selected for further behavioral testing and
randomly assigned to either the K/C arthritis group or the untreated control group. Five
weeks later (corresponding with an age-matched neuropathic pain group), arthritis was
induced, and 6 h later, the following behavioral assays were performed: nocifensive reflexes
(mechanosensitivity, Figure 3A) and ultrasonic and audible components of vocalizations
(emotional responses, Figure 3B,C) evoked by mechanical compression of the knee joint,
and the OFT (anxiety-like behavior, Figure 3D).
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between untreated FE− (female, n = 11; male, n = 7) and FE+ (female, n = 13; male, n = 8) rats. For both sexes, arthritic rats
had significantly increased vocalizations compared to their untreated controls. n.s.: non-significant; + p < 0.05; # p < 0.05;
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001, ANOVA with Bonferroni post hoc tests (see the “Results” section). (D)
Center duration (s) in the OFT was significantly lower in arthritic FE− (female, n = 9; male, n = 7) and FE+ (female, n = 9;
male, n = 13) rats compared to the untreated FE− (female, n = 8; male, n = 7) and FE+ (female, n = 15; male, n = 11) control
rats. No differences were found between FE− and FE+ rats in the untreated control or arthritic groups for either sex.
#### p < 0.0001; **** p < 0.0001, ANOVA with Bonferroni post hoc tests (see the “Results” section). Bar histograms show
means ± SEM. FE: fear extinction; OFT: open field test. Asterisk (*) indicates comparison to untreated group; plus sign (+)
indicates comparison between phenotypes; pound sign (#) indicates comparison between sexes.

No significant differences in mechanical withdrawal thresholds were found between
untreated FE+ rats (female, n = 7; male, n = 8) or untreated FE− rats (female, n = 7; male,
n = 7) for either sex (Figure 3A). Similarly, no significant differences in mechanosensitivity
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were found between FE+ rats (female, n = 9; male, n = 8) or FE− rats (female, n = 9;
male, n = 7) in the arthritis pain model for either sex. However, mechanical withdrawal
thresholds were significantly lower for arthritic female FE+ and FE− rats and for arthritic
male FE+ and FE− rats compared to their untreated controls (p < 0.0001, as shown in
Figure 3A), suggesting that both types of rats developed hypersensitivity in the pain model.
No significant differences in mechanical withdrawal thresholds were found between female
FE+ rats and male FE+ rats or between female FE− rats and male FE− rats for either the
arthritis or untreated control groups. For the statistical analyses of mechanical withdrawal
thresholds in the four female experimental groups and the four male experimental groups,
ANOVA with Bonferroni post hoc tests was used (female, F3,28 = 53.09; male, F3,26 = 57.02).

For the ultrasonic and audible components of vocalizations (Figure 3B,C), no sig-
nificant differences were found between untreated FE+ rats (female, n = 13; male, n = 8)
and untreated FE− rats (female, n = 11; male, n = 7) for either sex. However, the total
duration of vocalizations was significantly higher in female FE− rats (n = 9) than female
FE+ rats (n = 9) in the arthritis pain model (p < 0.05, Figure 3B). No significant differences
were found in the durations of audible components of vocalizations of these groups or
in ultrasonic and audible components of vocalizations of male FE+ rats (n = 8) and male
FE− rats (n = 7) in the arthritis group, though there was a non-significant trend (ultrasonic,
p = 0.1988; audible, p = 0.1398). Total durations of ultrasonic and audible components of
vocalizations were significantly increased for arthritic female FE+ and FE− rats and for
arthritic male FE+ and FE− rats compared to their untreated controls (p < 0.05–0.0001, as
shown in Figure 3B,C). Female FE− rats had significantly increased durations of ultrasonic
but not audible components of vocalizations compared to male FE− rats (p < 0.05, as
shown in Figure 3B) in the arthritis model. No differences were seen for durations of
ultrasonic and audible components of vocalizations between female FE+ and male FE+
groups (untreated control or arthritis). Together, the data suggest that all groups developed
emotional responses to arthritis pain, though it emerged most prominently for female FE−
rats. For the statistical analyses of vocalization durations in the four female experimental
groups and the four male experimental groups, ANOVA with Bonferroni post hoc tests was
used (ultrasonic: female, F3,38 = 80.32, and male, F3,26 = 23.49; audible: female, F3,14 = 27.75,
and male, F3,12 = 11.88).

In the OFT (Figure 3D), no significant difference in arena center duration was found
between untreated FE+ rats (female, n = 15; male, n = 11) and untreated FE− rats (female,
n = 8; male, n = 7) for either sex. Similarly, no significant differences in center duration
were found between FE+ rats (female, n = 9; male, n = 13) and FE− rats (female, n = 9; male,
n = 7) in the arthritis pain model for males or females. In the arthritis pain groups, female
FE+ and FE− rats and male FE+ and FE− rats spent significantly less time in the center of
the arena compared to their untreated controls (p < 0.0001, Figure 3D), suggesting all groups
developed increased anxiety-like behavior. However, in the untreated control group, female
FE+ and FE− rats spent significantly less time in the arena center compared to male FE+
and FE− rats, respectively (p < 0.0001, as shown in Figure 3D), suggesting higher baseline
anxiety levels for females of both phenotypes. No significant differences in center duration
were seen between females and males in the arthritis pain model for either phenotype.
Importantly, no significant differences in locomotor activity were observed between the
arthritis pain group and the untreated control group (p = 0.7327, Figure 3D), indicating that
differences in anxiety-like behavior were not due to a reduction in spontaneous activity
following arthritis induction. For the statistical analyses of OFT center duration in the
four female experimental groups and the four male experimental groups, ANOVA with
Bonferroni post hoc tests was used (female, F3,37 = 16.94; male, F3,31 = 72.79).

3.3. Inter-Individual and Sex Differences in Neuropathic Pain-Related Behaviors of FE+ and
FE− Rats

As we previously reported that FE learning ability may serve as a predictor for neu-
ropathic pain-related behaviors in male rats [42], we next sought to determine whether
inter-individual differences in FE learning ability may also translate into behavioral differ-
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ences for females in a neuropathic pain model (SNL, see Section 2.4) and/or in the sham
control condition. Male and female FE+ and FE− rats were randomly assigned to the neu-
ropathic pain group or sham group, and four weeks after SNL or sham surgery, the same
behavioral assays were performed in these animals: nocifensive reflexes (Figure 4A) and
ultrasonic and audible components of vocalizations (Figure 4B,C) evoked by mechanical
compression of the hindpaw, and the OFT (Figure 4D).
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Figure 4. Inter-individual and sex differences in neuropathic pain-related behaviors of FE+ and FE− rats. (A) Mechanical
thresholds tested in sham and chronic neuropathic SNL rats (4 weeks post-induction) showed no significant differences
between FE− (female, n = 26; male, n = 32) and FE+ (female, n = 35; male, n = 40) sham rats or between FE− (female, n = 9;
male, n = 14) and FE+ (female, n = 20; male, n = 17) SNL rats, but SNL FE− and FE+ rats had significantly lower withdrawal
thresholds than their sham controls. **** p < 0.0001, ANOVA with Bonferroni post hoc tests (see the “Results” section).
(B,C) Duration (s) of of ultrasonic and audible vocalizations, respectively, evoked by a brief (10 s) noxious (1500 g/6 mm2)
mechanical compression of the affected hindpaw. Significant differences in ultrasonic and audible vocalizations were found
between female FE− (n = 15) and FE+ (n = 20) SNL rats but not between male FE− (n = 15) and FE+ (n = 15) SNL rats or
between FE− (female, n = 26; male, n = 32) and FE+ (female, n = 38; male, n = 41) sham rats. For both sexes, SNL rats had
significantly increased vocalizations compared to their sham controls. n.s.: non-significant; + p < 0.05; # p < 0.05; ### p < 0.001;
#### p < 0.0001; **** p < 0.0001, ANOVA with Bonferroni post hoc tests (see the “Results” section). (D) Center duration (s)
in the OFT was significantly lower in FE− (female, n = 9; male, n = 13) and FE+ (female, n = 20; male, n = 20) SNL rats
compared to their FE− (female, n = 19; male, n = 12) and FE+ (female, n = 33; male, n = 22) sham controls. No differences
were found between FE− and FE+ rats in the sham or SNL groups for either sex. #### p < 0.0001; * p < 0.05; ** p < 0.01;
**** p < 0.0001, ANOVA with Bonferroni post hoc tests (see the “Results” section). Bar histograms show means ± SEM. FE:
fear extinction; OFT: open field test; SNL: spinal nerve ligation. Asterisk (*) indicates comparison to untreated group; plus
sign (+) indicates comparison between phenotypes; pound sign (#) indicates comparison between sexes.

Mechanical withdrawal thresholds showed no significant differences between sham
FE+ rats (female, n = 35; male, n = 40) and sham FE− rats (female, n = 26; male, n = 32) for
either sex (Figure 4A). Similarly, in the neuropathic pain model, there were no significant
differences found in withdrawal thresholds between FE+ rats (female, n = 20; male, n = 17)
and FE− rats (female, n = 9; male, n = 14) for either sex. Both female and male FE+ and
FE− rats in the neuropathic pain model showed significantly lower mechanical thresholds
compared to their sham controls (p < 0.0001, as shown in Figure 4A), suggesting both types
of rats developed neuropathic hypersensitivity. No significant differences in mechanical
withdrawal thresholds were found between female FE+ and male FE+ rats or between
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female FE− and male FE− rats for either the neuropathic pain or sham control groups.
For the statistical analyses of mechanical withdrawal thresholds between the four female
experimental groups and the four male experimental groups, ANOVA with Bonferroni
post hoc tests was used (female, F3,86 = 92.25; male, F3,99 = 46.40).

For ultrasonic and audible components of vocalizations (Figure 4B,C), no significant
differences in duration were found between sham FE+ rats (female, n = 38; male, n = 41) and
sham FE− rats (female, n = 26; male, n = 32) for either sex. However, the total durations of
ultrasonic and audible components of vocalizations were significantly increased in female
FE− rats (n = 15) compared to female FE+ rats (n = 20) in the neuropathic pain model
(p < 0.05, as shown in Figure 4B,C). No significant differences in the durations of audible or
ultrasonic components of vocalizations were found for male FE+ rats (n = 15) and male FE−
rats (n = 15) in neuropathic pain. Both female and male FE+ and FE− rats in the neuropathic
model had significantly increased durations of ultrasonic and audible components of
vocalization compared to their sham controls (p < 0.0001, as shown in Figure 4B,C). In the
neuropathic pain group, FE+ female rats had significantly greater durations of ultrasonic
and audible components of vocalizations than FE+ male rats (ultrasonic: p < 0.0001, as
shown in Figure 4B; audible: p < 0.05, as shown in Figure 4C) and FE− female rats had
significantly greater durations of ultrasonic and audible components of vocalizations than
FE− male rats (ultrasonic: p < 0.0001, as shown in Figure 4B; audible: p < 0.001, as shown in
Figure 4C). Together, the data suggest that while all groups developed emotional responses
to neuropathic pain, this occurred most prominently for FE− females. Individual examples
of real-time waveforms and spectrogram recordings for phenotyped female and male SNL
and sham control rats are shown in Figures 5 and 6. Though not reported in this study,
our recordings (see Figures 5 and 6) suggest that similar differences between sexes and
phenotypes may be observed with regard to the total number of vocalizations. Both the
total duration [20,24] and the total number of calls [27,49] have been utilized as effective
measures of behavioral responses in the context of pain. For the statistical analyses of
ultrasonic and audible components of vocalizations between the four female experimental
groups and the four male experimental groups, ANOVA with Bonferroni post hoc tests was
used (ultrasonic: female, F3,89 = 125.9, and male, F3,96 = 25.90; audible: female, F3,66 = 177.9,
and male, F3,56 = 66.50).

In the OFT (Figure 4D), no significant differences in arena center duration were found
between sham FE+ rats (female, n = 33; male, n = 22) and sham FE− rats (female, n = 19;
male, n = 12). Similarly, no differences in arena center duration were found between
FE+ rats (female, n = 20; male, n = 20) and FE− rats (female, n = 9; male, n = 13) in the
neuropathic pain model. Female FE+ (but not FE−) rats and male FE+ and FE− rats in the
neuropathic pain group spent significantly less time in the center of the arena compared to
their sham controls (p < 0.05–0.0001, as shown in Figure 4D). In the sham control group,
female FE+ and FE− rats spent significantly less time in the center of the arena compared to
male FE+ and FE− rats (p < 0.0001, as shown in Figure 4D), suggesting higher anxiety levels
for females at baseline, as also seen in naïve rats (see Figure 3D). Importantly, there were no
significant differences in locomotor activity between the neuropathic pain and sham control
groups (p = 0.8120, Figure 4D) or between the sham control group and the untreated control
group for the arthritis model (p = 0.4292, see Figure 3D), indicating that the observed
differences in anxiety-like behavior were not due to a reduction in spontaneous activity
following surgical procedures. For the statistical analyses of OFT center duration between
the four female experimental groups and the four male experimental groups, ANOVA with
Bonferroni post hoc tests was used (female, F3,78 = 6.119; male, F3,63 = 11.53).
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Figure 5. Representative audible and ultrasonic vocalizations from phenotyped female rats in the SNL model of neuropathic
pain. Original real-time waveform and spectrogram recordings of vocalizations evoked in response to brief (10 s) noxious
(1500 g/6 mm2) mechanical stimulation of the affected hindpaw 4 weeks after induction of sham (A,B) or SNL (C,D) surgery
in phenotyped female rats. For details, see Section 2.5.3. Mechanical stimuli were applied to the hindpaw in each recording
period, as indicated by the highlighted yellow section of the waveform (upper panel, red arrow indicates initiation of
noxious stimulus application); the total duration of the recording is 1 min. Boxes (events) in the spectrogram (lower panel)
represent the presence of audible (blue; 20 Hz–16 kHz) and ultrasonic (red; 25 ± 4 kHz) vocalizations during the 10 s
application of mechanical stimuli. Female FE− sham rats (A) showed more vocalization events in response to noxious
stimulus than female FE+ sham rats (B). Female FE− SNL rats (C) showed more vocalization events in response to noxious
stimulus than female FE+ SNL rats (D). FE: fear extinction; SNL: spinal nerve ligation; USV: ultrasonic vocalizations.
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in phenotyped male rats. For details, see Section 2.5.3. Mechanical stimuli were applied to the hindpaw in each recording 
period, as indicated by the highlighted yellow section of the waveform (upper panel, red arrow indicates initiation of 
noxious stimulus application); the total duration of the recording is 1 min. Boxes (events) in the spectrogram (lower panel) 
represent the presence of audible (blue; 20 Hz–16kHz) and ultrasonic (red; 25 ± 4 kHz) vocalizations during the 10 s ap-
plication of mechanical stimuli. Male FE− sham rats (A) showed more vocalization events in response to noxious stimulus 
than male FE+ sham rats (B). Male FE− SNL rats (C) showed more vocalization events in response to noxious stimulus 
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ing ability and neuropathic pain behaviors in adult male rats [42], but it is unclear if these 
are also found in acute pain conditions and whether female rats exhibit a similar associa-
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male and female rats in both pain models.  

Figure 6. Representative audible and ultrasonic vocalizations from phenotyped male rats in the SNL model of neuropathic
pain. Original real-time waveform and spectrogram recordings of vocalizations evoked in response to brief (10 s) noxious
(1500 g/6 mm2) mechanical stimulation of the affected hindpaw 4 weeks after induction of sham (A,B) or SNL (C,D)
surgery in phenotyped male rats. For details, see Section 2.5.3. Mechanical stimuli were applied to the hindpaw in each
recording period, as indicated by the highlighted yellow section of the waveform (upper panel, red arrow indicates initiation
of noxious stimulus application); the total duration of the recording is 1 min. Boxes (events) in the spectrogram (lower
panel) represent the presence of audible (blue; 20 Hz–16 kHz) and ultrasonic (red; 25 ± 4 kHz) vocalizations during the
10 s application of mechanical stimuli. Male FE− sham rats (A) showed more vocalization events in response to noxious
stimulus than male FE+ sham rats (B). Male FE− SNL rats (C) showed more vocalization events in response to noxious
stimulus than male FE+ SNL rats (D). FE: fear extinction; SNL: spinal nerve ligation; USV: ultrasonic vocalizations.

4. Discussion

This study explored the predictive value of FE learning ability in sensory and affective
pain-related behaviors for male and female animals in an acute arthritis and a chronic
neuropathic pain model. We previously showed a positive correlation between FE learning
ability and neuropathic pain behaviors in adult male rats [42], but it is unclear if these are
also found in acute pain conditions and whether female rats exhibit a similar association.
The key novelties of this study are the identification of distinct behavioral phenotypes
based on FE learning ability for both sexes, with vocalizations being the most effective
indicators, and that these behavioral phenotypes show striking differences between male
and female rats in both pain models.
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Fear learning and extinction assays were selected as approaches to identifying inter-
individual differences in pain-related behaviors because these are well-established models
for correlating animal behavior with neural structure and function [15]. Previous studies
from our lab and others have reported the separation of fast and slow recovery pheno-
types based on freezing levels during FE that correlate with differences in anxiety-like
behavior [16,42,50–52]. At the clinical level, inter-individual differences in fear response
modulation and generalization have been linked to increased vulnerability in the devel-
opment of anxiety disorders and post-traumatic stress disorder (PTSD) [15,17,53–55], and
patients with anxiety disorders, PTSD, and obsessive-compulsive disorder (OCD) have
exhibited delayed and/or reduced FE or extinction recall [14,56–59]. A previous epidemio-
logical study reported that most individuals who experience trauma recover, with only a
subset going on to develop a psychopathology such as depression or anxiety [60]. Similarly,
chronic widespread pain develops in only 10% of the population [61]. However, a major
goal of preclinical research is to provide insights into neural processes and behaviors
that can predict susceptibility versus resistance to a disorder. This requires the study of
neural variability patterns that differ from the central tendency. Thus, we chose to focus
on (representatives of) the groups at the two ends of the spectrum (weak FE learning
ability (FE−), considered to be “susceptible” rats, versus strong FE learning ability (FE+),
considered to be “resistant” rats) within this study instead of including the larger, “normal”
FE+/− group.

Little has been studied with regard to sex differences in classic fear conditioning
and extinction models. This is an important knowledge gap, as females have twice the
lifetime rates of depression and anxiety disorders [62], and human imaging studies re-
vealed structural and functional sex differences in anxiety-relevant brain regions [63]. One
preclinical study found that, while fast and slow extinction phenotypes could be identified
for both sexes, there were no observable differences between males and females in freezing
levels during fear conditioning or extinction [64]. Others have reported impairments in FE
recall for female rats when compared to male rats [65,66]. However, several studies have
reported that females have greater FE rates when compared to males [67–70]. A recent
review suggested that sex hormones may play an important role in conditioned FE, as
estrous cycle influences may affect female FE mechanisms [71]. The results of this study are
consistent with those from the literature that showed gonadectomized males spent a greater
amount of time freezing than gonadectomized females, a pattern that was not affected by
estradiol administration [68]. Another study suggested that endogenous estrogen did not
affect FE behavior in female rats or naturally cycling women [72]. Therefore, it is unlikely
that the estrous cycle significantly affected the freezing levels of females in our study.

Inter-individual differences have been well-documented for pain and pain modula-
tion [5]. Neurobiological mechanisms, including emotional network plasticity, may link
pain and fear [11]. This relationship has been explored with regard to the corticolimbic
system [73,74], and in particular, the amygdala, a limbic structure that has emerged as a key
player in both fear and anxiety networks [75–78] and in the emotional-affective dimensions
of pain and pain modulation [8,10,79]. Corticolimbic characteristics involving the amygdala
determine the risk of chronic pain and mediate the effects of depression and negative affect
on chronic pain [80]. Human studies have investigated the role of the amygdala in pain
and fear interactions [73,81], and the amygdala has been implicated in fear-conditioned
analgesia in a preclinical setting [82–84]. The amygdala has been implicated in pain-like
behaviors [85–87], anxiety-like behaviors [88–90], and in fear learning [12,91]. Pain-related
neuroplastic changes lead to hyperexcitability in amygdala output neurons [10], driving
pain behaviors in both acute [92,93] and chronic [29,94] pain models. Sex differences with
regard to pain conditions have long been recognized, with females greatly outnumbering
males as chronic pain patients [6]. However, sex differences in pain-related amygdala
neuroplasticity are largely unknown, though one clinical study reported sex differences in
resting-state amygdala subnuclei connectivity patterns as a potential explanation for the
increased prevalence of conditions of negative affect in women [95]. Even less has been
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explored about inter-individual and sex differences in fear learning and FE with regard to
pain and pain modulation, though a clinical study reported sex differences in pain-related
fear conditioning [96]. Ultrasonic vocalizations were previously associated with increased
neuronal activity in brain regions regulating fear and anxiety, including the amygdala [97],
and have been demonstrated to be an effective indicator of emotional status in pain mod-
els [20,21,27]. As ultrasonic vocalizations demonstrated the most striking inter-individual
and sex differences in pain-related behaviors for both an acute and a chronic model, insight
into potential sexual dimorphisms of pain-related amygdala neuroplasticity is warranted.

The intricate relationship between pain modulation and fear neurocircuitry and mech-
anisms, particularly in relation to potential discrepancies regarding sex differences, led us
to test the hypothesis that FE learning ability can predict pain-related behaviors in both
acute (arthritis) and chronic neuropathic (SNL) models of pain, and that these behaviors
may differ between males and females. In the present study, distinct behavioral phenotypes
differed according to sex in their FE but not fear learning ability. There were no differences
at baseline between mechanosensitivity (spinal reflex thresholds) and emotional-affective
responses (vocalizations), but females exhibited increased baseline anxiety-like behavior
(OFT) compared to males in both the untreated and sham-treated control groups (see
Figures 3D and 4D). This confirms findings from the literature that males spent the same or
increased time in the center of the OFT compared to females at baseline [3,98], though one
study found no sex difference in OFT anxiety-like behavior in a chronic spinal nerve tran-
section pain model [99]. FE+ and FE− phenotypes showed differences in the magnitude of
emotional-effective responses not only in the neuropathic pain model, as we previously
reported [42], but also in the arthritis pain model (see Figure 3B,C and Figure 4B,C). Ad-
ditionally, females exhibited significantly increased audible and ultrasonic components
of vocalizations compared to males in both of the tested pain models. To the best of our
knowledge, sex differences in pain-related vocalizations in the context of FE learning have
not been reported. One preclinical study found that male rats vocalized more than female
rats despite females exhibiting lower freezing levels during FE, although this effect was
strain-specific and did not include any pain models [100]. The novelty here is the identifi-
cation of sex-specific differences in behavioral phenotypes, which corresponds to sexual
dimorphisms in pain-related vocalizations regardless of pain model.

Sonic vocalizations, if emitted with large force and volume, may produce overtones
that reach into the ultrasonic frequency range. A note of consideration in the present study
is that the ultrasonic components (harmonics) of audible vocalizations presented here
cannot be regarded as true ultrasonic aversive vocalizations as rats cannot emit sonic and
ultrasonic calls at the same time. However, our results show that harmonic components of
vigorous audible vocalizations showed an interesting harmonic spectrum, possibly with
additional overtones. Because some of the overtones may depart from the whole multiples
of the fundamental frequency, the harmonics and overtones show reinforcement at higher
frequencies, creating ultrasonic components of the audible calls that are clearly visible in
the spectrograms. Ultrasonic components of vocalizations are of long duration, consistent
with the duration of audible calls. Simultaneous audible and ultrasonic vocalization
components were demonstrated in response to an acute painful stimulus (tail snip) [101].
Ultrasonic harmonics that were previously reported demonstrated a different duration
and lower frequency than presented here [102]. Though the emission of 22 kHz ultrasonic
vocalizations has been reported to occur after a significant delay [103–105], in this study,
both audible and ultrasonic components were evoked by a continuously present mechanical
stimulus for 10 s as opposed to the brief electrical stimuli used in other studies. Repeated
vocalizations may be triggered by the continuous noxious stimulus, and thus, latency
assessment is not possible with this approach. The use of audible vocalizations in both the
audible and ultrasonic ranges, particularly in correlation with other behavioral measures,
is a useful measure of pain levels and emotional responses to pain.

The current study provides the rationale for the inter-individual- and sex-specific
analysis of synaptic and cellular mechanisms within the amygdala. Future research may
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address neuroplastic differences between males and females in the context of pain and
fear learning, potentially providing insight into the increased prevalence of anxiety, PTSD,
and pain in female patients and supporting patient-specific therapeutic strategies for
these disorders [15].

5. Conclusions

The data may suggest sexual dimorphisms in FE learning ability that have a predictive
value for pain-related behavioral changes, particularly among emotional-affective pain
aspects, in both an acute and a chronic pain model. Rats with weak FE learning ability
showed an increased magnitude of both arthritic- and neuropathic-pain related affective
rather than sensory behaviors, with females demonstrating greater inter-individual dif-
ferences in affective pain behaviors than males. Vocalizations are strong indicators of
inter-individual and sex differences in pain models, particularly in chronic neuropathic
pain, whereas no such differences were found for mechanosensitivity, and anxiety-like
behaviors showed only baseline differences. The increased correlation between FE learn-
ing ability and affective pain-related behaviors in female compared to male rats may be
facilitated by amygdala pain mechanisms, though further investigation into sex-specific
synaptic and cellular neurobiological mechanisms is warranted.
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