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The aim of the present study is to investigate the effects of dietary Lycium
barbarum polysaccharides (LBPs) supplementation on the growth performance,
immune response, serum antioxidant status, and intestinal health of weaned piglets. In
total, 24 crossed healthy weaned piglets [Duroc × (Yorkshire × Landrace)], of similar
body weight (7.47 ± 0.22 kg), were randomly allocated to three treatment groups:
CON (basal diet); LBPs (basal diet plus 4,000 mg/kg LBPs); and antibiotic (ABO, basal
diet plus 20 mg/kg flavomycin and 50 mg/kg quinocetone). There were eight pigs per
group. The study lasted 28 days. When compared with CON, LBPs or ABO dietary
supplementation increased average daily gain (P < 0.05), decreased the ratio of feed to
gain and the diarrhea ratio (P < 0.05). Similarly, when compared with CON, LBPs dietary
supplementation increased serum immunoglobulin G, immunoglobulin M, interleukin-10,
interleukin-2, and tumor necrosis factor-α levels (P < 0.05). Dietary LBPs enhanced the
activity of serum total antioxidant capacity and glutathione peroxidase, and decreased
malondialdehyde levels (P < 0.05). Principal component analysis showed a distinct
separation between CON and LBPs groups, but no differences between ABO and
LBPs groups. LBPs addition increased Lactobacillus and Faecalibacterium (P < 0.05)
levels, while it decreased Enterococcaceae and Enterobacteriaceae (P < 0.05) levels.
Furthermore, when compared with the CON group, LBPs increased villus height
(P < 0.05) and the villus height to crypt depth ratio in the duodenum and jejunum
(P < 0.05). Thus, dietary supplementation with LBPs improved growth performance,
antioxidant capacity and immunity, regulated intestinal microbial composition, and may
be used as an efficient antibiotic alternative in weaned piglet feed.

Keywords: antioxidant, growth performance, immune, intestinal health, Lycium barbarum polysaccharides,
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INTRODUCTION

Early weaning increases intestinal permeability and reduces
antioxidant capacity and immunity, which reduces feed intake,
and increases diarrhea incidence, morbidity, and mortality
(Hu et al., 2013; Yin et al., 2014). Diarrhea after weaning is
mainly associated with gut microbiome disturbances which
may lead to fever and slow growth (Campbell et al., 2013).
Antibiotics are widely used in animal feeds to regulate intestinal
microorganisms, prevent infection, and improve growth
performance (Cook, 2004; Wang W. et al., 2018). However,
antibiotics over-dependence has facilitated the emergence of
antimicrobial resistance and antimicrobial residues, which affect
human health (Li, 2017). In the European Union, antibiotics
in feed additives were banned in 2006, whereas, in China, their
use ceased in July 2020, therefore, a healthy and pollution-free
alternative to antibiotics is required.

Many plant extracts can be used as alternatives to antibiotics
(Lu et al., 2010; Pourhossein et al., 2015). Lycium barbarum,
as a food and medicine, has been used in Asian countries for
thousands of years to induce various health benefits (Donno
et al., 2015; Zhao J. et al., 2016). L. barbarum polysaccharides
(LBPs) are major bioactive components of L. barbarum and
possess distinct bioactivities, including anti-oxidant (Wang
et al., 2020; Zhang et al., 2021), anti-tumor (Gong et al.,
2020), anti-diabetic (Shimato et al., 2020), immunomodulatory
(Feng et al., 2020; Kim et al., 2020), liver protective (Jia et al.,
2016), neuroprotective (Zhao Z. et al., 2016), renal protective
(Wu et al., 2020), and improved eyesight activities (Zhu
et al., 2016). Liu et al. (2021a) demonstrated that variations
in the molecular weight of LBPs exerted antioxidant effects
on different free radical. Yang et al. (2013) indicated that
LBPs treatment may protect intestinal damage by inhibiting
oxidative stress and inflammation in rats. Long et al. (2020)
reported that dietary supplementation of LBPs could improve
the growth performance, immune function, antioxidant
capacity, and digestive enzyme activities in broilers. Our
previous studies demonstrated that 4,000 mg/kg LBPs dietary
supplementation enhanced growth performance, immune
status and antioxidant capacity, and improved intestinal
microbial populations in weaned piglets (Chen et al., 2020).
Based on these favorable effects, we hypothesized that dietary
LBPs supplementation could effectively replace antibiotics
by improving performance, gastrointestinal tract health, and
function in weaned piglets. Therefore, the objective of the
current study was to investigate the effects of a 4,000 mg/kg
LBPs supplementation on growth performance, diarrhea
incidence, serum immunity and antioxidant capacity, intestinal
morphology, short-chain fatty acids (SCFAs) levels, and cecum
intestinal microflora in weaned pigs.

MATERIALS AND METHODS

Experiments were conducted in accordance with Chinese
guidelines for animal welfare and experimental protocols. All
animal procedures were approved by the Committee of Animal

Care at Hunan Agricultural University (Changsha, China)
(permit number: CACAHU 2020-00156).

Experimental Design
We included 24 crossed healthy weaned piglets
[Duroc × (Yorkshire × Landrace)] of similar body weight
(BW = 7.47 ± 0.22 kg). Animals were randomly allocated to
three treatment groups: CON (basal diet); LBPs (basal diet plus
4,000 mg/kg LBPs); and antibiotic (ABO, basal diet plus 20 mg/kg
flavomycin & 50 mg/kg quinocetone). There were eight pigs
per group. The basal diet was formulated to satisfy or outstrip
National Research Council (National Research Council, 2012)
nutrient requirements. Basal diet nutrient levels and ingredients
are shown (Table 1).

All pigs were housed in a room with slatted floors. They
were fed in individual metabolism cages with a side feeder and a
stainless-steel nipple which provided full access to feed and water,
respectively. The scale of feeding and feed surplus for each piglet
was recorded throughout the study. At study beginning and end,
body weights were measured; these data were used to calculate
the average daily gain (ADG), average daily feed intake (ADFI),

TABLE 1 | Ingredients and chemical composition of experimental
diets (as-fed basis).

Items Content (%)

Ingredients

Corn 55.00

Soybean meal 19.00

Full-fat soybean powder 10.00

Fish meal 5.00

Whey powder 6.15

Soybean oil 1.50

Dicalcium phosphate 0.90

L-Lysine-HCl 0.48

L-Threonine 0.05

DL-Methionine 0.10

L-Tryptophan 0.02

Salt 0.30

Limestone 0.50

Premixa 1.00

Total 100.00

Calculated nutrients

Digestible energy (MJ/kg) 14.64

Crude protein 20.15

Lysine 1.38

Methionine 0.82

Methionine + cysteine 1.01

Threonine 0.97

Tryptophan 0.25

Calcium 0.80

Total phosphorus 0.73

aThe premix provided the following (per kilogram of compound feed): Vitamin A,
12,000 IU; Vitamin D, 2,500 IU; Vitamin E, 30 IU; Vitamin B12, 12 µg; Vitamin K,
3 mg; d-pantothenic acid, 15 mg; nicotinic acid, 40 mg; choline chloride, 400 mg;
Mn, 40 mg; Zn, 100 mg; Fe, 90 mg; Cu, 8.8 mg; I, 0.35 mg; Se, 0.3 mg.
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and ratio of feed to gain (F/G). The study lasted for 28 days
and diarrhea ratio was monitored daily. Diarrhea ratio (%) was
calculated as the number of pigs with diarrhea × the number of
days with diarrhea/(the total number of pigs × the number of
study days) (Hung et al., 2019).

Sample Collection and Preparation
On the 27th day, blood was collected by anterior vena cava
puncture before morning feeding. Blood was centrifuged at
3,000 × g for 15 min at 4◦C to isolate serum which was
stored at –80◦C. All piglets were humanely killed by injection
of pentobarbital sodium at study end and the gut, liver, and
kidney immediately removed from the abdominal cavity. The
intestinal segment and mucosa from the duodenum, jejunum,
and ileum were collected and stored at –80◦C. An intestinal
segment (comprising duodenum, jejunum, and ileum) was fixed
in 4% paraformaldehyde-phosphate buffered saline buffer to
analyze intestinal morphological structures. Chyme from the
ileum, cecum, and colon was collected and stored at –80◦C.

Immune Responses
Serum immunoglobulins (Ig)A, IgM; IgG, the interleukins, (IL)-
2, IL-6, IL-10, IL-1α, and IL-1β; and tumor necrosis factor-
α (TNF-α) were measured by using pig-specific ELISA kits
(Cusabio Biotechnology Co., Ltd., Wuhan, China).

Antioxidant Capacity
The activity levels of total antioxidant capacity (T-AOC),
superoxide dismutase (SOD), glutathione peroxidase (GSH-
Px), and malondialdehyde (MDA) in serum were determined
using respective reagent kits (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China).

Intestinal Morphology
Sections of the duodenum, jejunum, and ileum in each pig were
harvested and immediately fixed in 10% formalin, dehydrated
in 50% ethanol, embedded paraffin, and sectioned 5 µm for
hematoxylin and eosin staining. The sections were scanned using
an optical binocular microscope connected to a digital camera
(Nikon ECLIPSE 80i). Villus length, crypt depth, and the villus
length vs. crypt depth (V/C) ratios were measured from 10
well-oriented villi× 3 sections of each pigs.

Gut Microbiota Analysis
According to the manufacturer’s instructions, total genomic DNA
was extracted from the chyme of cecum samples using the
QIAamp Fast DNA stool mini kit (Qiagen, Hilden, Germany).
DNA was checked on 1% agarose gels and concentration
and purity were determined using a NanoDrop 2000 UV–
vis spectrophotometer (Thermo Fisher Scientific, Wilmington,
United States). The V3–V4 hypervariable region of the bacterial
16S rRNA gene was amplified using the following primers;
338 F (5′- ACTCCTACGGGAGGCAGCAG-3′) and 806 R
(5′-GGACTACHVGGGTWTCTAAT-3′) on an ABI GeneAmp R©

9700 PCR thermocycler (ABI, CA, United States) (Xu et al.,
2016). The PCR amplification system and conditions have

been previously described (Yang J. et al., 2020). PCR products
were extracted from 2% agarose gel and purified using
the AxyPrep DNA gel extraction kit (Axygen Biosciences,
Union City, CA, United States) according to manufacturer’s
instructions and quantified using a QuantusTM Fluorometer
(Promega, United States).

Purified amplicons were pooled in equimolar quantities
and paired-end sequenced on an Illumina MiSeq PE300
platform/NovaSeq PE250 platform (Illumina, San Diego, CA,
United States) according to standard protocols of Majorbio
Bio-Pharm Technology Co., Ltd. (Shanghai, China). Raw reads
were deposited into the National Center for Biotechnology
Information Sequence Read Archive database (Accession
Number: SRP342805).

Raw 16S rRNA gene sequencing reads were demultiplexed,
quality-filtered by fastp version 0.20.0 (Chen et al., 2018),
and merged by FLASH version 1.2.7 (Magoc and Salzberg,
2011) using the following criteria: (1) the 300 base pair
(bp) reads were truncated at any site receiving an average
quality score < 20 over a 50 bp sliding window. Truncated
reads < 50 bp and reads containing ambiguous characters were
also discarded; (2) only overlapping sequences longer than 10 bp
were assembled according to their overlapped sequences. The
maximum mismatch ratio of the overlap region was 0.2. Reads
that could not be assembled were discarded; and (3) samples
were distinguished according to the barcode and primers, and
the sequence direction was adjusted, exact barcode matching, 2
nucleotide mismatch in primer matching.

Species diversity was evaluated using ACE and Chao richness
estimators and Shannon and Simpson diversity indices (Lemieux-
labonte et al., 2017). Operational taxonomic units (OTUs),
with 97% similarity cutoff (Stackebrandt and Goebel, 1994;
Edgar, 2013), were clustered using UPARSE version 7.1 (Edgar,
2013), with chimeric sequences identified and removed. Beta
diversity was evaluated using Principal Component Analysis
(PCA). Significant differences between samples were evaluated by
analysis of similarities (ANOSIM).

Determination of Intestinal Short-Chain
Fatty Acid Levels
We performed gas chromatography (GC) to determine the main
SCFAs in intestinal chyme, as described previously (Franklin
et al., 2002). Briefly, to isolate supernatants, digesta samples
were weighed, vortexed in distilled water, and centrifuged at
12,000× g for 15 min at 4◦C. Supernatants were mixed with 25%
metaphosphoric acid at a 9:1 volume ratio, statically reacted for
3–4 h, centrifuged, and filtered. A GC system (GC2014, Shimadzu
Corporation, Kyoto, Japan) was used to measure filtered fluids.

Statistical Analysis
Experimental data were analyzed by one-way ANOVA using
the General Linear Model procedure of the SPSS software v.
20.0 (SPSS Inc., Chicago, IL, United States). Differences between
treatment means were tested using Tukey’s multiple comparison
test. Microbe abundance, with significant differences between
groups, was assessed by the Kruskal–Wallis test. Results were
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presented as the mean ± standard error of the mean. P < 0.05
was considered statistically significant.

RESULTS

Growth Performance and Diarrhea
Incidence
As shown in Table 2, when compared with the CON group, both
LBPs and ABO dietary supplementation significantly increased
ADG (P < 0.05) and decreased the F/G (P < 0.05). However,
neither dietary LBPs or ABO supplementation had significant
effects on initial weight, final weight, or ADFI in weaned piglets
(P > 0.05).

As shown (Figure 1), when compared with the CON group,
both LBPs and ABO dietary supplementation decreased diarrhea
ratios in weaned piglets (P < 0.05), but no significant differences
were observed between the LBPs and ABO groups (P > 0.05).

Serum Immune Indices
As shown in Table 3, weaned piglets in the LBPs and ABO
groups displayed higher IgG and IgM levels than the CON

TABLE 2 | Effects of dietary LBPs supplementation on growth performance
of weaned piglets.

Items1 Treatments2 SEM3 P-value

CON ABO LBPs

Initial weight, kg 7.47 7.48 7.47 0.204 1.000

Final weight, kg 16.5 17.3 17.6 0.297 0.317

ADG, g 323b 351a 362a 4.38 0.004

ADFI, g 563 584 572 7.28 0.492

F/G 1.75a 1.66b 1.58b 0.006 <0.001

1ADFI, average daily feed intake; ADG, average daily gain; F/G, Feed/gain.
2Treatments consisted of (1) CON; basal diet, (2) LBPs; basal diet + 4,000 mg/kg
LBPs and (3) ABO; basal diet + 20 mg/kg flavomycin + 50 mg/kg quinocetone.
3SEM, pooled standard error of mean (n = 8).
a,bMeans within each row with different superscripts differ significantly (P < 0.05).

FIGURE 1 | Diarrhea rate of weaned piglets fed MB dietary treatments (%)
(n = 8). CON, basal diet; LBPs, basal diet + 4,000 mg/kg LBPs; ABO, basal
diet + 20 mg/kg flavomycin + 50 mg/kg quinocetone. Asterisks express
statistical differences between different groups: *P < 0.05.

group (P < 0.05), but no significant differences were observed
for IgA levels among the groups (P > 0.05). When compared
with the CON group, LBPs dietary supplementation significantly
increased serum IL-10, IL-2, and TNF-α (P < 0.05) levels, but
no significant IL-6, IL-1α, and IL-1β differences were observed
between the groups (P > 0.05) (Table 4).

Antioxidant Capacity
Table 5 presents the differences in serum antioxidant indicators
between the treatment groups. Dietary LBPs effectively enhanced
serum T-AOC and GSH-Px activities but decreased MDA levels
(P < 0.05). No significant differences in SOD activities were
observed between the groups (P > 0.05).

Intestinal Morphology
The effects of LBPs dietary supplementation on intestinal
morphology in piglets at day 28 are shown in Table 6. When
compared with the CON group, LBPs increased villus height in
the duodenum and ileum (P < 0.05). A distinct decrease in crypt
depth in the duodenum of piglets fed ABO was observed when
compared with the CON group (P < 0.05). In addition, both
LBPs and ABO dietary supplementation increased the V/C in the
duodenum and jejunum when compared with the CON group
(P < 0.05).

TABLE 3 | Effects of dietary LBPs supplementation on immune response in serum
of weaned piglets.

Items1 Treatments2 SEM3 P-value

CON ABO LBPs

IgA, g/L 2.73 2.88 2.68 0.056 0.386

IgG, g/L 8.98b 11.2a 10.6a 0.302 0.018

IgM, g/L 0.09b 0.12a 0.11a 0.003 0.013

1 IgA, Immunoglobulin A; IgG, Immunoglobulin G; IgM,: Immunoglobulin M.
2Treatments consisted of (1) CON; basal diet, (2) LBPs; basal diet + 4,000 mg/kg
LBPs and (3) ABO; basal diet + 20 mg/kg flavomycin + 50 mg/kg quinocetone.
3SEM, pooled standard error of mean (n = 8).
a,bMeans within each row with different superscripts differ significantly (P < 0.05).

TABLE 4 | Effects of dietary LBPs supplementation on immunologic factors levels
in serum of weaned piglets.

Items1 Treatments2 SEM3 P-value

CON ABO LBPs

IL-2, pg/ml 90.9b 98.4b 112a 2.53 0.010

IL-6, pg/ml 6.36 5.15 5.39 0.274 0.187

IL-10, pg/ml 11.7b 13.8a 13.5a 0.317 0.036

IL-1α, pg/ml 255 263 256 6.57 0.857

IL-1β, pg/ml 24.5 23.4 21.8 0.953 0.512

TNF-α, pg/ml 0.29b 0.30b 0.35a 0.006 0.004

1 IL, Interleukin; TNF-α, Tumor necrosis factor-α.
2Treatments consisted of (1) CON; basal diet, (2) LBPs; basal diet + 4,000 mg/kg
LBPs and (3) ABO; basal diet + 20 mg/kg flavomycin + 50 mg/kg quinocetone.
3SEM, pooled standard error of mean (n = 8).
a,bMeans within each row with different superscripts differ significantly (P < 0.05).
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TABLE 5 | Effects of dietary LBPs supplementation on serum antioxidant activity
of weaned piglets.

Items1 Treatments2 SEM3 P-value

CON ABO LBPs

T-AOC, U/mL 2.91b 3.31a 3.24a 0.045 0.004

GSH-Px, U/mL 319b 347a 338a 2.49 0.001

SOD, U/mL 189 184 197 3.81 0.403

MDA, nmol/mL 7.08a 4.81b 5.41b 0.224 0.001

1T-AOC, Total antioxidant capacity; GSH-Px, Glutathione peroxidase; SOD,
Superoxide dismutase; MDA, Malondialdehyde.
2Treatments consisted of (1) CON; basal diet, (2) LBPs; basal diet + 4,000 mg/kg
LBPs and (3) ABO; basal diet + 20 mg/kg flavomycin + 50 mg/kg quinocetone.
3SEM, pooled standard error of mean (n = 8).
a,bMeans within each row with different superscripts differ significantly (P < 0.05).

TABLE 6 | Effects of dietary LBPs supplementation on intestinal morphology
of weaned piglets.

Items1 Treatments2 SEM3 P-value

CON ABO LBPs

Villus height, µm

Duodenum 289b 336a 362a 6.649 0.001

Jejunum 286 304 327 8.925 0.198

Ileum 234b 242b 289a 7.768 0.017

Crypt depth, µm

Duodenum 268a 224b 264a 5.448 0.005

Jejunum 207 169 177 7.714 0.138

Ileum 149 150 142 5.361 0.807

V/C, µm: µm

Duodenum 1.08b 1.52a 1.38a 0.034 <0.001

Jejunum 1.41b 1.83a 1.92a 0069 0.014

Ileum 1.60 2.08 1.69 0.086 0.076

1V/C, the Villus height to Crypt depth rate.
2Treatments consisted of (1) Control; basal diet, (2) LBPs; basal diet+ 4,000 mg/kg
LBPs and (3) ABO; basal diet + 20 mg/kg flavomycin + 50 mg/kg quinones.
3SEM, pooled standard error of mean (n = 8).
a,bMeans within each row with different superscripts differ significantly (P < 0.05).

Intestinal Microflora
In total, 1,216,334 high-quality sequences were obtained from
samples. After clustering at the 97% similarity level, sequences
were assigned to 905 OTUs. Firmicutes were the most
abundant phylum across all samples, followed by Proteobacteria,
Actinobacteriota, Bacteroidota, Spirochaetota, Desulfobacterota,
and Patescibacteria (Figure 2). When compared with the CON
group, the relative abundance of Firmicutes was significantly
increased (P < 0.05) in the ABO and LBPs groups (Figure 3).
Alpha diversity analyses indicated that LBPs increased Chao and
ACE indices when compared with the CON group (P < 0.05),
but no significant differences were observed for Shannon and
Simpson indices among the groups (Supplementary Figure 1).
PCA showed a distinct separation between the CON and
LBPs groups, but no differences between the ABO and LBPs
groups (Figure 4A). Hierarchical clustering tree analyses showed
that CON microbial composition had mostly gathered in

FIGURE 2 | Phylum-level relative abundance of 16S rRNA gene sequences
from the cecal digesta of weaned piglets (n = 8). CON, basal diet; LBPs, basal
diet + 4,000 mg/kg LBPs; ABO, basal diet + 20 mg/kg flavomycin + 50 mg/kg
quinocetone.

another branch (Figure 4B). From ANOSIM analyses, significant
differences were identified in the microbial composition of the
study groups; r = 0.2702, P < 0.01 in the CON, LBPs, and
ABO groups; r = 0.2907, P < 0.05 for the ABO vs. CON
groups; r = 0.4827, P < 0.01 for the LBPs vs. CON groups;
and r = 0.0558, P = 0.185 for the ABO vs. LBPs groups).
Additionally, Lactobacillus and Faecalibacterium were enriched
(Figure 3) in the LBPs group at the genus level (P < 0.05), while
Enterobacteriaceae (Figure 3), Enterococcaceae, and Escherichia-
Shigella (Supplementary Figure 2) were enriched in the CON
group (P < 0.05).

Short-Chain Fatty Acids Levels
Total SCFAs, as well as acetic, propionic, isobutyric, butyric,
isopentoic, and valeric acid levels in the cecum, ileum, and colon
are shown in Table 7. When compared with the CON group,
dietary both LBPs and ABO supplementation increased acetic,
propionic and butyric acid levels, and total SCFAs, in the cecum
(P < 0.05). However, no significant differences were observed in
total ileum SCFAs or each SCFAs across groups (P > 0.05). Piglets
fed the LBPs diet showed increased isobutyric and isopentoic
acid levels in the colon when compared with the other groups
(P < 0.05).

DISCUSSION

Weaning stress causes intestinal and immune system
dysfunction and reduces pig growth and health (Campbell
et al., 2013). Numerous studies have reported that plant-derived
polysaccharides (e.g., Achyranthes bidentata and Ganoderma
lucidum polysaccharides) improve immune responses, maintain
intestinal structure integrity, balance intestinal microbiota, and
reduce diarrhea, which promote pig growth (Li et al., 2015;
Hou et al., 2021). In this study, dietary supplementation with
either LBPs or ABO increased ADG and decreased the F/G,
which may have been attributed to immune response stimulation
by LBPs (Zhu et al., 2020). Tan et al. (2019) reported that
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FIGURE 3 | Comparative analysis of 3 most relative abundances of gut microbiota (n = 8). Kruskal–Wallis test followed by Tukey test was used to evaluate the
statistical significance. Asterisks express statistical differences between different groups: *0.01 < P ≤ 0.05, **0.001 < P ≤ 0.01, ***P ≤ 0.001. CON, basal diet; LBP,
basal diet + 4,000 mg/kg LBPs; ABO, basal diet + 20 mg/kg flavomycin + 50 mg/kg quinocetone.
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FIGURE 4 | (A) Principal Component Analysis (PCA) of bacterial communities in the cecal digesta of weaned piglets (based on the Bray–Curtis distance) (n = 8).
(B) Analysis of hierarchical clustering tree on Phylun level showed that the microbial composition of CON was almost entirely gathered in another branch. CON, basal
diet; LBPs, basal diet + 4,000 mg/kg LBPs; ABO, basal diet + 20 mg/kg flavomycin + 50 mg/kg quinocetone.

LBPs, when added to hybrid grouper (Epinephelus lanceolatus
| × E. fuscoguttatus ~) diets, inhibited hepatic inflammatory
responses, increased antioxidant enzyme activity, and improved
growth performance and feed efficiency. The intestine has
crucial roles in nutrient absorption and defenses against external
pathogens (Halas et al., 2010). Wang et al. (2019) reported that
dietary LBPs improved intestinal morphology and nutrient
absorption in young rats. In addition, Hsieh et al. (2021)
indicated that dietary LBPs improved gastric microbiota by
increasing gastric Bifdobacterium levels in rats. Therefore, these
and our evidence may be mediated by the promotional effects of
LBPs on growth performance.

Diarrhea incidence has been used as an index to reflect
gut health, with a lower diarrheal incidence beneficial for gut
health (Pierce et al., 2005). Qiao et al. (2013) reported that
diarrheal incidence in piglets was decreased by supplementing
medicinal Aloe vera polysaccharides. In our study, dietary
LBPs or ABO supplementation reduced diarrheal incidence in
weaned piglets. Nagy et al. (1992) reported piglet diarrhea
after weaning is related to some pathogen levels in the
intestine. We previously demonstrated that weaned piglets
fed 4,000 mg/kg LBPs had a decreased relative abundance
of Escherichia coli and Firmicutes in the ileum and cecum
(Chen et al., 2020). Also, intestinal pH is associated with the
proliferation of probiotic microbes, preventing post weaning
diarrhea, and maintaining gut enzyme activity (Beuria et al.,
2005; Guggenbuhl et al., 2007). Furthermore, Xia et al.
(2020) found that dietary LBPs supplementation increased the
abundance of Roseburia faecis, Prevotella spp., Butyricicoccus
pullicaecorum, and Eubacterium uniforme in mice, which
generated particular SCFAs. Thus, LBPs appear to reduce
diarrhea incidence in weaned piglets by modulating gut
microbiota composition.

Immunoglobulins reflect the immune status of the animal
(Yuan et al., 2015; Wang Y. et al., 2018). Hao et al. (2015)
reported that the major serum Igs, IgA, IgG, and IgM, were key
humoral immunity components in all mammals; they enhance
monocyte macrophage phagocytosis and inhibit pathogenic virus
and microorganism reproduction (Heidebrecht and Kulozik,
2019; Planchais and Mouquet, 2020). In our study, dietary
LBPs supplementation increased serum IgG and IgM levels
in weaned piglets. Similarly, Long et al. (2020) reported that
broilers fed 2,000 mg/kg LBPs increased serum IgA and IgG
levels. Furthermore, the immunoenhancing effects of LBPs
may stimulate IL-2 and TNF-α gene expression in human
monocytes (Lu and Zhang, 2002). In our study, LBPs dietary
supplementation enhanced serum IL-2, IL-10, and TNF-α
production in agreement with Ding et al. (2019a), who reported
that LBPs administration increased IL-2, IL-6, IL-1, TNF-α, and
interferon-γ levels in mice. Littringer et al. (2018) reported that
IL-2 and TNF-α were secreted mainly through T helper cells.
Wang et al. (2021) found that polysaccharides from traditional
Chinese medicines, such as Artemisia rupestris L., Astragalus,
L. barbarum, and G. lucidum regulated immune cell functions
and metabolism by activating macrophages and T/B lymphocyte
signal pathways. Thus, dietary LBPs appeared to improve the
health status of piglets by activating the immune system.

Weaning decreases antioxidation capacity by increasing free
radical levels and disrupting oxidative balance (Burke et al., 2009;
Yin et al., 2014). Antioxidant parameters such as SOD, GSH-Px,
T-AOC, and MDA are routinely used to evaluate antioxidation
properties (Hao et al., 2015). SOD degrades superoxide radicals
and thus functions as an antioxidant (Urso and Clarkson,
2003). The reduction reaction of lipid peroxides is catalyzed
by GSH-Px, and total antioxidative capacity is reflected by
T-AOC levels (Aleryani et al., 1998; Tao et al., 2006). MDA is
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TABLE 7 | Effects of dietary LBPs supplementation on short-chain fatty acids in
intestinal contents of weaned piglets (µg/kg).

Items1 Treatments2 SEM3 P-value

CON ABO LBPs

Cecum

Acetic acid 3.32b 6.00a 7.77a 0.336 <0.001

Propionic acid 2.84b 4.27a 4.30a 0.215 0.017

Isobutyric acid 0.871 0.771 0.719 0.006 0.549

Butyric acid 2.40b 3.75ab 4.57a 0.320 0.035

Isopentoic acid 0.149a 0.090b 0.083b 0.007 0.001

Valeric acid 0.606a 0.324b 0.471ab 0.038 0.022

Total SCFAs 9.40b 14.5a 17.3a 0.865 0.004

Ileum

Acetic acid 0.546 0.623 0.647 0.044 0.622

Propionic acid 0.114 0.103 0.106 0.002 0.186

Isobutyric acid 0.019 0.017 0.016 0.001 0.609

Butyric acid 0.083 0.068 0.059 0.006 0.324

Isopentoic acid 0.007 0.010 0.007 0.001 0.398

Valeric acid 0.009 0.008 0.008 0.001 0.133

Total SCFAs 0.777 0.829 0.844 0.052 0.864

Colon

Acetic acid 2.46 2.95 2.75 0.115 0.246

Propionic acid 1.89 1.50 1.12 0.138 0.145

Isobutyric acid 0.114b 0.090b 0.167a 0.009 0.005

Butyric acid 1.15 1.62 1.47 0.097 0160

Isopentoic acid 0.218ab 0.136b 0.280a 0.017 0.010

Valeric acid 0.286 0.188 0.245 0.017 0.086

Total SCFAs 6.13 6.48 6.11 0.337 0.883

1SCFAs, short-chain fatty acids.
2Treatments consisted of (1) CON; basal diet, (2) LBPs; basal diet + 4,000 mg/kg
LBPs and (3) ABO; basal diet + 20 mg/kg flavomycin + 50 mg/kg quinocetone.
3SEM, pooled standard error of mean (n = 8).
a,bMeans within each row with different superscripts differ significantly (P < 0.05).

an indicator of lipid peroxidation and reflects the severity of
free radical attack on cells (Jiang et al., 2016). It was reported
that plant polysaccharides could alleviate this oxidative stress
(Liu et al., 2018; Chen and Huang, 2019). In our study, LBPs
dietary supplementation increased T-AOC and GSH-Px levels
but decreased MDA production. Yang F. et al. (2020) reported
that LBPs dietary supplementation relieved oxidative stress in
high fat diet-induced obese mice. Liu et al. (2021b) found that
LBPs supplementation reduced myocardial oxidative stress via
activation of the nuclear factor erythroid-2 antioxidant signal
pathway. Furthermore, plants containing flavonoids, phenolic
compounds, ascorbic acid, and tocopherol were shown to exhibit
antioxidant effects (Wang et al., 2008). It is documented that LBPs
were rich in these abovementioned agents (Peng and Tian, 2001).
Therefore, we speculated that the antioxidant effects of LBPs may
be associated with these components, however, more research is
required in this area.

A healthy mucosal structure is key for digestion, physiological
function, and growth (Pluske et al., 1996). After weaning,
significant changes occur in villus height, crypt depth, and V/C
ratios (Cheng et al., 2017). A large V/C ratio represents a greater

absorptive efficiency in the small intestine for nutrients, and
increased resistance toward disease (Pu et al., 2018). Wang et al.
(2019) reported that compound polysaccharide supplementation
increased villus height and V/C ratios in the duodenum of young
rats. In our study, LBPs dietary supplementation increased villus
height and V/C ratios in the duodenum of weaned piglets. Thus,
LBPs improved intestinal morphology, maintained intestinal
integrity, and promoted intestinal absorption.

A balanced intestinal microbiota is critical for good gut health
and nutrition. We observed that some changes had occurred in
intestinal microbial composition and metabolism of cecal digesta
across groups. PCA revealed that microbial composition and
structures were distinct between the CON and LBPs groups,
but no differences were determined between the ABO and LBPs
groups. Some polysaccharides selectively stimulate the growth
and metabolic activity of particular intestinal bacteria associated
with health and well-being (Wang et al., 2019). We previously
showed that LBPs dietary supplementation decreased the relative
abundance of E. coli and Firmicutes in the ileum and cecum of
pigs (Chen et al., 2020). Similar observations by Zhu et al. (2015)
showed that polymannuronate addition to broiler diets increased
lactic acid bacteria and decreased cecal E. coli levels. Furthermore,
increased E. coli levels may be associated with an increased
rate of diarrhea (Zhao et al., 2015). Interestingly, in our study,
LBPs dietary supplementation reduced the relative abundance
of Escherichia-Shigella, Enterococcaceae, and Enterobacteriaceae
in the cecum, and also decreased the diarrhea ratio index.
A previous study demonstrated that Lactobacillus could protect
the intestine by producing antimicrobial agents that suppressed
pathogen colonization (Yu et al., 2018). In the current study,
dietary supplemental LBPs promoted Faecalibacterium and
Lactobacillus levels. Similarly, Zhao et al. (2015) reported that
mulberry leaf polysaccharide dietary supplementation reduced
the relative abundance of E. coli and promoted Lactobacilli and
Bifidobacteria abundance in weaned piglets. Furthermore, Zhu
et al. (2020) also reported that LBPs dietary supplementation
increased Proteobacteria and Firmicutes abundance, while
reducing Bacteroidetes ratios in mice. These results indicated
that LBPs could modulate gut microbiota composition and
maintain the health of intestinal communities, which may
underlie increased growth performance in animal models.

The intestinal digesta contains considerable microbial
metabolites and fermentation products that reflect microbial
activity and intestinal health (Diao et al., 2014). SCFAs are key
metabolites that gut microbiota use to limit inflammation and
maintain intestinal integrity to promote gut health (Liu et al.,
2020). Thorburn et al. (2015) showed that acetic acid inhibited
the histone deacetylase HDAC9.39 to promote regulatory T cell
differentiation, with propionic acid enhancing the generation
of macrophage. Cresci et al. (2010) reported that butyric acid
promoted gut immune responses and preserved intestinal
barrier integrity. In addition, intestinal pH was associated with
the proliferation of probiotic microbes, the prevention of post
weaning diarrhea, and the maintenance of gut enzyme activity
(Beuria et al., 2005; Guggenbuhl et al., 2007). Furthermore, LBPs
increased SCFAs production which reduced gut environment
pH and inhibited E. coli levels in vivo and in vitro studies
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(Knudsen et al., 2012; Ding et al., 2019b). In our study, LBPs
enhanced acetic, propionic, and butyric acid production, and
total SCFAs in the cecum, and also promoted Faecalibacterium
which produced butyrate and generated anti-inflammatory
properties (Wan et al., 2019). Therefore, LBPs may have active
roles in host immunity and health by modulating gut microbiota
and promoting SCFAs production.

CONCLUSION

The present research demonstrated that dietary LBPs
supplementation improved growth performance, antioxidant
capacity and immunity, and reduced diarrhea incidence in
weaned piglets. These LBPs effects were associated with a
regulatory input on intestinal microbial composition, microbial
metabolite production, and intestinal morphology integrity.
Thus, LBPs may be used as efficient antibiotic alternatives in
weaned piglet feed.
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