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Abstract: A nickel–titanium (NiTi)-based intermetallic coating was in-situ synthesized on a Ti–6Al–4V
(TC4) substrate via laser melting deposition (LMD) using Ni–20Cr and TC4 powders. Scanning
electron microscopy, X-ray diffraction, a digital microhardness tester and an electrochemical analyzer
were used to evaluate the microstructure, Vicker’s microhardness and electrochemical corrosion
resistance of the intermetallic coating. Results indicate that the microstructure of the intermetallic
coating is composed of NiTi2, NiTi and Ni3Ti. The measured microhardness achieved is as high as
~850 HV0.2, ~2.5 times larger than that of the TC4 alloy, which can be attributed to the solid solution
strengthening of Al and Cr, dispersion strengthening of the intermetallic compounds, and grain
refinement strengthening from the rapid cooling of LMD. During the electrochemical corrosion of
3.5% NaCl solution, a large amount of Ti ions were released from the intermetallic coating surface
and reacted with Cl− ions to form [TiCl6]2 with an increase in corrosion voltage. In further hydrolysis
reactions, TiO2 formation occurred when the ratio of [TiCl6]2− reached a critical value. The in-situ
synthesized intermetallic coating can achieve a superior corrosion resistance compared to that of the
TC4 alloy.

Keywords: laser melting deposition; nickel–titanium coating; in-situ synthesis; corrosion resistance

1. Introduction

Nickel–titanium (NiTi) alloys are widely used in aerospace, electric, chemical, and
biological medicine applications due to their shape memory effect, high strength, good wear
resistance, pseudo-elasticity and biocompatibility [1–4]. In particular, NiTi alloys exhibit
excellent corrosion resistance because of the formation of a stable and dense titanium
oxide passivation film on their surface to prevent further corrosion [5–7]. However, the
passivation film is susceptible to damage and even being detached from NiTi alloys in a
harsh corrosion environment (e.g., highly acidified chloride solutions) [8–11].

NiTi-based intermetallic coatings have been developed to improve the corrosion
resistance of NiTi alloys and reduce the material costs by decreasing the usage of expensive
NiTi alloys. For instance, Zhou et al. prepared NiTi-based intermetallic coatings on a Cu
substrate by low pressure plasma spraying (LPPS) [12]. They found that the coatings were
composed of NiTi, NiTi2, Ni3Ti, and Ti, and possessed higher anti-cavitation performance
than coatings of pure Ti. Bitzer et al. prepared NiTi-based intermetallic coatings by LPPS
on a 42CrMo4 steel and found that the NiTi-based intermetallic coatings were composed
of NiTi, oxygen-containing NiTi2 and Ni4Ti3 [13]. Such coatings showed significantly
improved cavitation resistance compared with the UTP 730 stainless steel. However,
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defects, such as porosity and microcracks may deteriorate the corrosion resistance of
LPPS-produced NiTi-based intermetallic coatings [14].

Laser surface modification techniques have been demonstrated to reduce the defects
produced in NiTi-based coatings. Hiraga et al. produced dense NiTi-based intermetallic
coatings using laser-plasma spraying hybrid cladding [14,15]. They found that the NiTi and
Ni3Ti intermetallic compounds formed in the Ni50Ti50 coating, while NiTi, Ni3Ti and NiTi2
appeared in the Ni60Ti40 coating. As a result, the corrosion resistance of the NiTi-based
intermetallic coatings was ~40 times higher than that of the TC4 alloy. Cui et al. [16] studied
the corrosion resistance of NiTi-based intermetallic coatings produced by laser remelting
and laser gas nitriding. The corrosion resistance of the coatings were enhanced by the
formation of a TiN phase on the coating surface. Moreover, Hu et al. [10] added TaC
particles in NiTi/NiTi2 composite coatings prepared by laser cladding for the enhancement
of the corrosion resistance of the coatings. The TaC particles contributed to the formation
of SiO2 and Ta2O5 thereby hindering the further corrosion of the composite coatings.

In this paper, we report a laser melting deposition (LMD) method of preparing the
in-situ synthesized NiTi-based intermetallic coatings for surface modification. We consider
LMD as an innovative and effective process for producing high-performance NiTi-based
intermetallic coatings. LMD, characterized by a rapid cooling rate up to 106–107 K/s, is a
new and promising laser surface treatment technique for strengthening pure metals, alloys,
and metal matrix composites [17,18]; it has been shown to be effective in improving the
mechanical and wear properties of a number of metals and alloys because of its capability to
impart desirable refined microstructures and reinforced phases through rapid solidification
and chemical reactions. Another advantage for laser deposition would be the achievement
of very complex geometries and customized designs [19]. Although some published works
that did report that fine microstructure and superior wear resistance of NiTi-based inter-
metallic alloy coatings in-situ synthesized through LMD can be achieved [1,20], surprisingly
few have reported on the electrochemical corrosion behavior of the in-situ synthesized
NiTi-based intermetallic coatings.

In this work, Ni–20Cr and TC4 powders were utilized and mixed as the cladding mate-
rials to reduce the cost of raw powders. The microstructure and mechanics of a NiTi-based
intermetallic coating in-situ synthesized by optimized LMD process were characterized
using scanning electron microscopy, X-ray diffraction, and digital microhardness tester.
Furthermore, for the first time, the corrosion behavior of the intermetallic coating was
evaluated by electrochemical corrosion and immersion tests, and the underlying mecha-
nism of the enhanced corrosion resistance of the in-situ synthesized NiTi-based coating
was discussed.

2. Materials and Methods
2.1. Materials

A TC4 alloy with dimensions of 100 × 60 × 10 mm3 was used as the substrate for the
coating. The chemical composition of the TC4 alloy is listed in Table 1. Ni–20Cr (wt%) and
TC4 powders with a weight ratio of 4:1 were mechanically mixed at a speed of 300 rpm for
1 h in an alcohol atmosphere in a planetary ball mill (TJ-2L, procured from a company in
Tianjin, China, TECHIN Ltd.). The powder-to-ball mass ratio was set as 1:3. The mixed
powder was dried at 373 K for 2 h and then used as the cladding material.

Table 1. Chemical composition of TC4 powder used in this work.

Element C H O N Fe Al V Ti

Composition (wt%) 0.08 0.015 0.2 0.05 0.4 6.05 4.02 Bal.

2.2. LMD Coating Process

Prior to LMD, the surface of the TC4 substrate was polished and cleaned with alcohol.
The LMD process was carried out using an IPG fiber laser with a wavelength of 1070 nm. A
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shielding of argon gas was used to protect the molten pool of LMD and deliver the mixed
powders into the molten pool. A schematic configuration of LMD is depicted in Figure 1.
The processing parameters were optimized to obtain the crack-free NiTi-based intermetallic
coating by LMD: the laser power of 1 kW, the laser scanning speed of 600 mm/min, powder
feeding rate of 0.8 g/min, the spot diameter of 2 mm, and overlapping rate of 50%. The
height and width of NiTi-based intermetallic coating were ~1 mm and ~7 mm, respectively.
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Figure 1. Schematic drawing of laser melting deposition.

After LMD, all the samples were cut from the substrate, polished, and then etched by
Kroll’s solution (10 mL HF, 15 mL HNO3, and 75 mL H2O). The microstructure of the NiTi-
based intermetallic coating prepared by LMD was examined by field emission scanning
electron microscopy (SEM, ZEISS Sigma 300) equipped with an X-ray energy-dispersive
spectrometer (EDS). The phases were investigated by a D/MAX-2500 X-ray diffraction
(XRD, Cu Kα at 40 kV and 40 mA, scanning rate of 0.02◦/s). The microhardness of the
intermetallic coating was tested using a HV-1000 Vickers digital microhardness tester with
a load of 1.96 N and a dwelling time of 10 s. The reported microhardness was averaged
from three samples for each condition.

The electrochemical corrosion resistance of the NiTi-based intermetallic coating was
measured by a CHI604E electrochemical analyzer (Chenhua, Shanghai, China) in a 3.5 wt%
NaCl solution. A standard three-electrode cell was composed of a working electrode made
from a composite specimen with an exposed area of 1 cm2, a platinum counter electrode,
and a saturated calomel reference electrode. All the samples were immersed into the
3.5 wt% NaCl solution at room temperature for 1 h to stabilize the open circuit potential
(OCP). Potentiodynamic polarization scanning was varied from −1.5 V to 4.0 V at a sweep
rate of 5 mV/s. Electrochemical impedance spectroscopy (EIS) testing was performed at the
OCP potentionstatically by scanning a frequency range from 10−2~105 Hz with a voltage
perturbation amplitude of 10 mV. The corresponding Nyquist and Bode plots were fitted
by impedance spectrum data using Zsimpwin software. All potentials were measured at
least three times.

Prior to immersion testing, the samples were ground with waterproof silicon carbide
papers up to 2000 grits under running water, then cleaned in acetone, ethanol for 30 min
using ultrasound, and finally dried at room temperature. The static immersion testing was
conducted using 3.5% NaCl solution for 7 days at room temperature. Three samples were
tested for each group.
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3. Results and Discussion
3.1. Microstructure of the NiTi-Based Intermetallic Coating

Figure 2a shows the XRD pattern of the NiTi-based intermetallic coating in-situ syn-
thesized by LMD. The results indicate that it consists of a dominant NiTi2 phase with a
face-centered cubic (fcc) structure, while the other two intermetallic phases of NiTi and
Ni3Ti have primitive hexagonal crystal structures (Figure 2a). The grain sizes of each phase
can be determined from the Bragg peak width at half of the maximum intensity using the
Scherrer formula [21]:

D =
0.9λ

Bcosθ
, (1)

where D is the grain size, λ is the wavelength of the X-ray radiation, B is the peak width at
half of the maximum intensity, and θ is the Bragg diffraction angle. The grain sizes of NiTi,
NiTi2 and Ni3Ti were calculated as ~30 nm, ~17 nm and ~25 nm, respectively. According to
the previous works [22,23], the volume fractions of the NiTi, NiTi2 and Ni3Ti phases can be
calculated as ~20%, ~52% and ~28%, respectively, (as shown in Figure 2b).
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Figure 2. (a) X-ray diffraction (XRD) pattern; (b) The estimated volume fraction of phase constituents
in the intermetallic coating.

Figure 3 shows the microstructure of the NiTi-based intermetallic coating in-situ
synthesized by LMD. As shown in Figure 3a, the presence of three distinct regions (as
marked by I, II and III) can be observed from the top to the bottom of the coating. The
petal-like dendritic microstructure is formed in region I, with a grain size of a maximum of
~20 µm in length (marked as A). Based on the XRD results (Figure 2a) and EDS analysis
(Table 2), the petal-like dendrites can be identified as NiTi, while the intermetallic (marked B)
located between the petal-like dendrites is identified as Ni3Ti. Moreover, region II is mainly
composed of equiaxial or columnar dendrites (marked as C and D), which can be identified
as NiTi2. The length of the oriented dendrites is measured as ~80 µm and the main stems are
angled ~30◦ toward the normal direction of the coating-substrate interface (marked as D).

Generally, thermocapillarity caused the violent stirring and convection in the molten
pool [24], thus, increasing the longer lifespan in the center of the molten pool than that at the
bottom of the molten pool; this, in turn, resulted in the non-uniform distribution of solutes
and the temperature in front of the solid/liquid interface. Therefore, the growth direction
of dendrites can deviate from the normal direction of the coating/substrate interface.
However, coarse dendritic arms can be formed because of a relatively slow solidification
speed at the bottom of the molten pool [25]. It is seen that large secondary dendritic arms
appear at the bottom of region II (marked E), and the lateral growths of dendrites occur near
the coating/substrate interface (marked F); these phenomena are attributed to a relatively
larger specific surface area of the smaller dendritic arms, facilitating the growths of larger



Nanomaterials 2022, 12, 705 5 of 14

dendritic arms by way of consuming the smaller dendritic arms to reduce the total surface
energy. The longer time the dendrites coarsening takes, the larger spacing the dendritic
arms possess. Hence, an increase in the distance from the coating/substrate interface can
decrease the spacing of secondary dendritic arms.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 15 
 

 

  

  

Figure 3. SEM images showing the microstructure of the in-situ synthesized NiTi-based intermetal-

lic coating via LMD: (a) Cross-sectional morphology; (b) Region I; (c) Region II; (d) Region III. 

Table 2. Element compositions of the intermetallic coating from EDS measurement. 

Location 
Composition (wt%) 

Al Ti V Cr Ni 

A 2.98 44.33 1.63 8.01 43.01 

B 3.93 56.61 1.87 4.93 32.66 

C 3.59 56.79 1.61 6.86 31.16 

D 4.1 47.27 4.27 16.95 27.41 

E 1.84 58.99 1.48 3.42 34.27 

F 5.14 56.86 1.49 3.89 32.62 

Generally, thermocapillarity caused the violent stirring and convection in the molten 

pool [24], thus, increasing the longer lifespan in the center of the molten pool than that at 

the bottom of the molten pool; this, in turn, resulted in the non-uniform distribution of 

solutes and the temperature in front of the solid/liquid interface. Therefore, the growth 

direction of dendrites can deviate from the normal direction of the coating/substrate in-

terface. However, coarse dendritic arms can be formed because of a relatively slow solid-

ification speed at the bottom of the molten pool [25]. It is seen that large secondary den-

dritic arms appear at the bottom of region II (marked E), and the lateral growths of den-

drites occur near the coating/substrate interface (marked F); these phenomena are at-

tributed to a relatively larger specific surface area of the smaller dendritic arms, facilitat-

ing the growths of larger dendritic arms by way of consuming the smaller dendritic arms 

to reduce the total surface energy. The longer time the dendrites coarsening takes, the 

larger spacing the dendritic arms possess. Hence, an increase in the distance from the 

coating/substrate interface can decrease the spacing of secondary dendritic arms. 

In addition, planar growths are seen at region III; such features indicate that the met-

allurgical bonding is generated at the coating/substrate interface. According to rapid so-

lidification theory, the characteristics of the microstructure growths are related to the ratio 

Figure 3. SEM images showing the microstructure of the in-situ synthesized NiTi-based intermetallic
coating via LMD: (a) Cross-sectional morphology; (b) Region I; (c) Region II; (d) Region III.

Table 2. Element compositions of the intermetallic coating from EDS measurement.

Location
Composition (wt%)

Al Ti V Cr Ni

A 2.98 44.33 1.63 8.01 43.01
B 3.93 56.61 1.87 4.93 32.66
C 3.59 56.79 1.61 6.86 31.16
D 4.1 47.27 4.27 16.95 27.41
E 1.84 58.99 1.48 3.42 34.27
F 5.14 56.86 1.49 3.89 32.62

In addition, planar growths are seen at region III; such features indicate that the
metallurgical bonding is generated at the coating/substrate interface. According to rapid
solidification theory, the characteristics of the microstructure growths are related to the ratio
G/R, where G is the temperature gradient and R is the solidification front rate. The R value
is related to the laser scanning speed VS directly and can be described as follows [26,27]:

R = Vscos θ (2)

where θ is the angle between VS and R, h is the cladding height, and A is the spot diameter,
as schematized in Figure 4. Prominently, R starts off with zero at the bottom of the molten
pool but increases rapidly to the maximum value. However, G starts off with the largest
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value at the bottom of the molten pool while decreasing gradually toward the surface of
the molten pool. Therefore, the G/R value approaches an infinite value at the bottom of the
molten pool just corresponding to the planar growths. With the increasing distance far away
from the coating/substrate interface, the G/R value decreases, inferring the presence of a
constitutional supercooling ahead of the solidification front. Hence, the planar solid/liquid
interface becomes unstable, resulting in the formation of dendrites (Figure 3d).
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During LMD, there was a rapid phase transformation from the liquid phase to β-Ti for
the cladding powders. According to the phase diagram of Ni-Ti alloy (Figure 5) [28], when
the thermal diffusion continued, Ni3Ti and NiTi formed with a eutectic reaction occurring
in the liquid phase at a temperature of 1583 K.

L→ NiTi + Ni3Ti (3)
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As the atom ratio of Ni to Ti is 77.99:86.33 (less than 1:1) in this work, a peritectic reac-
tion between the liquid phase L′ and the formed NiTi in the titanium-rich side can proceed,
resulting in the formation of another intermetallic compound NiTi2 at a temperature of
1257 K [28–30]:

L′ + NiTi→ NiTi2 (4)

For Ni-Ti binary system at different temperatures, NiTi (formation enthalpy
∆H = −67 kJ/mol), NiTi2 (∆H = −83 kJ/mol), Ni3Ti (∆H = −140 kJ/mol) intermetallic
compounds can be formed with exothermic reactions occurring [31–33]. Ni3Ti can be
formed firstly during LMD because of its minimum formation enthalpy. According to
Equation (4), when cooling proceeds, NiTi2 can be produced from the interaction between
the formed NiTi and the residual liquid phase L′. This is the reason to explain the presence
of dominant NiTi2 phase constituent in the intermetallic coating (Figure 2).

The formation mechanism of the petal-like dendrites can be explained as follows. The
intermetallic compounds (NiTi and Ni3Ti) can grow rapidly at the initial stage of rapid so-
lidification due to constitutional supercooling. Afterward, the Ni3Ti grows rapidly into the
coarse dendritic branch and the Ti atoms diffuse into the liquid phase. The supersaturated
Ni-based phase containing rich Ti atoms is precipitated, as the subsequent phase trans-
forms into a NiTi intermetallic and grows on the surface of the primary Ni3Ti intermetallic.
Consequently, the duplex phase nucleation sites with the interface of the intergrowth are
formed, supplying the atoms for the neighboring phase to grow harmoniously, which
depends on the diffusivity of the solute atoms, such as Ni, Cr and Ti to diffuse continually
on the interface of Ni3Ti and NiTi intermetallics. Moreover, the eutectic Ni3Ti and NiTi
phases are characterized by the non-facet growth of the unshaped interface. As such, the
eutectics are formed by the intergrowth of Ni3Ti and NiTi, both of which present different
crystal structures (Figure 3b). Therefore, the petal-like eutectic intermetallics grow in terms
of the intergrowth model of layer and slice during LMD.

3.2. Microhardness of NiTi-Based Intermetallic Coating

Figure 6 shows the microhardness of the NiTi-based intermetallic coating in-situ
synthesized by LMD. It was observed that the average microhardness of the NiTi-based
intermetallic coating is ~850 HV0.2, which is ~2.5 times that of the substrate (~350 HV0.2);
this can be attributed to the formation of NiTi2, dispersion strengthening, solid solution
strengthening, and grain refinement strengthening. First, the very important factor is the
presence of the dominant NiTi2 phase in a face-centered cubic (fcc) structure with high
hardness (HV700) and strong atomic bonds, thereby, increasing the overall hardness of
NiTi-based intermetallic coating. In addition, these intermetallic compounds, such as NiTi
and Ni3Ti (Figure 2) derived from the in-situ reactions of Ni and Ti atoms during LMD
of Ni-20Cr and TC4 powders, are dispersedly distributed in the NiTi-based intermetallic
coating, creating the dispersion strengthening effect. Moreover, the diffusion of a large
number of alloying elements, such as Al and Cr into the NiTi, NiTi2 and Ni3Ti, results
in their lattice distortions and solid solution strengthening. Finally, the formation of fine-
grained dendrites in the intermetallic coating due to rapid solidification is essential to
increase the overall hardness as well.

3.3. Electrochemical Corrosion of the NiTi-Based Intermetallic Coating

Figure 7 shows the anodic polarization curves of the NiTi-based intermetallic coating
and Ti6Al4V alloy in 3.5% NaCl solution at room temperature. A distinct passivation
behavior can be observed between the intermetallic coating and TC4 alloy, and the passiva-
tion region of the TC4 alloy is significantly larger than that of the NiTi-based intermetallic
coating. The presence of a stable passivation platform for the TC4 alloy initiates from the
corrosion voltage reaching around −0.3 V. However, the stable passivation of the inter-
metallic coating is formed at a corrosion voltage beyond 3 V, and a successive fluctuation of
the curve in the range of −0.3 V to 3 V can be observed. This fluctuation can be attributed
to the formation of different passivation films on the intermetallic coating surface, which is
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derived from different distributions of the intermetallic phases, such as NiTi2, NiTi and
Ni3Ti. As a result, the polarization curve is changed from a passivation state to an active
state, resulting in the instability of the passivation platform [34].

1 
 

 

  Figure 6. Microhardness of the NiTi-based intermetallic coating. HAZ represents heat affected zone.
 

2 

 
  Figure 7. Potential dynamic curves of the NiTi-based intermetallic coating and TC4 alloy in the
3.5 wt% NaCl solution.

The corrosion potential Ecorr, corrosion current density Icorr, and passivation current
density Ip are the important parameters to evaluate the corrosion resistance of materials,
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as shown in Table 3. The Ecorr value of the NiTi-based intermetallic coating is higher than
that of the TC4 alloy, indicating much better stability of the passivation film formed in the
coating [35,36]. The intermetallic coating obtains the Icorr value of 1.977 × 10−7 A/cm2,
which is slightly smaller than that of the TC4 alloy (2.068× 10−7 A/cm2). A lower Icorr indi-
cates a smaller corrosion rate of the passivation film and better corrosion resistance [37,38].
In addition, when the corrosion voltage is less than 1 V, the Ip value of the intermetallic
coating is smaller than that of the TC4 alloy. A larger Ip results in the faster dissolution of
the passivation film. Therefore, the intermetallic coating is beneficial for improving the
corrosion resistance of the TC4 alloy substrate.

Table 3. Corrosion parameters of the intermetallic coating and TC4 alloy in Figure 7.

Sample Ecorr (V) Icorr (A/cm2) Ip (A/cm2)

Immiscible coating −0.854 1.977 × 10−7 −6.2 ± 0.01
TC4 alloy −0.943 2.068 × 10−7 −5.8 ± 0.01

To further study the corrosion characteristics of the intermetallic coating and TC4
alloy, electrochemical impedance spectroscopy (EIS) was measured in a 3.5% NaCl solution.
The Nyquist results of EIS are illustrated in Figure 8a. It is seen that a similar semicircle
capacitive impedance loop exists in the Nyquist curves of both the intermetallic coating and
TC4 alloy. However, the radii of the capacitive impedance loop of the intermetallic coating
are larger than that of the TC4 alloy. The larger the radius of the capacitive impedance
loop indicates the higher corrosion resistance [39,40]. Figure 8b,c show the Bode results of
EIS. The maximum |Z| value of the intermetallic coating and TC4 alloy present a linear
change with a slope of ~−1 in the low-frequency region (10−2–100 Hz) and the intermediate
frequency region (10−2~103 Hz). 

3 

 
Figure 8. EIS results of the NiTi-based intermetallic composite coating and TC4 alloy in the 3.5 wt%
NaCl solution: (a) Nyquist curves; (b,c) Bode curves; (d) Equivalent circuit.

The phase angles of the intermetallic coating and TC4 alloy increase, and the phase
angle of the intermetallic coating (~90◦) is slightly higher than that of TC4 alloy, indicating
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a typical capacitance behavior. The greater angle values of the coating indicate its better
corrosion resistance, which is consistent with the results of polarization curves (Figure 7).
This can be confirmed by the equivalent circuits shown in Figure 8d. To obtain the optimal
fitting results, the equivalent circuits chosen χ2 (chi-squared) must be in the range of
10−4–10−3 and the results are listed in Table 4. As shown in Figure 8d, Rs can be regarded
as the solution resistance, Rt is the resistance of the passivation film on the TC4 alloy surface
during electrochemical corrosion, and Rct is defined as the charge transfer resistance. The
values of Rs and Rt of the intermetallic coating are smaller than those of the TC4 alloy, while
the Rct value of the intermetallic coating is much larger than that of the TC4 alloy. The higher
Rct indicates the higher charge transfer resistance and resultant better corrosion resistance.

Table 4. Electrochemical results obtained from equivalent circuits fitting of the intermetallic coating
and TC4 alloy in the 3.5% NaCl solution.

Sample RS (Ω cm2) Rt (Ω cm2) Rct (Ω cm2)
Cd1

(F cm−2)
Q1-Y0

(Ω−1 cm2sn) n1 χ2

NiTi-based coating 6.931 23.99 5.69 × 105 4.94 × 10−6 2.63 × 10−5 0.8628 8.6 × 10−4

TC4 alloy 14.82 2.459 × 105 1.33 × 105 3.27 × 10−5 4.29 × 10−5 0.8548 1.2 × 10−4

The equivalent circuit of the intermetallic coating is mainly composed of the double
layer capacitance and constant phase angle. This indicates that double layer capacitance Cdl
consists of the NaCl solution and coating, and the constant phase angle (CPE) is composed
of the coating and TC4 substrate. Generally, CPE is defined as ZCPE = [Z0(jw)n]−1, where
Z0 is the constant of CPE, j2 = −1 is imaginary, w is the angular frequency (w = 2πf),
and n is the index of CPE (−1 ≤ n ≤ 1) [41–43]. As shown in Table 4, the n value of
the intermetallic coating (0.8628) is slightly greater than that of the TC4 alloy (0.8548),
indicating that the passivation film on the intermetallic coating is denser than that on the
TC4 alloy. Furthermore, the χ2 (chi-squared) values of the intermetallic coating and the
TC4 alloy are all in the order of ~10−4, showing a good fitting result.

During electrochemical corrosion, the different concentrations of Cl− ions agglomerate
together on the surface of the intermetallic coating to replace the internal O ions, resulting
in pitting. The schematic of the pitting formation process is illustrated in Figure 9. The
corrosion current density increases quickly following the pitting process. With an increase
in the corrosion voltage, the passivation platform of the intermetallic coating is punctured
and a large amount of Ti ions are released to react with Cl− ions and form [TiCl6]2−.
When the corrosion voltage is increased to ~3 V, [TiCl6]2− reaches a certain critical value
in the solution, and hereby, TiO2 is produced from the hydrolysis reaction to protect the
intermetallic coating from further corrosion [5,44]. Moreover, slight pitting can be found
on the surface of the intermetallic coating (Figure 10a), while it becomes serious on the
surface of the TC4 alloy (Figure 10b). This confirms that the intermetallic coating has
superior corrosion resistance than the TC4 alloy during the electrochemical corrosion of
3.5% NaCl solution.

The intermetallic coating and TC4 alloy were immersed into the 3.5 wt% NaCl solution
for 7 days to validate the results of polarization curves and EIS. Figure 11 shows the surface
morphology of the intermetallic coating and TC4 alloy after the immersion testing. The
surface of the intermetallic coating is relatively smooth and only slight pitting can be
observed on the surface of the intermetallic coating (Figure 11a). Comparatively, the sizes
and amounts of the pits on the TC4 surface are much larger than those on the surface of
the intermetallic coating (Figure 11b). Therefore, the immersion results also demonstrate
better corrosion resistance for the intermetallic coating than that of the TC4 alloy, which is
in good agreement with the results of polarization curves and EIS.
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4. Conclusions

This work investigates the microstructure, mechanical properties, and electrochemical
corrosion resistance of a NiTi-based intermetallic coating in-situ synthesized by LMD. The
main findings are presented as follows.

(1) The NiTi-based intermetallic coating was in-situ synthesized on the TC4 substrate
by LMD using a mixed powder of Ni-20Cr and TC4. The phases of the coating are
composed of the intermetallic compounds of NiTi2, NiTi, and Ni3Ti, and their volume
fractions are ~52%, ~20% and ~28%, respectively.

(2) The microhardness of the intermetallic coating is ~850 HV0.2, which is ~2.5 times
larger than that of the TC4 alloy. The high microhardness can be attributed to the solid
solution strengthening of Al and Cr, dispersion strengthening of the intermetallic
compounds, and grain refinement strengthening from the rapid solidification.

(3) The intermetallic coating exhibits better corrosion resistance than the TC4 alloy. With
the increase in the corrosion voltage, a large amount of Ti ions react with the Cl−

ions to form [TiCl6]2− in the solution. When [TiCl6]2− reaches a certain critical value,
TiO2 is formed by hydrolysis reaction to protect the intermetallic coating from further
corrosion. Slight pitting appears on the coating surface, while large pits can be
observed on the TC4 surface.
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