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Background. While regenerative stem cell therapy for ischemic heart disease has moved into phase 3 studies, little is still
known about retention and migration of cell posttransplantation. In human studies, the ability to track transplanted cells
has been limited to labeling with radioisotopes and tracking using nuclear imaging. This method is limited by low
resolution and short half-lives of available radioisotopes. Longitudinal tracking using magnetic resonance imaging (MRI)
of myocardial injected cells labeled with iron oxide nanoparticles has shown promising results in numerous preclinical
studies but has yet to be evaluated in human studies. We aimed to evaluate MRI tracking of mesenchymal stromal cells
(MSCs) labeled with ultrasmall paramagnetic iron oxide (USPIO) nanoparticles after intramyocardial transplantation in
patients with ischemic heart disease (IHD). Methods. Five no-option patients with chronic symptomatic IHD underwent
NOGA-guided intramyocardial transplantation of USPIO-labeled MSCs. Serial MRI scans were performed to track labeled
cells both visually and using semiautomated T2∗ relaxation time analysis. For safety, we followed symptoms, quality of
life, and myocardial function for 6 months. Results. USPIO-labeled MSCs were tracked for up to 14 days after
transplantation at injection sites both visually and using semiautomated regional T2∗ relaxation time analysis. Labeling
of MSCs did not impair long-term safety of treatment. Conclusion. This was a first-in-man clinical experience aimed at
evaluating the utility of MRI tracking of USPIO-labeled bone marrow-derived autologous MSCs after intramyocardial
injection in patients with chronic IHD. The treatment was safe, and cells were detectable at injection sites up to 14 days
after transplantation. Further studies are needed to clarify if MSCs migrate out of the injection area into other areas of
the myocardium or if injected cells are washed out into the peripheral circulation. The trial is registered with
ClinicalTrials.gov NCT03651791.

1. Introduction

Regenerative treatment with stem cells in chronic ischemic
heart disease (IHD) is a relatively new treatment modality.

Numerous clinical trials using different cell types and
delivery methods for both acute and chronic ischemic heart
disease have been conducted. Results have been diverging.
In Cochrane surveys, no beneficial effects of cell therapy in
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general were found for acute ischemic heart disease (myocar-
dial infarction) [1]. In chronic ischemic heart disease and
heart failure, there is some evidence that cell therapy might
reduce mortality and clinical symptoms and improve heart
pump function [2]. The vast majority of trials in these
surveys used intracoronary infused mononuclear cells.

Focus has since changed to more homogenous cell
types, such as mesenchymal stromal cells (MSCs) delivered
by direct intramyocardial injection. In several randomized
clinical trials, MSCs have been injected directly into viable
myocardium in the border zone of scar tissue in patients with
chronic ischemic heart disease and heart failure [3–8].
Results from these trials have been generally positive with
improvements in heart pump function, reduction of scar
tissue, reduced clinical symptoms, and improved quality of
life. Several, larger multicenter trials are ongoing to confirm
the encouraging results.

Little is still known about retention and migration of cell
posttransplantation. Such studies are imperative in assessing
the efficacy and safety of stem cell-based therapy.

In human studies, the ability to track transplanted cells
has been limited to labeling with radioisotopes and subse-
quent tracking using nuclear imaging. These methods are
limited by low spatial resolution and short half-lives of clini-
cally approved radioisotopes, ranging fromminutes to hours,
and therefore only allowing short-term tracking of the cells.
Other limitations are exposure to ionizing radiation and
nontarget signal leakage [9, 10].

Tracking cells labeled with iron oxide nanoparticles using
magnetic resonance imaging (MRI) offer higher spatial and
temporal resolution in combination with higher soft tissue
contrast, without exposing patients to ionizing radiation.
This method has been utilized in vivo in different animal
models of myocardial infarction (MI). In the majority of
these studies, the labeled cells were tracked in the myocar-
dium for up to 16 weeks after transplantation [11–20]. In
contrast, a few studies showed that the cells were only
retained in the heart for few hours [21, 22].

In vivo tracking of iron oxide-labeled cells has not yet
been utilized in a clinical cardiovascular setting, but it has
been used successfully in several noncardiovascular clinical
studies [23–29]. Moreover, labeling of cells with iron oxide
nanoparticles has been demonstrated to be clinically safe
and does not affect cellular function of the labeled cells [30].

MRI T2∗-weighted imaging is a method which is
influenced by inhomogeneities in the magnetic field, such
as high iron overload thalassemic cardiomyopathy. The
method is also useful to depict iron particles introduced
to the heart.

Iron oxide particles of varying size have been used for
cell tracking. The smallest of these are ultrasmall superpar-
amagnetic iron oxide (USPIO) particles (5-40 nm). In
practice, USPIO particles have been shown to be more
suitable than larger iron oxide particles for tracking of
nonphagocytic cells, such as MSCs, due to higher cellular
uptake [31–33]. Moreover, to successfully internalize iron
particles into nonphagocytic cells such as MSCs, it is nec-
essary to conjugate the iron particles with a membrane
translocation agent such as TAT-peptide [34].

In preparation for the present clinical study, we carried
out several preclinical studies. In one study, we compared
MSCs labeled with the USPIO particles used in the present
study with unlabeled MSCs. We assessed the ultrastructure
of the cells using electron microscopy and found no differ-
ences to cell ultrastructure after USPIO labeling. In addition,
we compared cell viability, phenotype, and proliferation
capacity and found no differences after USPIO labeling [35].
In another study, we compared the MRI signal of USPIO-
labeled cells using different labeling doses and labeling
(incubation) times and found that the optimal labeling dose
was 10 μg USPIO particles per 105 MSCs. In the same study,
we assessed MRI detection limits in porcine hearts in which
different quantities of USPIO-labeled MSCs were injected.
As few as 250.000 USPIO-labeled cells were detectable in the
following image analysis [36].

This was a first-in-man clinical experience aimed at
evaluating the utility of MRI tracking of USPIO-labeled bone
marrow-derived autologous MSCs after intramyocardial
injection in patients with chronic IHD.

2. Materials and Methods

2.1. Study Overview. The study was a single-center, nonran-
domized, pilot study performed at Rigshospitalet, University
of Copenhagen, Denmark. The study protocol complied with
the Declaration of Helsinki and was approved by the Danish
National Ethical Committee (j.no: 1090356) and Danish
Medicines Agency (j.no: 2013022184 and EudraCT-no:
2012-004047-71). The study was registered at ClinicalTrials.-
gov (Identifier: NCT03651791).

Manufacturing of GMP- (Good Manufacturing Prac-
tice-) grade USPIOs was done at Singapore Bioimaging
Consortium, Agency for Science, Technology and Research
(A∗STAR), Singapore. Protocols for manufacture and
labeling of cells with USPIO were developed in-house and
were used according to authorization for human medicinal
products issued by the Danish Health and Medicines
Authority. The study data were monitored continuously
during the study period by the regional Good Clinical
Practice unit.

2.2. Patient Population. Key inclusion criteria were patients
aged 30-80 years with chronic stable IHD with at least one
significant stenosis of a larger coronary artery with no
option for either percutaneous coronary intervention
(PCI) or coronary artery bypass grafting (CABG). Patients
were on maximal tolerable medication and had moderate
to severe symptoms and classified New York Heart Asso-
ciation (NYHA) Classes II-IV or Canadian Cardiovascular
Society (CCS) Classes II-IV. Major exclusion criteria were
acute coronary syndrome, stroke, or transitional cerebral
ischemia within 6 weeks, revascularization within 4
months, moderate or severe valvular disease, severe
chronic pulmonary disease, morbid obesity, and history
of cancer within 5 years. All patients provided written
informed consent and were followed for 6 months. For
details on inclusion and exclusion criteria and follow-up
program, see Supplementary Materials.
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2.3. Objectives. The primary objective was positive identifi-
cation of USPIO-labeled MSCs on day 0 after myocardial
injection using MRI. Secondary objectives were the identifi-
cation of the labeled cells using MRI on day 1 and thereafter
at 1, 2, 4, 8, and 26 weeks after injection. For safety, we
followed symptoms, quality of life, and myocardial function.

2.4. Bone Marrow Cell Preparation and Culturing. The isola-
tion and culture expansion of the MSCs from bone marrow
have previously been described in detail [37, 38]. Release
criteria were sterility, viability, and MSC morphology. Cell
expansion was limited to two culture passages. Expansion
for only two passages was chosen as a guarantor of preserved
primary cell features overriding total number of cells.
Minimal criteria for defining MSCs according to the Interna-
tional Society for Cellular Therapy (ISCT) position statement
were applied [39]. The culture medium was tested for
bacteria, yeast, and mycoplasma 1 week before and on the
day of transplantation.

2.5. USPIO Preparation and Labeling Procedure. USPIO
nanoparticles coated with dextran and conjugated with
TAT-peptide (IODEX-TAT; 15–20nm) were prepared
under GMP conditions using the method described by
Josephson et al. [9, 34]. The final iron concentration was
2.5mg/mL, and the solution was sterilized by filtration
through 0.22μ and gamma irradiation prior to use.

At 21 hours prior to cell transplantation, labeling of
approximately 10 × 106 of the cultured MSCs was initiated.
As described previously [36], MSCs were labeled by incubation

with IODEX-TAT nanoparticles at a concentration of 10μg
iron per 105 cells/mL complete medium for 21 hours at
37°C in humidified incubator at 5% CO2. The cells were then
washed 3 times in PBS (Phosphate-Buffered Saline, Invitro-
gen, Austria) and harvested with TrypLe Select (Invitrogen,
Austria) and centrifuged 5min at 300 g. After centrifugation,
the cells were resuspended in PBS; cell numbers and cellular
viability were determined by propidium iodide staining using
a NucleoCounter NC-100 (Chemometec, Denmark). IODEX
labeling was confirmed by Prussian blue cytology staining for
iron on a sample of the cell culture.

2.6. Cell Transplantation. LV mapping was performed with
the NOGA-XP system and intramyocardial injections with
Myostar injection catheters (Biologics Delivery Systems
Group, Johnson & Johnson, USA) [40].

A total of 3-4 injections of 0.2mLUSPIO-labeledMSCs and
9-15 additional injections of 0.2mL unlabeledMSCs weremade
in the border zone between viable (unipolar voltage > 6mV)
and nonviable myocardia (unipolar voltage < 6mV).

Figure 1 demonstrates the immediate dispersion pattern
of an injected solution using the NOGA injection catheter.
In this instance, it is the iodine contrast injected into the
myocardium and X-ray images. This procedure was not part
of the current study.

2.7. Magnetic Resonance Imaging. MRI was performed on a
clinical 1.5T scanner (MagnetomAvanto; Siemens, Germany)
using a body matrix coil. Two protocols were used. The first
was a standard cardiac MRI with LV short-axis cine images

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

Figure 1: NOGA injection dispersion pattern. X-ray images demonstrate the immediate dispersion pattern of an injected solution using the
NOGA system, in this instance, iodine contrast. Images (a) and (b) depict the start and end of injection over approximately one minute, while
images (c) and (d) after 2 and 3 minutes.
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of the entire left ventricle. The standard cardiac MRI was per-
formed at baseline and after 12 and 26 weeks. The second pro-
tocol was a standard thalassemia T2∗-weighted gradient echo
(GRE) black blood sequence, with a repetition time of (TR)
200ms, a flip angle of 20°, a matrix of 116 × 128, a field of view
(FOV) of 270 × 300mm, and a slice thickness of 5mmwith no
gaps between slices. For each slice, this protocol produced 12
images at the exact same time in middiastole with different
echo times (TE) (1.29, 3.14, 5.04, 6.94, 8.84, 10.74, 12.64,
14.54, 16.44, 18.34, 20.24, 22.14ms). The T2∗ protocol was
performed at every MRI session.

2.8. Analysis of MRI Images. Cine images were analyzed
with the CVI42 postprocessing tool (Circle Cardiovascular
Imaging, Canada). Endocardial and epicardial borders
were traced manually in the end diastole and end systole,
and the mitral plane was set to define the basal border
of the LV.

T2∗ images were analyzed with the VIRTUE postproces-
sing tool (Diagnosoft Inc., USA). For each slice, endocardial
and epicardial borders of the LV were traced manually. Then,
the anterior right ventricle insertion point was positioned
and a 24-segment mesh was automatically created covering
the myocardium of the LV. For each segment of each slice,
the T2∗ relaxation time (ms) was calculated by the software.
For each MRI performed after baseline, the difference
between baseline values and new values was calculated. This
was done to adjust for background noise. Bullseye plots of the
regional differences in T2∗ values were created using
MATLAB (The MathWorks, Inc., USA).

2.9. Statistics. Statistical analyses were done using SPSS 24
(IBM Corp., Armonk, NY, USA). The nonparametric
Wilcoxon signed rank test was used for all analyses of clinical
data. A two-sided p value of <0.05 was considered statistically
significant.

3. Results

3.1. Patients and MSCs. Five no-option patients with chronic
IHD and moderate to severe cardiac symptoms were
included into the trial, and all five patients were treated
successfully. Baseline characteristics and clinical outcomes
are shown in Figures 2 and 3 and in detail in Supplementary
Materials.

MSCs were successfully culture expanded under good
manufacturing practice conditions. Patients were treated
with the cells after two culturing passages. All patients were
treated with 3-4 injections of USPIO-labeled MSCs and 9-
15 injections of unlabeled MSCs comprising a mean of 24
± 19 × 106 (range 12 − 57 × 106) USPIO-labeled MSCs and
306 ± 175 × 106 (range 101 − 496 × 106) unlabeled MSCs.
There were no incidences of contaminations with bacteria,
yeast, or mycoplasma. All cultures had normal MSC
morphology, and IODEX labeling was confirmed in all
cultures.

There was one serious adverse event, cardiac tamponade,
related to the NOGA procedure. Pericardiocentesis was
performed immediately and the clinical course thereafter

was uneventful. The patient completed the follow-up. No
other serious adverse events related to the treatment or in
particular to the labeling of MSCs with iron oxide particles
were observed.

All patients completed all follow-up visits.

3.2. Cardiac MRI. All patients had cardiac MRI scan
performed at baseline and days 0, 1, 3, and 7 and 2 weeks, 1
month, 3 months, and 6 months after treatment. Functional
images to assess heart pump function were done at baseline
and after 3 and 6 months. T2∗ images were done at baseline;
at days 0, 1, 3, and 7; and after 2 weeks and after 1 month. The
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Figure 2: Difference in clinical symptoms and quality of life.
Difference in angina symptoms (CCS class), shortness of breath
symptoms (NYHA class), and quality of life score (SAQ) from
baseline to 6 months after treatment. Bar values are mean values
+ standard deviation (SD). CCS =Canadian Cardiovascular
Society; NYHA=New York Heart Association; SAQ= Seattle
Angina Questionnaire.
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2-month T2∗ scan was omitted for all patients as there were
no visible signs of USPIO-labeled cells in any of the patients
after 1 month.

For T2∗ imaging, hypointense areas were observed in the
myocardium in all patients at day 0 after injection. The
hypointense areas correlated well with the areas of cell injec-
tion. Hypointense areas were visible between 1 and 14 days
after injection. After this period, there were no visible signs
of injected USPIO-labeled cells. In Figure 4, selected MRI
scan images from a representative patient are shown. These
images were acquired with TE of 22.14ms. Images in each
row show serial left ventricular short-axis images in the same
longitudinal position at baseline and the first week of follow-
up. In the upper row, a midventricular hypointense area was
observed in the lateral part of the ventricle (arrows) for three
days after injection. In the middle row, a midventricular-
apical hypointense area was observed in the anteroseptal part
of the ventricle up till 1 day after injection, and in the lower
row, an apical hypointense area was observed in the anterior
part of the ventricle up till 1 day after injection.

Short-axis cine MRI imaging demonstrated improve-
ments from baseline to 6-month follow-up in heart pump
function. This is shown in Figure 3 and in detail in
Supplementary Materials.

Images from additional patients are shown in
Figures 5(a)–5(c).

3.3. T2∗ Image Analysis and NOGA Injection Map.
Differences in T2∗ relaxation times between baseline and
follow-up scans revealed decreases in T2∗ relaxation times
in the same areas as visually observed hypointense areas

and for the same amount of time after injection. This is
depicted in Figure 6, which consists of T2∗ relaxation time
difference bullseye plots from the same patient as used in
Figure 4. In Figure 6 plots, the areas of decreased T2∗ relax-
ation times are seen in the same areas as the hypointense
areas in Figure 4.

In Figure 6, we also see the NOGA injection map from
the same patient. The four yellow points in the map show
the injection points for the USPIO-labeled cells. The location
of these points correlates with the hypointense areas seen in
Figure 4 and with the decreased T2∗ relaxation times in
Figure 6.

4. Discussion

This was a first-in-man clinical experience aimed at evalu-
ating the utility of MRI tracking of USPIO-labeled bone
marrow-derived autologous MSCs after intramyocardial
injection in patients with chronic IHD.

The primary objective of the study was in vivo visuali-
zation of USPIO-labeled MSCs using MRI at day 0 after
injection of cells. This was achieved successfully. Secondary
objectives included visualization of labeled cells at later
time points. We were able to visualize the labeled cells for
1 to 14 days after injection of cells. During this period,
the signal from the labeled cells gradually decreased. Here-
after, we could not distinguish labeled cells from back-
ground noise on the MRI images.

We can only speculate if this is due to migration and
dispersion of the cells to the rest of the myocardium or if
most of the injected cells are washed out into the peripheral
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Figure 3: Difference in left ventricular systolic function. Differences in MRI measurements of left ventricle (LV) end-diastolic volumes
(LVEDV), LV end-systolic volumes (LVESV), LV ejection fractions (LVEF), and stroke volumes (SV) at baseline and 3 and 6 months after
treatment. Bar values are mean values + standard deviation (SD). MRI =magnetic resonance imaging.
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circulation. A combination of both mechanisms is perhaps
the most likely scenario. Another possibility is that the cells
died and the label was phagocytosed. This phenomenon
was demonstrated in two preclinical studies performed in
rats after acute MI. In both studies, iron oxide-labeled cells
were tracked for 3-4 weeks, but postmortem histology analy-
ses showed that the cells were engulfed in macrophages that
had infiltrated the injection areas [21, 22]. In contrast, 10
other preclinical studies demonstrated the opposite. These
animal studies were carried out in rats, mice, canines, and
pigs after acute MI, and cells were identified using both
MRI and postmortem histologic analysis [11–20]. In these
studies, iron oxide-labeled cells were identified using these
methods for longer periods, ranging from 3 to 16 weeks after
transplantation. Macrophage-specific CD68 staining was
done and showed no macrophages were present in the
cardiac tissue containing USPIO cells, and moreover, the
USPIO particles were contained in the original labeled
cells. One explanation for these differences could be that
the cells were injected into the infarct area in the first-
mentioned studies in contrast to the latter 10 mentioned
studies, where cells were injected into the border zone of
the infarction. Therefore, we do not believe that the cells
and USPIO particles in the present study were engulfed
in macrophages.

One of the differences between the animal studies and the
present study is that the present study was carried out in
patients with chronic IHD. Another significant difference
between the animal studies and the present clinical study is
the potential to carry out postmortem histologic analyses in

the animal studies, which substantially strengthened these
studies. Furthermore, coregistration of reducing hypointense
areas temporally on MRI images with end-point histological
analysis confirms that these hypointense areas on these
images represent labeled cells.

In addition to visual evaluation of MRI images, we
have determined changes in T2∗ relaxation times region-
ally, but after a few days, the background noise in the
T2∗ images was indistinguishable from potential signal
from labeled cells. The reduction of the MRI signal over
time may be due to both migration and dispersion of the
MSCs from the site of injection within the myocardium
and/or washout of MSCs from the heart by the myocardial
perfusion.

The mechanisms behind the regenerative capacity of
MSCs are not fully understood. However, most recent
evidence suggests that secretion of cytokines and growth
factors from the MSCs is as the main mechanism [41–44].

In the future, for studies to improve detectability, we sug-
gest using double labeling with both iron oxide particles and
a PET-tracer and perform the tracking using combined PET-
MRI scanners, which is now possible. TheMRI scanners used
in the animal studies varied in field strength from 1.5 to
11.7T, and another option for future studies could be the
use of MRI scanners with higher field strength, although
the higher signal to noise ratio is accompanied with a higher
degree of image artifacts when using MRI scanners with
higher field strengths [45, 46].

The labeling of MSCs with iron oxide particles does not
seem to have any adverse effects on myocardial function.

(a1) (a2)

Baseline Day 0 Day 1 Day 3 Day 7
(a4) (a5)(a3) (a6)

(b6)(b5)(b4)(b3)(b2)(b1)

(c1) (c6)(c5)(c4)(c3)(c2)

Figure 4: T2∗ images. T2∗ images from one representative patient. Images a1, b1, and c1 show the longitudinal position of respective short-
axis images (green lines). Images a2–a6, b2–b6, and c2–c6 show serial short-axis images at the same three longitudinal positions (a, b, c) at
baseline, day 0, day 1, day 3, and day 7 after injection. The yellow arrows point to hypointense areas in the images suspected to point out
injected USPIO-labeled MSCs (slice thickness 5mm). USPIO= ultrasmall paramagnetic iron oxide; MSC=mesenchymal stromal cell.
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In conclusion, we have demonstrated that in vivo MRI
tracking of intramyocardial injected MSCs labeled with
USPIO particles is feasible and safe. We were able to detect
MRI signal from the USPIO particles up to 2 weeks after

transplantation. In clinical trials, postmortem histological
analysis of the heart is not an option, and therefore, we can-
not guarantee whether the detected USPIO particles in this
study were in fact still within the original labeled MSCs.
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(c) Images patient 5

Figure 5: MRI images of patients 3–5. T2∗ images from patient 1 are in the main text. Images from patient 2 are not shown due to cardiac
tamponade. The yellow arrows point to hypointense areas in the images suspected to point out injected USPIO-labeled MSCs.
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However, most preclinical animal studies have demonstrated
that USPIOs do in fact remain within the MSC and are not
engulfed by macrophages. Therefore, we do believe that the
demonstrated MRI signal in this study originated from
USPIO-labeled MSCs. After 1 month, it was no longer possi-
ble to distinguish labeled cells from background noise.
Whether this was due to migration and dispersion of the cells
to the rest of the myocardium or if injected cells are washed
out into the peripheral circulation remains to be clarified.
However, improved heart function was observed in all
patients posttransplantation. Dual labeling with both USPIO
particles and radioisotopes and tracking with combined
PET-MRI scanners could help clarify this in the future,
especially when radioisotopes with longer half-times than
presently available are approved. Better T2∗ protocols might
also reduce the amount of background noise and thus allow
for tracking lower concentrations of labeled cells.
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Heart Association; CCS=Canadian Cardiovascular Society;
PCI=percutaneous coronary intervention; CABG=coron-
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