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Dampness-heat diarrhea (DHD), a common syndrome in Chinese dairy farms, is mainly

resulted from digestive system disorders, and accompanied with metabolic disorders

in some cases. However, the underlying mechanisms in the intestinal microbiome and

plasma metabolome in calves with DHD remain unclear. In order to investigate the

pathogenesis of DHD in calves, multi-omics techniques including the 16S rDNA gene

sequencing and metabolomics were used to analyze gut microbial compositions and

plasma metabolic changes in calves. The results indicated that DHD had a significant

effect on the intestinal microbial compositions in calves, which was confirmed by

changes in microbial population and distribution. A total of 14 genera were changed,

including Escherichia-Shigella, Bacteroides, and Fournierella, in calves with DHD (P <

0.05). Functional analysis based on the Kyoto Encyclopedia of Genes and Genomes

(KEGG) annotations indicated that 11 metabolic functions (level 2) were significantly

enriched in DHD cases. The untargeted metabolomics analysis showed that 440

metabolites including bilineurin, phosphatidylcholine, and glutamate were significantly

different between two groups (VIP > 1 and P < 0.05), and they were related to 67

signal pathways. Eight signal pathways including alpha-linolenic acid, linoleic acid, and

glycerophospholipid metabolism were significantly enriched (P < 0.05), which may be

potential biomarkers of plasma in calves with DHD. Further, 107 pairs of intestinal

microbiota-plasma metabolite correlations were determined, e.g., Escherichia-Shigella

was significantly associated with changes of sulfamethazine, butyrylcarnitine, and

14 other metabolites, which reflected that metabolic activity was influenced by the

microbiome. These microbiota-metabolite pairs might have a relationship with DHD
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in calves. In conclusion, the findings revealed that DHD had effect on intestinal microbial

compositions and plasma metabolome in calves, and the altered metabolic pathways

and microorganisms might serve as diagnostic markers and potential therapeutic targets

for DHD in calves.

Keywords: dampness-heat diarrhea, gut microbiome, metabolomics, 16S rDNA, pathogenesis

INTRODUCTION

Diarrhea, the most common disease in calves, is one of the
major causes of economic loss in cattle herds worldwide (1, 2).
Neonatal calves are susceptible to bovine coronavirus, Escherichia
coli, bovine rotavirus, and Cryptosporidium parvum, which can
cause diarrhea in calf (3–5). In addition, some non-infectious
factors including colostrum management, calf housing, and
hygiene are inducer of diarrhea in calf (6, 7). The rational use
of traditional Chinese medicine (TCM) to treat this disease
has certain advantages (8). Different types of diarrhea require
different prescriptions based on the theory of TCM. According
to the clinical symptoms, diarrhea can be divided into dampness-
heat diarrhea (DHD), spleen deficiency diarrhea, and kidney
deficiency diarrhea (9–11). DHD is one of the most common
syndromes in Chinese cattle herds. According to traditional
Chinese veterinary medicine (TCVM), DHD is usually caused by
the exogenous heat and dampness toxin pathogens invading the
intestine (12). The main clinical symptoms of DHD in calves are
hyperthermia, sticky and loose stools with blood and mucus, red
tongue, and thick greasy tongue-coating (9, 13). The mechanism
of DHD has not been fully elucidated. This study provides
new insights on understanding the pathogenesis and rational
treatment of DHD in calves.

The alteration of gut microbial composition is associated with
many diseases (14). Diarrheal diseases often alter the richness and
diversity of intestinal flora (15, 16). Therefore, the microbiota
is an important factor in the maintenance of health and the
development of disease (17). The 16S rDNA gene amplicon
sequencing, a powerful tool for routine microbial identification,
can help researchers to identify, categorize, and understand
the complex interactions between the host, pathogen, and
microbiome (18, 19). Studies have confirmed that the increase
of Firmicutes and Bacteroidetes proportion is an important
manifestation of diarrhea, and diarrhea could be alleviated when
this abnormal proportion was adjusted to be normal (20, 21).
Gegenqinlian decoction, a classical TCM prescription, regulated
the balance of intestinal mucosa flora in mice with diarrhea
induced by high temperature and humidity (22). Therefore, it
might be a helpful strategy for elucidation of the pathogenic
mechanism of DHD to study of gut microbial composition
in calves.

Qualitative and quantitative analysis of low molecular weight
metabolites in biological samples can reflect the influence of
diseases on metabolic in body (23, 24). In recent years, a great
deal of research has been conducted on the metabolomics in
a lot of diseases (25–28). The 16S rRNA gene sequencing with
untargeted metabolomics can present much better perspectives

TABLE 1 | Diagnostic criteria for DHD calves.

Main symptoms Diarrhea, mucus or bloody purulent stool, red tongue,

thick greasy tongue-coating

Secondary

symptoms

Hyperthermia, shortness of urination, abdominal pain,

anal burning loose stools like water, tenesmus, dry nose,

thirst and small amount

on physiological and metabolic mechanisms involved in the
pathogenesis of DHD. Some metabolites in plasma such as
chenodeoxycholic acid and creatinine were found to the
biomarkers for colorectal cancer diagnosis and prognosis (29).
Metabolomics was utilized to study the molecular mechanisms
of Atractylodis Rhizoma in the treatment of spleen deficiency
(30). Therefore, we hypothesized that the changes of metabolic
and intestinal microbiological might be related to DHD in
calves. In this study, the difference in fecal microbiome and
plasma metabolic profile between DHD calves and healthy calves
was detected by 16S ribosomal DNA gene sequencing and
metabolomics, and the results revealed that DHD had effect on
intestinal microbial compositions and plasma metabolome, and
the altered metabolic pathways and microorganisms might serve
as diagnostic markers and potential therapeutic targets for DHD
in calves.

MATERIALS AND METHODS

Experimental Animals
The experiment was carried out in a dairy farm in north-
western China. The calves in this study were similar in genetic
background and age, and all of enrolled animals were housed and
fed under same conditions. A total of 6 DHD calves and 6 healthy
calves were enrolled in this study. The standards of dampness-
heat diarrhea in the literature are mostly determined by primary
and secondary symptoms (9, 10, 13). The inclusion criteria for
DHD cases were required two main symptoms and secondary
symptoms, or three main symptoms (Table 1). The specific
clinical syndrome differentiation was carried out by the author
and a Chinese veterinary expert. According to the diagnostic
criteria, we screened 6 eligible calves from 129 diarrhea cases
as DHD group and six healthy calves as the control group.
The enrolled calves were not given any probiotics or antibiotics
prior to sample collection. All animal procedures were carried
out in accordance with the Guidelines on Laboratory Animal
Ethics Commission of the Lanzhou Institute of Husbandry and
Pharmaceutical Sciences of CAAS (SYXK [Gan] 2019-0002).
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Fecal Sample Collection and DNA
Extraction
Fresh fecal samples were collected by inserting an anal swab into
the anus. The anal swabs were deposited into a sterile sampling
tube and sent to the laboratory within 2 h. The fecal samples were
immediately frozen in liquid nitrogen until the microbial DNA
was extracted.

Microbial DNA was extracted from each fecal sample
using the HiPure Fecal DNA Kit (Magen, Guangzhou, China)
according to kit instructions. The DNA purity was determined
using a Nanodrop microspectrophotometer (NanoDrop 2000,
Thermo Fisher Scientific, America) and DNA integrity was
investigated using the agarose gel electrophoresis.

Plasma Sample Collection and Metabolite
Extraction
Blood was collected from the jugular vein of the calves and stored
in an anticoagulant tube containing ethylenediaminetetraacetic
acid (EDTA), and was temporarily stored in an incubator at 4◦C
and sent to the laboratory within 2 h. The plasma was separated
after centrifugation at 3,000 rpm, and 4◦C for 15min, and then
frozen at−80◦C until metabolite extraction.

Metabolites were extracted separately from plasma. After
addition of 300 µL of methanol and 20 µL internal references
in 100 µL plasma, the samples were mixed briefly and sonicated
for 5min in an ice-water bath. Following incubation at−20◦C for
2 h, the mixture was centrifuged at 13,000 rpm at 4◦C for 15min.
The supernatants were transferred to liquid chromatography-
mass spectrometry (LC-MS) vials and stored at −80◦C until the
UHPLC-QE Orbitrap/MS analysis (Agilent, America).

16S RDNA Gene Sequencing Analysis
The 16S rDNA V3-V4 region was amplified using a specific
primer with barcode 341F: CCTACGGGNGGCWGCAG; 806R:
GGACTACHVGGGTATCTAAT (31). The prokaryotic 16S
fragment was amplified by a relevant PCR reagent (Toyobo,
Japan), and the PCR conditions consisted of an initial
denaturation at 94◦C for 2min, followed by 30 cycles at 98◦C for
10 s, 62◦C for 30 s, and 68◦C for 30 s and a final extension at 68◦C
for 5min. PCR reactions were performed in triplicate.

The amplification material was extracted from a 2% agarose
gel and purified using the AxyPrep DNA gel extraction
kit (Axygen Biosciences, Union City, CA, USA) according
to the manufacturer’s instructions, and quantified using the
ABI Step-OnePlus Real-Time PCR System (Life Technologies,
Foster City, USA). The purified amplicons were polymerized
on the Illumina platform with equimolar and paired-end
sequence (PE250) according to the standard protocol. The
original reads were stored in the NCBI Sequence Read Archive
database (PRJNA713974).

DNA library sequencing was performed by Genedenovo
Biotechnology Co., Ltd (Guangzhou, China) on the Illumina
HiseqTM 2500. To obtain the effective tags, the raw tags of
sequences were spliced and filtered. Detailed steps are described
in the Supplementary Material. The effective tags were clustered
into operational taxonomic units (OTUs) with >97% similarity

using UPARSE (32). The representative sequences were classified
by a naive Bayesian model with an RDP classifier (version 2.2)
based on the SILVA database (version 132) with a confidence
threshold of 0.8. The abundance statistics of taxonomy were
visualized using KRONA (version 2.6) (33–35). The beta-
diversity was assessed by calculating the weighted unifrac
distances matrix and Bray-Curtis distance matrix dissimilarity,
which was visualized through the use of principal coordinate
analysis (PCoA). Species comparison among groups of various
classification levels was calculated by theWilcoxon rank test (P <

0.05). Tax4Fun functional prediction was used to infer the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
of the OTUs. Analysis of function difference between groups was
calculated by the Wilcoxon rank test.

Metabolomics Analysis
The extracted metabolites were detected and quantitated with
a liquid chromatography-tandem mass spectrometry (LC-
MS/MS). Details of LC-MS/MS analysis were available in the
Supplementary Material.

A data matrix containing retention time (RT), mass/charge
ratio (M/Z), and peak strength was generated by preprocessing
the MS raw data using the profile analysis software. Principal
component analysis (PCA) and orthogonal partial least
squares discriminant analysis (OPLS-DA) algorithms were
used to compare the metabolite distribution using R package
models (http://www.r-project.org/). The variable importance
in projection (VIP) values of OPLS-DA and the P-values of
the t-test were used to screen the metabolites with significant
differences between the two groups (36). Those with a P < 0.05
on the t-test and VIP > 1 were preliminarily determined as
the different metabolites between two groups. Pathway analysis
and enrichment analysis of the metabolites were carried out by
locating them to the associated pathway. The calculated P-value
was corrected by false discovery rate (FDR), and FDR ≤ 0.05 as
the threshold. The pathway satisfied this condition was defined as
the pathway of significant enrichment in differential metabolites.

Correlation Analysis of Fecal Microbiota
and Plasma Metabolites
Bidirectional orthogonal projections to latent structures (O2PLS)
analysis were used to integrate the microbiota and metabolomic
data (37, 38). The significantly differentmetabolites andmicrobes
were calculated by the Pearson statistical method, and the
final correlation and the network map between them were
obtained (39).

RESULTS

Differences in Bacterial Communities
Between DHD Calves and Healthy Calves
The fecal microbiome diversity of calves with DHD was
investigated by 16S rDNA gene sequencing. The similarity of
sequences contained in the same OTUs was ≥97%. The total
number of effective tags and OTUs is shown in Table 2, OTUs
was over 1,000 and effective tags was between 14,338 and
42,083 in samples. The Venn diagram (Figure 1A) shows the
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TABLE 2 | Tags and OTU quantity statistics in DHD and healthy calves.

Samples Total tags Unique tags Taxon tags Unclassified tags Singleton tags OTUs

Control 1 76563 43986 62225 0 14338 1043

Control 2 85298 49245 62079 0 23219 1027

Control 3 82507 45709 57577 0 24930 1151

Control 4 79651 49293 58272 0 21379 1291

Control 5 76206 50334 59974 0 16232 1077

Control 6 75641 48083 58190 0 17451 1212

DHD 1 81537 39910 58959 0 22578 1092

DHD 2 84150 35619 49722 0 34428 1074

DHD 3 79921 38741 52500 0 27421 1144

DHD 4 83273 44002 59353 0 23920 1153

DHD 5 91954 36162 68664 0 23290 1114

DHD 6 93275 35938 51192 0 42083 1038

common and unique OTUs, 568 was the common OTUs, 373
OTUs in the control group, and 326 OTUs in DHD group. In
order to characterize the similarity and difference in community
abundance and composition, the beta diversity of microbiota was
measured by PCoA. The result of the weighted Unifrac distance
was ANOSIM R = 0.907, P = 0.002 (Figure 1B), and the Bray-
Curtis analysis was ANOSIM R = 0.876, P = 0.004 (Figure 1C),
both analyses indicated that the microflora of DHD group was
significantly different from that of the control group.

Alterations in Intestinal Microbiota
Composition in Calves With DHD
The relative abundance of the top 10 bacteria at the genus
level is shown in Figure 2A, which indicates that the bacterial
composition of feces in healthy and DHD calves is different,
and Escherichia-Shigella (44.84%) was the predominant genus
in the diseased calves. In healthy calves, the prevalent
genera were Bacteroides (20.72%), Fournierella (7.38%), and
Escherichia-Shigella (5.50%). The Wilcoxon rank sum test
was used to compare the fecal bacterial community at the
genus level, and 14 genera were significantly different between
the two groups (P < 0.05). In these discriminatory genera,
the abundance of Escherichia-Shigella and Enterococcus were
increased significantly, and the abundance of Bacteroides,
Fournierella, Subdoligranulum, Lachnoclostridium, and other 8
genera were decreased significantly in DHD calves (Figure 2B).

Linear discriminant analysis effect size (LEfSe) was used to
further determine whether there was a differential enrichment of
specific bacterial groups in calves. A total of 25 discriminatory
taxa were clearly displayed in the linear discriminant analysis
(LDA) score cutoff of 2.0 (Figure 2C). The Pir4_lineage,
Bacillus, and Escherichia_Shigella were significantly over-
represented in feces of DHD calves, whereas Flavonifractor,
Tyzzerella, Ruminiclostridium_9, Phascolarctobacterium,
UBA1819, Bacteroides, and Ruminococcus_2 were the crucial
microorganisms in healthy calves. A cladogram of the taxonomic
hierarchy of fecal microbiota from phylum to genus illustrated
a remarkable difference in the phylogenetic distribution of the
microbiota between DHD calves and healthy calves (Figure 2D).

Tax4Fun was used to predict KEGG pathways in 16S rDNA
sequencing result, and 284 pathways were predicted, most of
which were related to metabolism (Supplementary Table 1), and
170 pathways were significantly different between DHD calves
and healthy calves (P < 0.05). The top 10 pathways including
adipocytokine and calcium, alanine, aspartate and glutamate
metabolism, and apoptosis were shown in Figure 2E.

Correlation Network Analysis
Correlation network analysis was carried out at the genus level
to determine whether DHD was associated with changes in
the related structures and putative interactions of the intestinal
microbiota. The correlation network diagrams of the top 50
genera with the richest abundant in DHD animals and healthy
animals were represented in Figures 3A,B. The network had
more edges (95 vs. 81) and higher mean degree (3.725 vs. 3)
in the control group than those in the DHD group, which
showed that the interaction structures of genus in the two groups
were different.

Metabolic Variation Analysis
Metabolite identification results showed that there were 8,145
and 7,074 peaks in positive and negative ion modes, respectively.
PCA analysis indicated that the metabolites in plasma from
tested calves were clearly separated in the positive and negative
mode (Figures 4A,B). Potential metabolic biomarkers were
screened using the multivariate model OPLS-DA (VIP >

1 and P < 0.05), and 440 potential metabolic biomarkers
(Supplementary Table 2) were different between DHD calves
and healthy calves.

To compare the main biochemical metabolic pathways and
signal transduction pathways involved in differential metabolites
between DHD calves and healthy calves, the enrichment analysis
of pathways on these metabolites was evaluated by KEGG.
The significantly different metabolites were enriched into 67
pathways, 8 pathways of them were significantly changed in
DHD calves, including metabolism of arachidonic acid, alpha-
linolenic acid, linoleic acid, and glycerophospholipid (P < 0.05,
Figure 4C).
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FIGURE 1 | Gut microbial diversity in DHD and healthy calves. (A) Venn

diagram showing the number of common or unique OTUs. (B) PCA by the

weighted Unifrac of beta diversity of the OTU levels. (C) PCA by Bray-Curtis

analysis of beta diversity at the OTU levels.

In present study, the metabolites with VIP > 2 were
considered to be significantly different, and 194 metabolites
were identified (Supplementary Table 3). The tendencies in
variation of the 194 metabolites were depicted in a heat
map (Figure 4D), and 39 metabolites were increased and 155
metabolites were decreased in DHD calves (P < 0.05). Most
of different metabolites was Lipids and lipid-like molecules,
and glycerophospholipids such as PC [16:0/20:2(11Z,14Z)], PC
[20:2(11Z,14Z)/14:0], and PC [22:4(7Z,10Z,13Z,16Z)/16:0] were
down-regulated in DHD calves, and some fatty acyls such
as ethyl dodecanoate and butyrylcarnitine presented at higher
levels in DHD calves. In addition, the correlation coefficient
matrix thermograph showed an obvious correlation in these 194
metabolites (Figure 4E).

Correlation Analysis of Intestinal
Microbiota and Plasma Metabolites
In order to investigate the functional correlation between
14 microbial communities at the genus level and 194
metabolites with significant differences, a correlation matrix
was calculated using Spearman’s correlation coefficient.
As shown in Figure 5, 107 pairs of microbiota-metabolite
were determined, including 102 positive correlations and 5
negative correlations (| cor | ≥ 0.75 and P < 0.01). Specially,
Ruminococcus_2, Phascolarctobacterium, Flavonifractor, and
UBA1819 were significantly associated with 33, 15, 17, and
10 plasma metabolites, respectively. In addition, Fournierella
was positively correlated with PC [18:3(6Z,9Z,12Z)/18:1(11Z)]
and an unknown metabolite. Subdoligranulum was negatively
correlated with aminomalote and positively correlated with
LysoPC [20:4(8Z,11Z,14Z,17Z)]. Tyzzerella and Enterococcus
were positively correlated with 3 metabolites and negatively
correlated with 1 metabolite, respectively. The details
of these significant microbiota-metabolite correlations
were shown in Supplementary Table 4. Furthermore, the
Ruminococcus_2 node was the largest in fecal flora and
the dominant bacteria in the network diagram. There were
33 metabolites with significant positive correlation with
Ruminococcus_2, including saccharin, sulfamethazine and
2-carboxy-5,7-dimethyl-4-octanolide. In the significantly
different metabolites, 2-carboxy-5,7-dimethyl-4-octanolide
nodes were the largest in the network diagram, and with
a positive correlation to Ruminococcus_2, Flavonifractor,
Ruminiclostridium_9 and UBA1819 (Figure 5B). These data
suggested that there is a significant taxonomic disturbance in
the fecal microbiota in calves with DHD, which might lead to
changes in metabolism.

DISCUSSION

Calf diarrhea is a growing concern worldwide because
it has caused serious economic loss in cattle industry.
Although DHD is a common type of diarrhea in calves, the
mechanisms of this disease have not been fully elucidated.
Previous studies revealed that intestinal microflora play
a key role in maintaining metabolic balance (40). Most
of metabolites in the blood were used to as biomarkers
for diarrhea-related diseases (41). Thus, to study the
fecal microbiota composition and plasma metabolomics
characteristics of DHD calves may help to understand the
pathogenesis of DHD and develop appropriate intervention
strategies. This study is the first to characterize the fecal
microbiome and plasma metabolites in calves with DHD
by integrating 16S rDNA gene sequencing and LC–MS-
based metabolomics approaches. The results revealed that
the intestinal microbiota composition and plasma metabolic
phenotype of DHD calves were significantly different from those
of healthy calves.

As a complex ecosystem of the body, the intestinal microbiota
is maintained a dynamic balance in healthy host. Many of
disease were due to the disturbance of the intestinal microbiota
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FIGURE 2 | Fecal microbial abundance and diversity in DHD calves and healthy calves. (A) Taxonomic distributions of bacteria at the genus level (top 10) between

DHD and healthy calves. (B) Box plot of the generic bacteria with significantly different between these two groups. Data for each group are shown as relative

(Continued)
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FIGURE 2 | abundances. The Wilcoxon rank-sum test was used for statistical analysis. (C) The cladogram obtained by linear discriminant analysis effect size (LEfSe)

analysis showed the phylogenetic distribution of the microflora of DHD calves and control calves from phylum to genus. (D) LDA score histograms used to identify

bacterial genera (LDA score > 2) differed significantly between DHD calves and control calves. (E) Box plot of the top 10 significantly different KEGG pathways that

were predicted between these two groups.

FIGURE 3 | Correlation network diagrams of the 50 richest abundant genera of (A) healthy and (B) DHD calves. The lines between nodes represent the Spearman

correlation and the color intensity represents the correlation coefficient (red, positive; green, negative). The color of the genera was based on phylum affiliation, and the

size indicates average relative abundance.
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FIGURE 4 | Plasma metabolic profiles in DHD and control calves. PCA score of plasma metabolite analysis between DHD calves and healthy calves in (A) positive ion

mode and (B) negative ion mode. (C) Results of the KEGG pathway enrichment analysis of significantly different metabolites (top 20). The horizontal axis represents

the percentage of the number of metabolites in this pathway to the total number of significantly different metabolites, and the value on the histogram is the number of

differential metabolites in this pathway and the Q value. (D) Significant differences in metabolites between DHD calves and control calves are shown in the hierarchical

clustering and heat map on the left (columns, individual; rows, specific metabolite). The histogram on the right represents the VIP score for each metabolite derived

from the OPLS-DA model. (E) Correlation coefficient matrix thermograph illustrating the functional correlation between the significantly altered metabolites in plasma.

The correlation coefficient is expressed by color, blue is positive correlation and red is negative correlation. The darker the color, the stronger the correlation.

Frontiers in Veterinary Science | www.frontiersin.org 8 February 2022 | Volume 9 | Article 703051

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Yan et al. Pathogenesis of DHD in Calves

FIGURE 5 | Relationship between fecal microorganisms and plasma

metabolites. (A) Heat map summarizing the correlation between significantly

different fecal microbiota and significantly altered metabolites in plasma (red,

positive correlation; green, negative correlation). ***Indicates the significant

microbiota-metabolite correlations (|cor| > 0.75 and P < 0.01). (B) Network

diagram of significant microbiota-metabolite correlations. The circle represents

the altered bacteria, and the rectangle represents the altered metabolites.

(42, 43). In present study, 16S rDNA gene sequencing was
performed to investigate the alteration of fecal microbiota in
DHD. There were significant differences in the species abundance
and composition of fecal microbes between DHD calves and
healthy calves, which suggested that DHD may be related to
the significant changes of the intestinal microbiota composition.
Compared with healthy calves, the proportion of Bacteroidetes
in calves with DHD was significantly down-regulated, but
Proteobacteria was significantly up-regulated. Proteobacteria is

the most abundant bacterial phylum in the intestinal microbiota
of DHD calves, and it can produce lipopolysaccharide (LPS),
which in turn induces inflammation (44). The ratio of Firmicutes
to Bacteroidetes is widely accepted to play an important role in
maintaining normal intestinal homeostasis, and the dysbiosis of
this ratio can lead to some diseases (45, 46). In some diarrhea-
related diseases, Bacteroidetes were lower, and Firmicutes were
higher (47, 48). The Firmicutes/Bacteroidetes ratio was also
significantly increased in calves with DHD, which reflected the
disorder of the gut microbiota. At the genus level, Escherichia-
Shigella and Enterococcus were remarkably higher in DHD
calves. Escherichia-Shigella was the leading agent in the causes
of diarrhea (49, 50). Increased Enterococcus has also been
associated with some diarrhea-related diseases (51). We also
detected a significant decrease in Bacteroides, Subdoligranulum,
Ruminococcus_2, and Sutterella in fecal samples. Bacteroides
have been found to be negatively correlated with colonic
proinflammatory cytokines such as IL-6, IL-1β, and TNF-α
(52), and Sutterella was negatively associated with inflammation
(53). Thus, we speculated that an increased inflammatory
response occurred in calves with DHD. Lachnoclostridium is
associated with the production of short-chain fatty acids in
the gut (54), and its significant decrease in DHD calves may
be related to the significant changes in unsaturated fatty acid
metabolism pathways. Subdoligranulum has also been found to
be significantly decreased in a lot of intestinal diseases (55, 56).
In this study, the correlation network analysis showed that DHD
was associated with changes in the relevant structure and possible
interaction structure of the intestinal microbiota. A similar
disruption of the intestinal microbiota interaction network has
been observed in other diseases presenting with diarrhea (57, 58).
However, further studies are needed to determine the real role
of intestinal microbiota interaction networks in the development
of DHD.

Plasma metabolic profiles of DHD and healthy calves were
significantly different. A total of 194 metabolites in plasma were
identified as significantly different between the two groups (VIP
> 2 and P < 0.05), which could serve as potential biomarkers of
DHD in calves. Meanwhile, eight metabolic pathways were found
to be associated with these differential metabolites, including
pathways of glycerophospholipids, arachidonic acid, linoleic acid,
and alpha-linolenic acid. Some of these metabolic pathways
have also been shown to be the major disordered pathways in
serum of animals with DHD (9, 59). Glycerophospholipids, the
major components of cell membranes, alleviated diarrhea-related
diseases (49, 60). Arachidonic acid, an important unsaturated
fatty acid, is associated with many diseases including DHD (9, 61,
62). Linoleic acid is a necessary fatty acid that has been reported
to be helpful in relieving diarrhea (63). It was reported that the
increasing intake of essential fatty acids such as linoleic acid
and alpha-linolenic acid improved immune status (64). Although
some metabolites may be related to the pathogenesis of DHD,
these metabolites still need to be quantitatively analyzed through
targeted metabolomics, and the role of these metabolites in DHD
pathogenesis should also be determined in future study.

Recently, a large number of studies have shown that
metabolic changes and intestinal microbiota disorders were
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parallel during the disease progression (65, 66). Dysbiosis of
the gut microbiota was accompanied with the alteration of
plasma metabolome in calves with DHD. Spearman correlation
analysis was performed to explore the correlation between the
changes in fecal microorganisms and the plasma metabolites,
and the results suggested that intestinal flora disturbance is
related to metabolic phenotypic changes. Escherichia-Shigella
was significantly correlated with metabolites involved in
metabolism of arachidonic acid and alpha-linolenic acid,
such as phosphatidylcholine and lecithin. Fournierella and
Ruminiclostridium_9 were significantly correlated with L-
glutamate and sphingomyelin which are related to arginine, and
proline metabolism, and the sphingolipid signaling pathway.
These metabolites can also be produced by gut microbiota. In
diarrhea cases, the disturbances in the metabolism of amino acids
and glucose, and disorders of intestinal microecology were often
observed (16, 67, 68). These studies also implied that the fecal
microbes in DHD calves are closely related to the metabolic
phenotype of the host.

Our results should be considered in the context of several
constraints. First, the animal sample sizes were small, and larger
cohorts need to be evaluated in future studies. Second, we did
not verify the biomarkers obtained by other methods, and future
studies should assess longitudinal microbiota before and during
the onset of DHD, and expand analyses such as host responses
and transcriptomics to more fully understand the pathogenesis
of DHD, with a view of identifying targets for drug development.

CONCLUSION

DHD disturbed the composition of fecal microbiota and
plasma metabolites. The changes in the abundance of fecal
microorganisms, especially Escherichia-Shigella, Fournierella,
and Ruminococcus_2, and the concentrations of plasma
metabolites, especially lecithin, phosphatidylcholine, and choline
phosphatid, might affect the progression of DHD by interfering
with metabolism of arachidonic acid, alpha-linolenic acid,
linoleic acid, and glycerophospholipids. These significantly
altered metabolic pathways and microorganisms may serve
as diagnostic markers and potential therapeutic targets for
DHD in calves. This finding provided a new insight for
further investigating the mechanism of this kind of disease
in calves.
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