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The identification of new bioactive compounds derived from medicinal plants with 
significant therapeutic properties has attracted considerable interest in recent years. 
Such is the case of the Tripterygium wilfordii (TW), an herb used in Chinese medicine. 
Clinical trials performed so far using its root extracts have shown impressive therapeutic 
properties but also revealed substantial gastrointestinal side effects. The most promising 
bioactive compound obtained from TW is celastrol. During the last decade, an increasing 
number of studies were published highlighting the medicinal usefulness of celastrol in 
diverse clinical areas. Here we systematically review the mechanism of action and the 
therapeutic properties of celastrol in inflammatory diseases, namely, rheumatoid arthritis, 
systemic lupus erythematosus, inflammatory bowel diseases, osteoarthritis and allergy, 
as well as in cancer, neurodegenerative disorders and other diseases, such as diabetes, 
obesity, atherosclerosis, and hearing loss. We will also focus in the toxicological profile 
and limitations of celastrol formulation, namely, solubility, bioavailability, and dosage 
issues that still limit its further clinical application and usefulness.
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Abbreviations: TW, Tripterygium wilfordii; RA, rheumatoid arthritis; CD, Crohn’s disease; CRP, C-reactive protein; ACR, 
American College of Rheumatology; DMARD, disease-modifying antirheumatic drug; MTX, methotrexate; DM, diabetes 
mellitus; LPS, lipopolysaccharide; IL, interleukin; PEG2, prostaglandin E2; SCW, Streptococcus cell wall-induced arthritis; 
CIA, collagen-induced arthritis; AIA, adjuvant-induced arthritis; TNF, tumor necrosis factor; NO, nitric oxide; iNOS, inducible 
nitric oxide synthase; COX, cyclooxygenase; NF-kB, nuclear factor kappa B; AP-1, activator protein 1; IFN-γ, interferon gamma; 
LN, lymph node; SA, spleen adherent; STAT3, signal transducer and activator of transcription 3; RORγ, RAR-related orphan 
receptor gamma; Th, T helper; MMP, metalloproteinase; ERK, extracellular signal-regulated kinase; VEGF, vascular endothelial 
growth factor; Anti-CCP, anti-cyclic citrullinated peptide; RANTES, regulated on activation, normal T  cell expressed and 
secreted; MCP-1, monocyte chemoattractant protein-1; GRO/KC, chemokine ligand 1; MIP-1α, macrophage inflammatory 
protein 1-alpha; CCR1, C-C chemokine receptor type 1; MD2, lymphocyte antigen 96; TLR, Toll-like receptor; FLS, fibroblasts; 
MyD88, myeloid differentiation primary response gene 88; HIF, hypoxia-inducible factor; CXCR, C-X-C chemokine receptor; 
NET, extracellular trap; SYK, spleen tyrosine kinase; MEK, serine/tyrosine/threonine kinase; IkBα, nuclear factor of kappa light 
polypeptide gene enhancer in B-cells inhibitor, alpha; SIC, synovium-infiltrating cells; Treg, T regulatory; RANKL, receptor 
activator of nuclear factor kappa-B ligand; M-CSF, Macrophage colony-stimulating factor; TAK1, transforming growth factor 
beta-activated kinase 1; OPG, osteoprotegerin; Trap, tartrate-resistant acid phosphatase; Ctsk, Cathepsin k; NFATc1, nuclear 
factor of activated T-cells 1; MAPK, mitogen-activated protein kinase; PTH, parathyroid hormone; TRACP5b, tartrate-resistant 
acid phosphatase 5b; CTX-I, cross-linked C-telopeptide of type I collagen; DPD, deoxypyridinoline; AS, ankylosing spondylitis; 
PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; CB2, cannabinoid receptor-2; SLE, systemic lupus erythematosus; UC, 
ulcerative colitis; PBMCs, peripheral blood mononuclear cells; NLRP3, NLR family pyrin domain containing 3; RIP3, receptor-
interacting serine-threonine kinase 3; MLKL, mixed lineage kinase domain-like pseudokinase; LITAF, LPS-induced-TNF-α-
factor; mTOR, mechanistic target of rapamycin; PCNA, proliferating cell nuclear antigen; EMT, mesenchymal transition; SCD1, 
stearoyl-CoA desaturase-1; OA, osteoarthritis; HSP, heat shock protein; TIMP, inhibitor of metalloproteinase; FcεRI, Fc epsilon 
receptor I; PKC, protein kinase C; ROS, reactive oxygen species; JNK, c-Jun N-terminal kinases; AR, androgen receptor; TRAIL, 
TNF-related apoptosis-inducing ligand; MRC, mitochondrial respiratory chain; AMPK, AMP-activated protein kinase; ErbB2, 
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FiguRe 1 | Chemical structure of celastrol. The chemical formula of celastrol 
is C29H38O4 [adapted from Ref. (1)].
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iNTRODuCTiON

The identification of bioactive compounds derived from medici-
nal plants has attracted considerable interest in recent years 
for their strong and in some cases unique, anti-inflammatory, 
anticancer, and neuroprotective properties. One representa-
tive example is the Tripterygium wilfordii (TW) plant, used in 
Chinese medicine to treat an array of immunological disorders, 
including rheumatoid arthritis (RA), with promising results in a 
series of clinical trials. TW is a perennial vine of the Celastraceae 
family, also called Thunder God Vine or “lei gong teng” (Chinese 
name). This plant is poisonous but its root pulp contains several 
therapeutic compounds, including terpenoids, alkaloids, and 
steroids. The chemical structure of its purified compounds 
has been determined by nuclear magnetic resonance and mass 
spectroscopy. More than 46 diterpenoids (such as triptolide), 
20 triterpenoids (e.g., celastrol), 21 alkaloids (like euonine), 
and other small molecules have been identified from TW. The 
most abundant and promising bioactive compound derived 
from the root of this plant is celastrol, also called tripterine, 
which possess a broad range of biological activities. Celastrol 
(3-hydroxy-9β,13α-dimethyl-2-oxo-24,25,26-trinoroleana-
1(10),3,5,7-tetraen-29-oic acid) is a pentacyclic triterpenoid 
(Figure 1) that belongs to a small category of natural products 
of triterpene quinine methides.

Here, we systematically review the therapeutic properties of 
celastrol in chronic diseases and its toxicological profile, illustrat-
ing its potential clinical application.

CLiNiCAL eXPeRieNCe wiTH THe uSe 
OF Tw

Clinical trials using TW plant extracts have already been con-
ducted in inflammatory diseases.

TW is generally used in the treatment of Crohn’s disease 
(CD) in China. Its therapeutic benefits have been explored in 
an open-label clinical trial conducted in 20 CD patients treated 
with TW tablets (120  mg daily) for a period of 12  weeks. 
CD Activity Index diminished during the first 8  weeks, and 
the endoscopic improvement was observed after 12  weeks. 
Inflammatory parameters, including c-reactive protein (CRP), 
also decreased (2). In addition, two placebo-controlled trials 
and one prospective single-blind clinical trial have studied the 
therapeutic potential of polyglycoside TW (1 mg/kg daily) in the 
prevention of postsurgical relapses in patients with CD. Results 
from these studies suggest that this is an effective and well-
tolerated drug (3–5). Recently, a randomized clinical trial has 
shown that TW (1.5 mg/kg/day) was comparable to azathioprine 
to prevent postoperative clinical recurrence of CD, although less 
efficient in preserving endoscopic remission at week 52 (6). An 
additional clinical trial enrolled 198 patients with CD, which 
were randomized to receive mesalazin (3  g/day), low-dose 
TW (1.5  mg/kg/day) or high-dose TW (2.0  mg/kg/day) over 
a 52-week period (7). Importantly, data have shown that less 
patients in the high-dose group (7/71) had clinical recurrence 
in comparison with patients in the low-dose (15/68, p = 0.047) 
or patients treated with mesalazin (17/59, p = 0.006). However, 
patients under mesalazin treatment had less adverse effects than 
those treated with high-dose (p = 0.029) and low-dose of TW 
(p = 0.048) (7).

The benefits of TW plant extracts have also been tested in 
psoriatic patients. A randomized clinical trial has shown equal 
efficacy of TW (20  mg, three times a day) and acitretin for 
the treatment of psoriasis vulgaris for 8 weeks in a total of 115 
patients (8).

Additionally, several clinical trials with TW have already 
been conducted in RA. Uncontrolled trials from 1980s enroll-
ing more than 100 RA patients have shown 87% response rates. 
To evaluate these claims, in 2002, a study recruited 35 patients 
and randomized them to placebo, low (180  mg/day) or high 
(360 mg/day) dose of an ethanol/ethyl acetate extract of TW (9). 
After 5 months, 80% of the high-dose and 40% of the low-dose 
groups had achieved an American College of Rheumatology 20% 
(ACR20) improvement response criteria, compared with none of 
the patients taking placebo. Both physical function and inflam-
mation were improved. Diarrhea was the most common adverse 

Erb-B2 receptor tyrosine kinase 2; AML, acute myelogenous leukemia; JAK, Janus kinase; ER, endoplasmic reticulum; PERK, 
ER stress; eIF2, eukaryotic initiation factor 2; ATF, activating transcription factor; CHOP, C/EBP homology protein; GSK3β, 
glycogen synthase kinase 3 beta; IP3R, inositol trisphosphate receptor; EGFR, epidermal growth factor receptor; PARP, poly 
(ADP-ribose) polymerase; IKK, IkappaB kinase; HSF, heat shock transcription factor; NEMO, NF-kappa-B essential modula-
tor; TRAF, TNF receptor associated factor; BACE-1, β-site amyloid precursor protein cleaving enzyme 1; EAE, experimental 
autoimmune encephalomyelitis; PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; Sirt3, NAD-
dependent deacetylase sirtuin-3; CCL2, chemokine (C-C motif) ligand 2; POMC, pro-opiomelanocortin; AgRP, Agouti-related 
protein; NPY, Neuropeptide Y; LDL, low-density lipoprotein; apoE, apolipoprotein E; LOX-1, lectin-like oxidized low-density 
lipoprotein receptor-1; EPC, endothelial progenitor cell; LD, lethal dose.
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event followed by nausea. A systematic review of a total of seven 
randomized controlled trials was done in 2009 by Jiang and col-
leagues to evaluate the efficacy and safety of TW in the treatment 
of RA (10). An interesting conclusion was that although TW was 
clinically as effective as disease-modifying anti-rheumatic drugs 
(DMARDs), no effect was observed in delaying bone erosions. 
However, these are small sample size trials and in six of them 
there were some methodological limitations that can have pro-
duced relevant biases. Subsequently, Goldbach-Mansky’s group 
enrolled 121 RA patients and randomly assigned them to receive 
TW extract (60 mg, three times daily) or sulfasalazine (11). After 
6 months, 68% of those treated with TW and only 36% of those 
under sulfasalazine reached an ACR20 response. More patients in 
the sulfasalazine group experienced moderate or severe adverse 
effects. The most frequent side effects in patients receiving TW 
were diarrhea, nausea, dyspepsia, abdominal pain, and upper 
respiratory tract infection (11). In 2012, an interesting concept 
was tested in a randomized controlled, single-blind clinical trial 
that used external application of TW extracts in 67 active RA 
patients with positive results and only referring two cases of mild 
skin allergy (12). This result has been also reported by Cibere 
et al. (13). In 2013, due to inconsistency in some clinical trial data, 
Liu et  al. performed a meta-analysis of randomized controlled 
trials. In this review, authors have concluded that TW extracts 
are a sort of "herbal DMARD" with a similar efficacy to synthetic 
DMARDs in RA treatment and that well-designed confirmatory 
randomized controlled trials should be done (14). Recently, 
Zhang and co-workers have shown in a multicenter, open-label, 
randomized controlled trial that combined therapy of methotrex-
ate (MTX) and TW was more effective than MTX monotherapy 
in the treatment of active RA patients (15, 16). In this study, about 
52.7% of the 207 patients experienced adverse events, which were 
seen in 46.4, 62.3, and 49.3% of patients receiving TW (20 mg, 
three times per day), MTX (12.5  mg/week), and TW  +  MTX, 
respectively (p =  0.136). The most common adverse event was 
mild gastrointestinal side effect, reported by 43.5% of patients 
on MTX and by 34.8% of those receiving the combination 
(16). According with this reported experience, combining both 
medications might be a good strategy to decrease the amount of 
MTX needed, which may reduce the toxic effects that can limit 
MTX long-term treatment (17). This report is in accordance with 
an observation from 2001, where 70 RA patients receiving MTX 
combined with small doses of TW polyglycoside (10 mg, three 
times a day) had a better effect and less adverse reactions than 
monotherapy with MTX (18). Finally, an interesting clinical trial 
has been conducted in order to evaluate the efficacy and safety 
of etanercept plus TW (10  mg, three times per day) in elderly 
patients with active RA. Etanercept plus TW had an equivalent 
therapeutic effect to that of Etanercept plus MTX and were both 
well tolerated (19). Altogether, these clinical trials show relevant 
data regarding the use of TW in RA treatment; however, there 
are limitations in their design, including the open-label design, 
short duration (6 months), and lack of radiological assessment. 
Although TW extracts showed efficacy in the symptomatic treat-
ment of RA patients, it is still unclear if it provides structural 
damage control.

Regarding the clinical experience with TW in cancer, two 
water-soluble derivatives of triptolide (TW diterpenoid, a differ-
ent class from celastrol) have been synthesized (PG490-88 and 
F60008) and approved for entry into a Phase I clinical trial for the 
treatment of solid tumors. PG490-88 will be tested in a Phase I 
clinical trial for prostate cancer in USA (20). Also, a phase I trial 
was performed with F60008 given intravenously in 20 advanced 
solid tumors patients in a total of 35 cycles. The most frequent 
side effects were mild anemia, fatigue, nausea, vomiting, diar-
rhea, and constipation. Two lethal events were observed and the 
high inter-individual variability rendered this derivative far from 
optimal (21).

In the case of neurodegenerative disorders, no clinical data 
are available about the use of TW. A study regarding the use of 
celastrol in amyotrophic lateral sclerosis concludes that further 
preclinical data, human toxicity, and pharmacokinetic results are 
required to proceed with trials (22).

The therapeutic effect of TW extracts has also been evalu-
ated in diabetic patients. A prospective clinical trial enrolled 45 
patients with type 2 diabetic kidney disease, randomly divided 
into three groups: TW (1–2 mg/kg/day), irbesartan (150–300 mg/
day), and TW combined with irbesartan. Data have shown that 
treatment with TW for 12 weeks may be effective in preventing 
podocyte injury with a synergistic protective effect with irbesar-
tan (23). Another clinical trial has been performed to evaluate 
the efficacy of TW in the treatment of type 2 diabetes mellitus 
(DM)-induced nephropathy. A total of 65 patients were enrolled 
in this 6-month, prospective, controlled study, and randomized 
into treatment groups: 120 mg/day of TW extract for 3 months, 
followed by 60 mg/day for 3 more months, or 160 mg/day of vals-
artan for 6 months. It was found that TW can significantly reduce 
the urine protein levels (24). Similar nephroprotective effects for 
TW preparations have been described in a meta-analysis of ran-
domized controlled trials of chronic kidney disease patients (25).

A clinical trial, in China, also tested the use of TW in human 
kidney transplantation (26). Rejection occurred in 4.1% of 
patients treated with TW versus 24.5% of control patients, 
showing efficacy in the prevention of renal allograph rejec-
tion. All patients tolerated well TW administration during 
the 5  years of the study (26). This interesting potential of TW, 
which was already demonstrated in different in vitro and in vivo  
experimental set-ups, may be of interest in several medical areas.

In summary, clinical trials have only tested TW plant extracts. 
Despite its potential clinical usefulness, the sale of TW has been 
prohibited in many countries because the misuse of the herb can 
cause severe consequences, including diarrhea, nausea, and infer-
tility. Even an apparent non-toxic dose may cause antifertility 
effects in men, male rats, and guinea pigs due to oral administra-
tion of some toxic components of TW extracts. Unfortunately, 
in men, this dose is only one-third of the recommended dose for 
the treatment of RA or skin diseases (27–29). As such, treating 
patients with TW bioactive compounds with known pharma-
cological properties may circumvent toxicological limitations.  
As stated before, celastrol is the most abundant bioactive com-
pound existing in TW and these impressive therapeutic proper-
ties support the growing interest on this compound.
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FiguRe 2 | Celastrol in the treatment of rheumatoid arthritis (RA). Schemes illustrate the main anti-inflammatory properties and molecular targets of celastrol in the 
physiopathology of RA, as a prototype of an inflammatory disease. Celastrol has several cellular targets, interfering with the production of cytokines, chemokines, 
and inflammatory mediators; inhibiting cell invasion and proliferation; and suppressing bone resorption and thus constitutes a potential candidate for the treatment of 
inflammatory diseases.
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ANTi-iNFLAMMATORY PROPeRTieS OF 
CeLASTROL

The therapeutic usefulness and anti-inflammatory properties 
of celastrol have been studied in several inflammatory diseases, 
including RA, ankylosing spondylitis, systemic lupus erythema-
tosus (SLE), inflammatory bowel disease, osteoarthritis (OA), 
allergy, and skin inflammation.

Rheumatoid Arthritis
RA is a chronic inflammatory immune-mediated disease 
characterized by polyarthritis and joint damage. Both immune 
cells and cytokines play crucial roles in the pathogenesis of this 
disease. The anti-inflammatory properties of celastrol in this 
condition have so far been attributed to the: (i) regulation of 
cytokine and chemokine production, (ii) regulation of inflam-
matory mediators expression; (iii) modulation of inflammatory 
cell functions, and (iv) osteoclast modulation and bone damage 
control (Figure 2).

Regulation of Cytokine, Chemokine, and 
Inflammatory Mediators’ Production
In 1991, Xu et  al. (30) have shown in  vitro that tripterine  
(celastrol) inhibits lipopolysaccharide (LPS)-induced interleukin 
(IL)-1β production from murine peritoneal macrophages and 
human monocytes, concanavaline A-activated IL-2 production 
by murine splenocytes, and prostaglandin E2 (PEG2) release from 
synovial cells. Moreover, in  vivo it possess disease-modifying 
activities in streptococcus cell wall-induced (SCW) and collagen-
induced (CIA) arthritis mouse models (31). Accordingly, Li et al. 
(32) have reported that tripterine inhibits paw swelling and bone 
destruction in adjuvant-induced arthritis (AIA) rats associated 
with a decrease in IL-1β mRNA in the synovial membrane and 
tumor necrosis factor (TNF) mRNA in hind paw tissue. Later, 
in vitro data have revealed that low concentrations (0.05–1 µM) 
of celastrol inhibit the production of nitric oxide (NO) and 
PEG2, accompanied by the decrease in iNOS and cyclooxygenase 
(COX)-2 protein, inhibit TNF and IL-6 release, and suppress 
the activity of nuclear factor kappa B (NF-kB) and activator 
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protein (AP)-1 in LPS-stimulated macrophages (33, 34). In vivo, 
Venkatesha et al. (35) have shown that celastrol possess antiar-
thritic activities in AIA rats. It inhibits IL-6, IL-17, and interferon 
(IFN)-γ mRNA in lymph node (LN) and spleen adherent (SAC) 
cells isolated from arthritic rats. In LN cells celastrol induces a 
reduction in pSTAT3 but not in RORγt, suggesting that it may 
interfere with IL-17 production by T helper (Th)17 cells rather 
than with Th17 cells differentiation. In addition, celastrol reduces 
IL-6 production, metalloproteinase (MMP)-9 and pERK in 
AIA-derived fibroblasts, with no effect on VEGF and MMP-2. 
Interestingly, it also reduces anti-CCP serum levels in AIA rats 
(35). The same group has reported that celastrol inhibits the 
production of proinflammatory cytokines (TNF and IL-1β) 
and chemokines (RANTES, MCP-1, and GRO/KC) by SAC 
cells isolated from AIA rats after treatment. It also inhibits the 
migration capability of these cells (36). Except for MCP-1, serum 
levels of these cytokines and chemokines were also decreased in 
celastrol-treated AIA rats. Additionally, the same results, together 
with a reduction in MIP-1α, were observed in synovial fibroblasts 
isolated from arthritic rats and cultured with celastrol. Regarding 
chemokine receptors, celastrol does not seem to have much effect 
on their cellular expression, besides CCR1 (36). Of note, CCR1 
correlates with the level of inflammation in experimental arthritis 
(37, 38).

Accordingly, in 2012 our group showed that celastrol decreases 
the secretion of both IL-1β and TNF in the THP-1 macrophage-
like cell line, associated not only with NF-kB inhibition but also 
with caspase-1 inactivation (39). In vivo, we observed that celas-
trol has anti-inflammatory effects both in an early and established 
phase of arthritis development, suppressing ankle swelling, joint 
inflammatory cell infiltration and proliferation, and serum IL-6 
levels in AIA rats (39, 40). This inhibitory effect in cellular infil-
tration and proliferation may prevent and treat synovial pannus 
tissue development characteristic of RA patients and responsible 
for bone damage.

Recently, it was found that celastrol inhibits LPS-induced 
cytokine production in macrophages by blocking LPS bind-
ing to MD2 from the MD2/TLR4 complex, inhibiting TLR4 
signaling activation and thus the initiation of inflammatory 
responses (41).

This ability of celastrol to suppress the production of cytokines 
and chemokines might lead to the inhibition of leukocyte migra-
tion into the inflamed joints, contributing to its anti-inflammatory 
activity.

Modulation of Inflammatory Cell Functions
In human fibroblasts isolated from RA patients (RA-FLS), it 
has been shown that celastrol inhibits LPS-induced migration 
and invasion by inhibiting MMP-9 expression and activity 
(42). It inhibits MMP-9 transcription through the suppres-
sion of the binding activity of NF-kB in the promoter and the 
TLR4/MyD88/NF-kB pathway signaling (42). Previously, these 
authors have also reported that celastrol inhibits IL-17-induced 
migration and invasion of human RA-FLS by suppression of 
NF-kB-mediated MMP-9 expression and activity (43). In addi-
tion, under hypoxic conditions mimicking the synovial hypoxia 
of arthritic joints, it has been found that celastrol decreases 

hypoxia-induced FLS invasion by inhibiting HIF-1α-mediated 
CXCR4 transcription (44).

In 2015, our group has reported that celastrol restores synovial 
homeostasis in AIA rats, with a reduction in joint synovial CD3+ 
and CD19+ lymphocytes, associated with a suppression of bone 
erosions and a remarkable reduction in CD68+ macrophages, a 
marker of therapeutic efficacy in human RA and experimental 
arthritis. Importantly, neither blood biochemical parameters 
nor tissue histological structures revealed drug-induced toxicity 
associated with the intraperitoneally administration of 1 mg/kg/
day of celastrol for 18 days (40).

Interestingly, Yu et al. have shown in vitro that non-cytotoxic 
concentrations (≤10μM) of celastrol inhibit neutrophil oxida-
tive burst and extracellular trap (NET) formation through 
the inhibition of SYK/MEK/ERK and IkBα signaling cascade 
(45). Moreover, authors have shown that it decreases the 
levels of citrullinated histones, which are autoantigens in RA 
patients (45). Recently, Astry and colleagues have described, in 
synovium- infiltrating cells (SIC) from AIA rats, that celastrol 
reduces Th17 and increases T regulatory (Treg) cell frequencies, 
possibly favoring an anti-inflammatory/immunomodulatory 
local environment in the inflamed joints (46). In vitro, it inhibits 
Th17 and promotes Treg differentiation through the decrease of 
pSTAT3 as well as of IL-1β and IL-6 production (46). These data, 
together with our results showing that celastrol is more effective 
than Digoxin (specific RORγt inhibitor and hence suppressor of 
Th17 cells differentiation) in suppressing arthritis in AIA model 
(39), suggest that the combined effect of celastrol in both Th17 
and Treg cells is an advantage in the treatment of arthritis.

Osteoclast Modulation and Bone Damage Control
In 2010, Idris et  al. have shown in osteoblast/bone marrow 
 co-cultures that celastrol inhibits osteoclast formation and 
bone resorption, and suppresses IL-1β-induced receptor activa-
tor of nuclear factor kappa-B ligand (RANKL) expression in 
osteoblasts by NF-kB signaling inhibition (47). In bone marrow 
cultures, it suppresses M-CSF and RANKL-induced osteoclast 
formation and induces apoptosis, via inhibition of NF-kB, ERK, 
and c-Fos activation. In osteoblasts, it prevents TAK1 activation 
upstream of NF-kB and reduces cell viability and activity (47). 
These results suggest that, at least in vitro, celastrol suppresses 
both osteoclastic and osteoblastic activities, affecting not only 
bone resorption but also bone formation. Nanjundaiah and col-
leagues have found that celastrol suppresses inflammation and 
bone erosions in rats with AIA, with an increase of bone volume 
coupled with a decrease of osteoclast numbers (48). Authors 
have shown that it decreases the production of IL-1β, IL-6, 
IL-17, IL-18, and TNF by SIC cells harvested from arthritic rats, 
inhibiting RANKL production and decreasing RANKL/OPG 
ratio, consequently inhibiting osteoclastogenesis. Also, celastrol 
reduces MMP-9 production, which limits bone damage (48). 
More recently, Gan et al. have described that celastrol not only 
directly suppresses osteoclast formation and function, but also 
reduces the RANKL-induced expression of osteoclastic genes 
and transcriptional factors (49). Authors have demonstrated that 
it inhibits osteoclast differentiation and function in RAW264.7 
cells, with a reduction in osteoclastic genes (MMP-9, Trap, and 
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Ctsk) and in transcriptional factors (c-Fos, c-Jun, and NFATc1), 
possibly due to NF-kB and MAPK inhibition (49). These results 
suggest that celastrol acts both downstream of RANKL at the lev-
els of NF-kB activation and upstream targeting proinflammatory 
cytokine signaling. In vivo, these authors have also observed that 
it suppresses arthritis and ankle joint destruction in CIA mice, 
with a decrease in osteoclast numbers, as well as in osteoclastic 
genes and transcriptional factors (49).

Furthermore, data from our lab have revealed that celastrol 
is able to control inflammation-induced bone damage, with a 
reduction in articular cartilage degradation and bone erosions 
(40). In accordance, Liu and colleagues have observed in a mouse 
model of dexamethasone-induced secondary osteoporosis that 
celastrol not only improves lipid metabolism and reduces hyper-
calciuria, but also mitigates articular cartilage lesions, decreases 
NF-kB, MMP-1, and MMP-9 expression, and reduces serum 
PTH, tartrate-resistant acid phosphatase (TRACP)5b, CTX-I, as 
well as deoxypyridinoline (DPD), suggesting that it ameliorates 
abnormal bone metabolism (50).

In contrast to RA, ankylosing spondylitis (AS) is an inflamma-
tory and autoimmune disease mainly characterized by new bone 
formation in axial joints (51, 52). PGE2 modulates the anabolic/
catabolic process of bone, promoting bone remodeling through 
osteoblastic cell differentiation (53–55). It has been already 
reported that celastrol suppresses LPS-induced expression of 
PEG2 via the downregulation of COX-1 and COX-2 activation 
(33, 56). Recently, Zou et al. (57) have pointed out in vitro that 
celastrol inhibits the proliferation of PEG2-induced AS fibroblasts 
and their differentiation into an osteogenic phenotype, associ-
ated with a decrease in PI3K/Akt pathway and increase in Wnt 
inhibitors.

Therefore, data show that celastrol is effective in treating 
persistent synovitis and preventing cartilage and bone damage, 
which are the hallmarks of RA physiopathology. Remarkably, 
this bone-protective property of celastrol in arthritic models 
is further supported by studies performed in cancer models, 
as described next. Although the three main pharmacologi-
cal mechanisms of celastrol that contribute to its efficacy are 
already extensively studied in arthritis, most of the data results 
from in  vitro experiments, which may not completely reflect 
the in vivo complexity of the disease. Specifically, the protec-
tive property of celastrol against bone damage needs additional 
research in in vivo models with the inclusion of morphologic 
and mechanical testing.

Finally, the major complaint of patients with RA, or other forms 
of arthritis, is joint pain derived from joint inflammation and 
damage. Interestingly, Yang and co-workers have demonstrated 
in animal models of inflammatory pain that celastrol not only 
reduces the mRNA expression of IL-1β, IL-6, and TNF in mice 
paws but also has antihyperalgesic effects, possible mediated by 
the activation of cannabinoid receptor-2 (CB2) signaling (58). CB2 
inhibits proinflammatory factors release from inflammatory cells 
near nociceptive neuron terminals, reducing pain perception 
without centrally mediated side effects (59). This new interesting 
capability of celastrol should be further investigated in animal 
models of other diseases because it could be useful as an adjuvant 
therapy in different medical areas.

Systemic Lupus erythematosus
SLE is a chronic autoimmune inflammatory disease that affects 
multiple organ systems, prototypically characterized by high 
levels of circulating autoantibodies and glomerulonephritis. In 
2003, a study using the spontaneous (NZBxW)F1 mice model 
of experimental SLE has shown that treatment with 3 and 6 mg/
kg/day of celastrol reduces urinary protein excretion and serum 
anti-ds DNA autoantibodies, ameliorating clinical symptoms and 
survival rate (60). In agreement, Li et al. have also found in an 
experimental SLE mice model induced by active chromatin that 
administration of 12 mg/kg/day of celastrol decreases circulating 
anti-ss DNA, anti-ds DNA, and IgG antibodies, reduces serum 
NO and IL-10 production, and improves splenocyte proliferation, 
associated with amelioration of proteinuria and renal histological 
changes (61). Of note, these effects were comparable to 5 mg/kg 
prednisone in the treatment of experimental SLE (61).

inflammatory Bowel Disease
CD and ulcerative colitis (UC) are multifactorial chronic relaps-
ing inflammatory bowel diseases (62), both characterized by an 
imbalance between pro- and anti-inflammatory cytokines (63). In 
2004, a work from Pinna and colleagues has evaluated the effect 
of celastrol in CD patient’s biopsies of inflamed intestinal mucosa 
and peripheral blood mononuclear cells (PBMCs). Authors 
have described that celastrol inhibits proinflammatory cytokine 
production (IL-1β, IL-6, IL-8, and TNF) in LPS-activated PBMCs 
and biopsies from CD patients, possibly via NF-kB and p38 
MAPK inhibition (64). In mice models of DSS-induced colitis, it 
has been found that celastrol ameliorates acute intestinal injury 
and prevents the loss of intestinal epithelial homeostasis through 
the reduction of colonic oxidative stress, inhibition of NLRP3-
inflammasome and IL-23/IL-17 pathway, reduction of inflamma-
tory cytokines and increase in IL-10 and TNF levels, attenuation of 
neutrophil infiltration and upregulation of E-cadherin expression 
(65, 66). It also suppresses necroptosis death of colonic epithelial 
cells by upregulating caspase-8 and thus inhibiting RIP3/MLKL 
axis, avoiding the breakdown of the intestinal barrier and the 
chronic inflammatory process (66). In this study authors have 
suggested that the unexpected increase in TNF levels may be 
induced by the LPS-induced-TNF-α-factor (LITAF), indepen-
dently of NF-kB (66, 67). More recently, it has been shown that 
celastrol ameliorates experimental colitis in IL-10 deficient mice 
via the upregulation of autophagy of the colon tissue cells by 
PI3K/Akt/mTOR signaling downregulation (68).

UC is one of the three highest risk factors for developing 
colorectal cancer. Importantly, a study from Lin et  al. have 
demonstrated in a mice model of UC-related colorectal cancer 
(AOM/DSS mice model) that celastrol increases survival rate 
associated with a reduction in colonic neoplasms, prevents the 
upregulation of oncogenic markers namely, β-catenin, prolif-
erating cell nuclear antigen (PCNA), and dysfunctional p53, 
inhibits proinflammatory mediators and NF-kB activation and 
suppresses epithelial mesenchymal transition (EMT), through 
E-cadherin upregulation and N-cadherin, vimentin, and Snail 
downregulation (69). The same group has also found that celas-
trol inhibits cell proliferation in colorectal cancer cell lines and 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


7

Cascão et al. Celastrol: Potential and Limitations

Frontiers in Medicine | www.frontiersin.org June 2017 | Volume 4 | Article 69

inhibits tumor growth by reversing EMT in colonic xenografts 
(69). Finally, an interesting lipidomics report unrevealed that 
celastrol recovers lysophosphatidylcholine and sphingomyelin 
metabolism of DSS-induced colitis mice, partially by upregulat-
ing stearoyl-CoA desaturase-1 (SCD1) (an enzyme responsible 
for fatty acids desaturation) expression and restoring the altered 
balance between steric acid- and oleic acid-derived lipid species 
against proinflammatory signaling (70).

Osteoarthritis
OA is a multifactorial joint disease characterized by joint cartilage 
degradation. This pathology results from an imbalance between 
anabolic and catabolic activities of chondrocytes, with matrix 
MMPs, COX-2, and iNOS playing a central role in cartilage 
degradation. Inflammation of the synovium also occurs, though 
often mild compared to RA, which is primarily an inflammatory 
condition. This can happen as breakdown products from the 
cartilage are released into the synovial space and as cells lining the 
joint attempt to remove them. Interestingly, it has been found in 
human osteoarthritic chondrocytes that celastrol suppresses the 
expression of the catabolic mediators, MMP-1, MMP-3, MMP-
13, COX-2, iNOS, and HSP90β, possibly through the inhibition 
of NF-kB activation (71).

Allergy
Allergic asthma is a common chronic inflammatory disease of 
the airways of the lung which is characterized by inflamma-
tory cells infiltration in lung tissues, hypersecretion of mucus 
by goblet cells, obstruction of the lung airway, and higher 
expression of Th2 cytokines (72). MMPs mediate airway tissue 
remodeling through regulation of basal lamina integrity and of 
the infiltration by inflammatory cells (73, 74). In 2004, Liu et al. 
have shown that celastrol suppresses airway inflammation in an 
allergic asthma mice model through the inhibition of histamine 
and eotaxin production in mast cells (75). Later, in the same 
animal model, it has been found that celastrol suppresses the 
ovalbumin-induced airway inflammation through the decrease 
in airway hyper responsiveness, inflammatory cell infiltration 
and tissue remodeling. In addition, celastrol also regulates the 
imbalance of MMP-2, MMP-9, and tissue inhibitor of metal-
loproteinase 1 and 2 (TIMP-1 and TIMP-2), which is caused by 
inflammatory cytokines produced via MAPK/NF-kB pathway 
in inflammatory cells (76). Furthermore, in  vitro data have 
revealed that celastrol regulates the expression of EMT-related 
proteins, by the inhibition of immunoglobulin Fc epsilon 
receptor I (FcεRI) signaling, involving protein kinase C (PKC), 
Rac1, ERK, and HSP90 (77). Also, it reduces skin inflammation 
in a Nc/Nga mice model of allergic atopic dermatitis and in a 
Balb/c mice model of skin inflammation, exerting antiallergic 
effects (77).

Altogether, data have highlighted that celastrol has great 
potential as an anti-inflammatory compound mainly due to 
its ability to inhibit the NF-kB pathway, interfering with the 
production of proinflammatory cytokines and chemokines, 
and also with inflammatory cells migration, proliferation, and 
activation.

ANTiCANCeR PROPeRTieS OF 
CeLASTROL

Since 2003 several publications have demonstrated the capacity of 
celastrol to contribute to the treatment of many types of cancer. 
Data from different tumor cell lines and animal cancer models 
have suggested that the anticancer properties of celastrol can be 
attributed to: (i) cell death activation, (ii) angiogenesis inhibi-
tion, (iii) treatment and radiotherapy sensitizing action, and (iv) 
 anti-invasive effect.

Cell Death Activation
Celastrol inhibits cancer cell progression and induces cell 
death in a broad range of cancer cell lines such as lung, breast, 
esopharyngeal, glioblastoma, prostate, hepatoma, myeloma, 
pancreas, colon, liver, melanoma, leukemia, osteosarcoma, and 
gastric cancer. Namely, it has been found that celastrol induces 
cell cycle arrest, apoptosis, and autophagy by the activation of 
reactive oxygen species (ROS)/c-Jun N-terminal kinases (JNK) 
signaling pathway (78) in osteosarcoma and by downregulation 
of miR-21 expression (79–81) in gastric cancer cell lines. This 
negative regulatory effect of celastrol on microRNAs to induce 
autophagy was described as well in androgen receptor (AR)-
positive prostate cancer cells. In these cells it induces autophagy 
by inhibiting the AR/miR-101 axis (82). Celastrol also suppresses 
AR signaling due to receptor degradation. This target to AR sign-
aling occurs via HSP90 inhibition or calpain activation (83, 84). 
Interestingly, in AR-negative prostate cancer cells, celastrol is still 
able to induce autophagy through HIF/BNIP3 activation (85). 
The inhibition of HSP90 by celastrol occurs due to its capacity to 
suppress the interaction of HSP90 with its co-chaperone Cdc37 
in pancreatic cancer cells (86). It dissociates the HSP90-Cdc37 
complex by interacting with Cdc37 (87), potentially inhibiting 
some oncogenic proteins. Also, Chadli et  al. have shown that 
celastrol inhibits p23, a HSP90 co-chaperon specific for steroid 
receptors, which is relevant for steroid-mediated cancers (88). 
Contradicting data propose that in fact it binds directly to the 
C-terminal region of HSP90α, inducing oligomerization and 
affecting some of its functions (89).

In addition to autophagy, celastrol is able to eliminate cancer 
cells by different apoptotic pathways, including (1) upregulation 
of death receptors in breast and colon cancer, enhancing TNF-
related apoptosis-inducing ligand (TRAIL)-induced apoptosis 
(90, 91); (2) activation of Fas/Fas ligand pathway in non-small-
cell lung cancer (92); (3) inhibition of mitochondrial respiratory 
chain (MRC) complex I, and consequently ROS accumulation 
inside cancer cells, in non-small-cell lung carcinoma, liver cancer 
(93), osteosarcoma (94) and hepatocellular carcinoma (95) cell 
lines; (4) mitochondrial dysfunction and PI3K/Akt/mTOR path-
way inhibition in triple negative breast cancer (96), melanoma 
cells (97) and several other types of cancer (98); (5) reduction 
in phosphorylated Akt, mTOR, and S6K and increase in AMP-
activated protein kinase (AMPK) phosphorylation in gastric 
cancer cell lines and xenografts (79); (6) AMPK-induced PLK-2 
pathway in breast cancer cell line (99); (7) destabilization of the 
ErbB2 and estrogen receptors in breast cancer cells (100, 101); 
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(8) activation of caspase-dependent and independent pathways 
in breast cancer cells (102); (9) inhibition of topoisomerase II in 
HL-60 leukemia cells (103); (10) mitochondrial instability, activa-
tion of caspases and downregulation AML1-ETO/C-KIT onco-
protein, thus inhibiting the Akt, STAT3 and Erk1/2 downstream 
pathways in acute myeloid leukemia (AML) t(8:21) translocation 
cell line (104); (11) inhibition of STAT3/Janus kinase 2 (JAK2) 
in hepatocellular carcinoma (105); (12) inhibition of Myb in 
AML cells, while not affecting normal hematopoietic progenitor 
cells (106); (13) induction of the unfolded protein response-
dependent cell death, endoplasmic reticulum (ER) stress, and 
PERK-eukaryotic initiation factor 2 (eIF2)–activating transcrip-
tion factor (ATF4)-C/EBP homology protein (CHOP) signaling 
in oral squamous cell carcinoma cell lines (107); (14) reduction 
of GSK3β levels in HeLa cells (108); (15) target proteostasis in 
human glioblastoma cells, potentiating the proteotoxic stress 
response of HSP inhibitors (109); (16) targeting AR, ERG, and 
NF-kB signaling pathways in prostate cancer (110, 111); (17) 
upregulation of miR-146a expression, suppressing the NF-kB 
activity in gastric cancer (112); (18) inhibition of NF-kB in multi-
ple myeloma (113–115), prostate cancer (116, 117) and leukemia 
cells (118); and (19) downregulation of IL-6 gene expression via 
NF-kB inhibition in prostate carcinoma cells (119).

As in inflammatory diseases, one key target of celastrol in 
cancer physiopathology is the NF-kB pathway. It has been dem-
onstrated in prostate cancer, in  vitro and in  vivo, that celastrol 
can induce proteasomal inhibition. This inhibition leads to the 
accumulation of ubiquitinated Ikβ-α proteins that sequester the 
cytoplasmic components of the NF-kB complex, consequently 
causing apoptotic cell death (116, 120). This ability of celastrol 
to inhibit NF-kB was also observed in breast cancer xenografts, 
with a tumor growth decrease of approximately 60% (34). It could 
also augment the apoptotic effects driven by TNF and chemo-
therapeutic agents, through the suppression of both inducible 
and constitutive NF-kB activation (34).

In addition to autophagy and apoptosis, celastrol may also 
induce paraptosis, another form of programmed cell death. 
The inositol trisphosphate receptor (IP3R)-mediated release of 
Ca2+ from the ER induced by celastrol and its subsequent mito-
chondrial Ca2+ uniporter-mediated influx might lead to a major 
expansion of mitochondria and ER, and thus to paraptotic cell 
death. This mechanism has been already descried in breast and 
colon cancer cell lines (121).

Angiogenesis inhibition
Besides cell death, the anticancer properties of celastrol can be 
also attributed to tumor angiogenesis inhibition. The inhibitory 
effect of celastrol on angiogenesis is mediated by the suppression 
of HIF-1α, through HSP90 (122) and mTOR/p70S6K/eIF4E 
pathway inhibition and ERK1/2 phosphorylation (123, 124). 
This inhibition of HIF-1α leads to the decrease of its target genes, 
such as the VEGF, that are crucial in the angiogenic process. 
Nonetheless, it has been shown in human glioma in  vitro and 
in xenografts that celastrol does not seem to have an effect on 
VEGF, but rather in the expression of VEGF receptors (125, 126). 
On the contrary, a recent study has demonstrated that short-
time exposure to celastrol did not alter HIF-1α mRNA levels. 

Alternatively, it induces HIF-1α protein accumulation in different 
cancer cell lines in an oxygen-independent manner via ROS and 
Akt/p70S6K signaling activation, promoting the transcription of 
VEGF and Glut-1 genes (85). These results are contradictory and 
raise concerns of radiotherapy resistance triggered by low-dose 
radiation-induced HIF-1α (127, 128). As described above, data 
also seems to support the inhibitory effect of celastrol upon HIF-
1α in the context of arthritis.

Treatment and Radiotherapy Sensitizing 
Action
Another interesting anticancer mechanism of celastrol is its 
radiosensitizing effect. Specifically, celastrol can overcome tumor 
resistance to radiotherapy in prostate (129) and lung cancer cells 
(130, 131). This radiosensitizing effect was correlated with sig-
nificant decreases in HSP90 clients, including epidermal growth 
factor receptor (EGFR), ErbB2, and survivin, and with an increase 
in p53 (130). The enhanced cytotoxic effects of ionizing radiation 
induced by celastrol on human lung tumor cells were also mediated 
by ROS production (131). Moreover, Wang and colleagues have 
found that incubation with celastrol after chemo-drug exposure 
causes persistent DNA damage and apoptosis of lung cancer cells 
(132). This data was confirmed in vitro and in vivo using the PC-3 
human prostate cancer model (129), in which celastrol induced 
a reduction of DNA repair capacity, thus enhancing therapeutic 
efficacy. Recently, results from an in vitro study in non-small-cell 
lung cancer indicate a potential increase in treatment sensitivity 
due to celastrol-mediated ATF2/cJUN inhibition (133). In leuke-
mia cells, a study has highlighted the ability of celastrol to induce 
chemotherapy sensitization, associated with caspase-3 activation, 
PARP cleavage, and decrease in oncoprotein Bcr-Abl (134). 
Likewise, it depletes Bcr-Abl protein and induces mitochondrial-
dependent apoptosis in imatinib-resistant chronic myelogenous 
leukemia cells (135). Also, in temozolomide-resistant melanoma 
cells, combined therapy with celastrol has increased treatment 
sensitization, increasing cell death possibly via NF-kB and MAPK 
pathways (136). Additionally, in some types of cancer, including 
lung, hepatocellular, and breast cancer, treatment resistance may 
be overcome by celastrol mainly due to its proapoptotic proper-
ties (100, 137–139).

invasion inhibition
Finally, studies have also suggested that celastrol inhibits tumor 
invasion. In lung adenocarcinoma cells, it has been shown that 
this compound inhibits TNF-induced invasive activity, which 
was correlated with the downregulation of NF-kB-mediated 
gene products and inhibition of MMP-9 (140). Similar results 
were also described in breast cancer cells (141). This enzymatic 
breakdown of the extracellular matrix constituents by MMPs is 
one critical early step for the metastatic process. In accordance, 
a study published by Mi et al. have demonstrated that celastrol 
induces breast tumor cells apoptosis and inhibits their invasion 
via downregulating TNF-induced MMP-9 expression, with no 
effect on MMP-1 and MMP-2 (142). Additionally, it has been sug-
gested that, apart from NF-kB inhibition, celastrol also inhibits 
invasion of hepatocellular carcinoma cells through the reduction 
of miR-224 expression, decreasing MMP-2 and MMP-9 protein 
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levels (143). More recently, data have proposed that the inhibition 
of metastasis in lung cancer cells occurs through the suppression 
of Akt signaling pathway and integrin expression (144). Also, in 
esophageal cancer cells, the antimetastatic effect of celastrol was 
attributed to the inhibition of Wnt signaling pathway and integrin 
expression (145). The role of integrin inhibition in this process 
was further pointed out in melanoma cancer cells. In these cells 
the inhibition of migration and invasion by celastrol was attrib-
uted to the regulation of integrin function and cell adhesion, 
partly via p38 MAPK activation (146). Likewise, in colon and 
pancreatic cancer cells, celastrol reduces tumor invasiveness by 
downregulation of the chemokine receptor CXCR4 expression 
(147). Importantly, Idris et al. have proven that celastrol can pre-
vent osteolytic bone metastasis, inhibiting osteoclastic formation 
and survival mainly due to the suppression of TAK1 and IkappaB 
kinase (IKK) complex activation (148).

Collectively these reports demonstrate that celastrol has 
potential to be used in the treatment of different types of cancer, 
mainly due to its capacity to inhibit transcription factors, such as 
NF-kB and HIF-1α, and mediators of protein homeostasis, like 
HSP90 chaperon. Moreover, the ability of celastrol to pass the 
brain blood barrier makes this compound an attractive thera-
peutic option in brain tumors and brain metastasis, which are 
associated with poor prognosis due to ineffective treatments and 
long-term toxicity.

NeuROPROTeCTive PROPeRTieS OF 
CeLASTROL

In the last decade, some studies have reported that celastrol 
is a promising neuroprotective agent in animal models of 
neurodegenerative diseases, such as Parkinson disease (149), 
Huntington disease (149–151), Alzheimer disease (152), and 
amyotrophic lateral sclerosis (153–155). Neurodegenerative 
diseases have been termed “protein misfolding disorders” and 
are characterized by the neuronal accumulation of protein 
aggregates (156–158). HSPs are repair agents which provide a 
line of defense against these misfolded, aggregation-prone pro-
teins (158). Importantly, celastrol leads to the induction of HSPs 
(159). It is capable of inducing a set of HSPs in differentiated 
neurons in humans and in rodent cell lines (160). Interestingly, 
celastrol induces a wider set of potentially neuroprotective HSPs, 
including HSP70B’, in differentiated human neurons compared 
to differentiated rodent neurons (160), which may suggest that 
it confers greater protective effects against neurodegenerative 
diseases in the human brain (149, 150, 153). The induction of 
HSP70 confers several important therapeutic benefits: (i) main-
tain cellular protein quality status; (ii) inhibit inflammatory 
responses by binding to the regulatory NF-kappa-B essential 
modulator (NEMO) unit in the IKK complex, reducing its 
activation (161, 162); and (iii) bind TNF receptor associated 
factor 6 (TRAF6) and suppress several immune responses 
(163). Therefore, this induction of HSP70 by celastrol explains 
its beneficial effects not only in neurodegenerative disorders but 
also in inflammatory diseases.

In a Parkinson’s mouse model (MPTP neurotoxin induced), it 
has been shown that celastrol attenuates dopaminergic neurons 

loss and dopamine concentration deficiency, accompanied by an 
increase in HSP70 expression and a reduction in inflammation 
with a decline in TNF and NF-kB production (149). Similarly, 
in a Huntington rat model (3-NP neurotoxin-induced), studies 
have demonstrated that celastrol protects from striatal damage 
and astrogliosis through the induction of HSP70 in dopaminergic 
neurons via heat shock transcription factor (HSF)-1 activation 
(149, 151). Also, using an experimental model of Parkinson’s 
disease in vitro, Choi et al. have revealed that celastrol protects 
human dopaminergic cells from injury and apoptosis and pre-
vents ROS generation and mitochondrial membrane potential 
loss (164). It inhibits cytochrome c release, Bax/Bcl-2 alterations, 
caspase-9/3 activation, and p38 MAPK activation (164). These 
data propose that celastrol protects dopaminergic cells through 
the inhibition of mitochondrial-dependent apoptotic pathway 
and preservation of mitochondria functions, as well as by the 
inhibition of p38 MAPK activation. Furthermore, using an 
in vitro cadmium-induced model of neurodegenerative diseases, 
it has been shown that celastrol prevents apoptosis in neuronal 
cells by inhibition of JNK and Akt/mTOR signaling pathways 
partly through the increase in their negative regulator PTEN 
(165). Surprisingly, Konieczny and colleagues have shown in 
in vitro and in vivo models of Parkinson disease that celastrol has 
no neuroprotective effects (166). Authors discuss that it seems to 
have a narrow therapeutic window, and suggest that it may have 
a biphasic effect with protective properties at low concentrations 
and toxic effects at higher concentrations. In accordance, in pro-
teasome inhibitor-lactacystin and mitochondrial toxin-rotenone 
in  vitro models of Parkinson’s disease, low concentrations of 
celastrol are able to partially attenuate cell damage (167). These 
discrepancies maybe a result of methodological differences 
among publications, namely cell culture conditions and animal 
models specificities.

Similar to what is observed in a transgenic mouse model of 
Huntington disease (151), it has been demonstrated that celas-
trol reduces the β-amyloid amount in an Alzheimer’s disease 
model (152). In vivo administration of celastrol in a transgenic 
model of Alzheimer’s disease reduces β-amyloid by inhibiting 
β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) 
via NF-kB (152). Recently, Chow and co-workers have demon-
strated that celastrol induces a set of HSPs (HSP27, 32, and 70) 
in rat cerebral cortical cultures, which are selectively impacted 
during the progression of this disease (168). It induces HSP70 
in neurons, and HSP27 and HSP32 in glial cells at dosages that 
do not affect cell viability (169). Additionally, it has been proven 
in vitro that celastrol reduces both LPS-induced cell death and 
β-amyloid production mainly through the increase in HSP70 but 
also by increasing Bcl-2 expression and reducing NF-kB, COX-2, 
and GSK-3β expression and oxidative stress (170). Furthermore, 
the activated microglia-derived proinflammatory factors, ROS 
and NO, have long been believed to be involved with neuroin-
flammation in neurodegenerative diseases, including Parkinson 
and Alzheimer’s disease (171). Thus, intervention of microglial 
activation has become an interesting therapeutic target for the 
treatment of these conditions (172). Of interest, celastrol exhibits 
anti-inflammatory activity in LPS-activated BV-2 microgial cells 
through the downregulation of ERK/MAPK phosphorylation 
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and NF-kB activation, which results in the inhibition of inflam-
matory mediators, such as IL-1β, TNF, and NO (173).

The therapeutic benefits of celastrol have also been elucidated 
in an amyotrophic lateral sclerosis animal model (G93A SOD1 
transgenic mice). It increases mice survival with an augment in 
neuronal numbers, a reduction in TNF and iNOS levels, and a 
rise of HSP70 levels in lumbar spinal cord (153). In addition, 
it has been demonstrated in the experimental autoimmune 
encephalomyelitis (EAE) mice model that celastrol inhibits 
pathogenic Th17  cell responses in peripheral LNs (154). This 
ability of celastrol to interfere with Th17 cells in favor of an anti-
inflammatory response was also found in the context of arthritis, 
as described above. In the EAE mice model, Abdin et al. (155) 
have further proven that celastrol ameliorates disease signs 
and relapse and causes a shift in the cytokine profile from Th1 
towards Th2 cell pattern. Authors have also shown that it reduces 
NF-kB expression, nitrites levels, TLR2 expression, and CD3+ 
T cell count (155).

Celastrol is thus a promising therapeutic candidate for the 
treatment of neurodegenerative diseases mainly via NF-kB and 
HSPs inhibition. These new highlights in the potential therapeu-
tic applications of celastrol still need intensive investigation due 
to dosage and toxicological limitations, especially concerning 
brain-related diseases.

THeRAPeuTiC PROPeRTieS OF 
CeLASTROL iN OTHeR DiSeASeS

The most recent data regarding the therapeutic applications of 
celastrol has emerged in diabetes, obesity, atherosclerosis, and 
hearing loss.

Diabetes
The exact mechanism underlying type 2 diabetes is still unclear 
despite the implication of processes such as mitochondrial dys-
function and inflammation (174). In an in vitro model of insulin 
resistance on 3T3-L1 adipocytes with mitochondrial dysfunction, 
it has been revealed that celastrol markedly improves metabolic 
functions with a reduction in ROS production and an increase in 
mitochondrial membrane potential via NF-kB pathway inhibition 
(1). Additionally, in an in vitro model of mitochondrial dysfunc-
tion and insulin resistance using human skeletal muscle cells, it has 
been shown that celastrol treatment improves insulin-stimulated 
glucose uptake activity, apparently via PI3K/Akt pathway, with 
significant enhancement of mitochondrial activities (175). It has 
also been demonstrated in these cell cultures that it amplifies the 
expression of AMPK protein and attenuates oxidative damage, 
PKC θ and NF-kB activation, leading to the reduction of IL-1β, 
IL-6, and TNF levels (175).

Type 2 diabetes is the leading cause of end-stage renal 
disease. In this context, it has been recently shown in vivo that 
celastrol treatment not only improved insulin sensitivity and 
glycemic control but also improved kidney structure and func-
tion, through both metabolic and anti-inflammatory effects, 
possibly via NF-kB inhibition (176). Additionally, diabetes often 
coexists with different metabolic-related syndromes, such as 
dyslipidemia, hypertension, and liver damage. In a rat model of 

type 2 diabetes, it has been demonstrated that celastrol reduces 
macrophage infiltration and downregulates the expression of 
TLR4, MyD88, and NF-kB, thus decreasing IL-1β and TNF in the 
hepatic tissue, which can delay the progression of diabetic liver 
inflammation and injury (177). Another chronic complication of 
diabetes is the reduction in muscle mass, strength, and physical 
capacity. Importantly, Guan et al. (178) have shown that celastrol 
exerts antioxidant effects on skeletal muscle, partly by activating 
the AMPK/PGC1α/Sirt3 signaling pathway, attenuating diabetic 
myopathy.

In type 1 diabetes, a study has suggested that celastrol is not 
effective in reducing disease incidence in NOD mice (179). Using 
a 25 mg/kg twice a week regimen, celastrol was found to slightly 
reduce blood glucose levels on the day after dosing, but not at 
2 days post administration (179), suggesting that it lowers blood 
glucose levels acutely. This might also indicate that this is not an 
effective dose or regimen. In fact, a study of celastrol pharma-
cokinetics has shown that its half-life is about 10 h in healthy rats 
(180). Contrarily, an in vitro study using RINm5F rat pancreatic 
β-cell line showed that celastrol regulates cytokine-induced cell 
death and proinflammatory responses by downregulating iNOS, 
COX-2, and chemokine (C-C motif) ligand 2 (CCL2) chemokine 
through NF-kB inhibition, exerting cytoprotective effects (181), 
which suggests that indeed it may be a therapeutic agent against 
type 1 diabetes.

Obesity
In obese condition, hyperleptinemia coexists with the loss of 
response to leptin, an inhibitor of food intake and inducer of 
energy expenditure. This phenomenon has been defined as leptin 
resistance and the restoration of its sensitivity is a useful strategy 
to treat obesity. Recently, in a hyperleptinemic diet-induced obese 
mice, celastrol has shown the ability to increase leptin sensitivity 
(182). It can restore the leptin signaling in neurons by overexpress-
ing anorexigenic peptides pro-opiomelanocortin (POMC) and/
or repressing orexigenic peptides [neuropeptide Y (NPY)/AgRP] 
(182, 183). Also, celastrol ability to increase mitochondrial func-
tion and HSF-1, a regulator of energy expenditure, through the 
activation of a PGC1α-dependent metabolic program in adipose 
tissues and muscles leads to an augment in energy expenditure 
and represents a possible therapeutic strategy to treat obesity and 
its metabolic consequences (184).

Atherosclerosis
Atherosclerosis is a multifocal, smoldering, chronic immuno-
inflammatory disease, which pathogenesis involves imbalanced 
lipid metabolism and a maladaptive immune response that lead 
to a chronic inflammation of the arterial wall. Importantly, in a 
rabbit experimental carotid atherosclerosis model, it has been 
recently shown that celastrol can effectively reduce the plaque 
ratio, the serum levels of low-density lipoprotein (LDL), and 
the expression of VEGF, suggesting an antiatherosclerotic 
effect (185). Another study has also found in a apoE(−/−) 
mouse fed with a high-fat/high-cholesterol diet that celastrol 
inhibits lectin-like oxidized LDL receptor-1 (LOX-1) and 
ROS, preventing atherosclerosis (186). In addition, it has been 
highlighted that the inhibition of NF-kB pathway was also 
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at least partially involved in this protective effect of celastrol 
(186). Atherosclerosis is also associated with a dysregulation 
of endothelial progenitor cells (EPCs). Importantly, in  vitro 
and in  vivo data recently showed that celastrol improves the 
functional integrity of EPCs, which allows an effective EPC 
transplantation, used in the treatment of cardiovascular and 
ischemic diseases (187, 188).

Hearing Loss
Hearing impairment can be temporary or permanent. It is com-
monly caused by mechanosensory hair cell death in the inner 
ear due to aging, noise trauma, chemicals, and therapeutics. 
Aminoglycoside antibiotics, one of the most used antibiotics, 
may cause ototoxicity (189). Considering that aminoglycoside-
induced hearing loss is irreparable and that its incidence is up to 
33% (189, 190), finding a therapeutic strategy has great interest. 
In this context, it has been recently found that celastrol provides 
protection against aminoglycoside-induced ototoxicity in vitro 
in utricles and in  vivo in mice receiving systemic kanamycin, 
via HSP32/HO-1 induction (191). Similar results were also 
observed in cisplatin-induced ototoxicity (192).

Altogether, the available data suggest that celastrol is a poten-
tial therapeutic molecule for the treatment of several chronic 
conditions but further studies are necessary to substantiate and 
deepen these conclusions.

TOXiCiTY AND LiMiTATiONS OF 
CeLASTROL FORMuLATiON

Despite the therapeutic potential of celastrol, further clinical 
application is still limited by low water solubility, reduced oral 
bioavailability, narrow window of dosage, and side effects.

Celastrol has poor water solubility (13.25  ±  0.83  mg/ml at 
37°C). Its solubility was studied by Qi et  al. (193) in various 
vehicles, and authors have shown that ethyl oleate, olive oil, the 
surfactants Labrasol and OP-10, and the cosurfactants PEG200, 
ethanol, butanol, and specially Transcutol P, were adequate sol-
vents for celastrol with a solubility >20 mg/ml.

Due to this poor water solubility, celastrol has low bioavailabil-
ity. A study from Zhang et al. (180) have demonstrated that oral 
administration of celastrol in rats results in ineffective absorption 
into the systemic circulation, with an absolute bioavailability of 
17.06%. Li et al. (194). suggest that besides low aqueous solubility 
in vivo metabolism and/or tissue distribution might also cause 
this poor bioavailability.

One great concern regarding the clinical use of celastrol is its 
narrow therapeutic window of dose together with the occurrence 
of adverse effects. Our own data showed in vivo that the doses of 
2.5 and 5 μg/g/day are effective and non-toxic in the treatment 
of arthritis in rats; however, lower concentrations immediately 
lose efficacy and higher concentrations show signs of toxicity 
(195). The same result has been recently described in Parkinson’s 
disease models (166). Similarly, in an osteosarcoma xenograft 
mouse model, it was described that treatment with celastrol at 1 
and 2 mg/kg reduced tumor growth (42.9–50.2%), but it caused 
5.7–9% weight loss in animals (78). Discrepancies exist in cel-
astrol dosing and toxicity, with data in rodents showing that at 

3  mg/kg there are adverse events and 27% mortality but other 
studies showing no toxic effects at this dose. In addition, there 
are reports showing an LD50 dose of 20.5 mg/kg and others sug-
gesting a 40% mortality at 4 mg/kg (42, 100, 116, 149, 166). One 
major side effect of celastrol administration might be infertility 
(29, 196). In fact, a study using mice spermatogenic cells suggests 
that Ca2+ currents inhibition by celastrol may cause antifertility 
effects (196). In addition, celastrol blocks ion conduction of 
cardiac Kir2.1 and hERG potassium channels and reduces chan-
nel density on cell surface upon chronic treatment (197), which 
may predict cardiotoxicity. Therefore, new extensive studies on 
celastrol in vivo regimen and toxicity are still needed.

Celastrol may have a dual effect, suppressing oxidative stress 
at nanomolar concentrations and inducing detectable ROS above 
1  µM. Specifically, in contrast to the ROS generation effect of 
celastrol in cancer cells, some studies have reported that celastrol 
has antioxidant properties on microglia and endothelial cells 
and attenuates hypertension-induced oxidative stress in vascular 
smooth muscle cells (198, 199). This discrepancy may be attrib-
uted not only to the difference between non-cancerous cells and 
cancer cells but also to dosage.

New STRATegieS FOR THe uSe OF 
CeLASTROL

To surpass the physicochemical and pharmacokinetic limitations 
of celastrol and to diminish the effective dose, several methodolo-
gies have been tested that can represent useful strategies, such 
as exosomes (200), lipid nanospheres (201), nanoencapsulation 
(202), polyamidoamine dendrimer nanocarriers (203), liposomes 
(204–206), polymeric micelles (207, 208), cell-penetrating 
peptides-coated nanostructured lipid carriers (194, 209–211), 
sugar-silica nanoparticles (212), and self-microemulsifying drug 
delivery system (193). For instance, recent data have shown 
that celastrol-loaded exosomes enhance free celastrol efficacy 
and reduce dose-related toxicity in lung cancer (200). Also, 
celastrol-loaded sugar-decorated mesoporous silica nanopar-
ticles have shown an increased specific anticancer activity with 
no induced toxicity in HeLa and A549 cells (212). In vivo, it has 
been shown that celatrol-loaded lipid nanospheres, liposomal 
celastrol, and solid self-microemulsifying dispersible tablets of 
celastrol significantly increase its oral bioavailability, increase 
efficacy, and diminishes the occurrence of side effects (193, 201, 
205). Although these strategies have demonstrated encouraging 
results both in vitro and in vivo, no tripterine preparation have 
completed the research phase and reached the market.

Depending on the desired therapeutic effect, the concentra-
tion range of celastrol is also highly variable. For this reason, it 
would be interesting to modify its chemical structure producing 
an effective and less toxic derivative or analog. Some studies have 
found correlations between celastrol domains and its properties. 
Structurally, atomic orbital energy of celastrol′s carbons C2 on 
A-ring and C6 on B-ring possess a great susceptibility towards a 
nucleophilic attack that gives celastrol antitumor activity against 
a vast spectrum of tumors (213, 214). Also, it was observed that 
the celastrol’s acidic carboxylate group was not required for its 
cytotoxic effect in several cancer cell lines, but instead its quinone 
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TABLe 1 | Overview of the mechanisms of action of celastrol in chronic diseases.

Pathology Pharmacological mechanism Molecular targets

Inflammatory 
diseases

Regulation of the production of cytokines, 
chemokines, and inflammatory mediators

Nuclear factor kappa B (NF-kB), activator protein 1, signal transducer and activator of transcription 
3 (STAT3), extracellular signal-regulated kinase (ERK), caspase-1, MD2/TLR4, mitogen-activated 
protein kinase (MAPK)

Modulation of inflammatory cell functions NF-kB, STAT3, hypoxia-inducible factor (HIF)-1α, SYK/MEK/ERK

Control of bone damage NF-kB, ERK, c-Fos, transforming growth factor beta-activated kinase 1 (TAK1), receptor activator 
of nuclear factor kappa-B ligand, mitogen-activated protein kinase (MAPK)

Antihyperalgesic effect CB2

Control of intestinal inflammation Reactive oxygen species (ROS), NLR family pyrin domain containing 3, interleukin (IL)-23/IL-17 
axis, E-cadherin, caspase-8, PI3K/Akt/mTOR

Regulation of lipid metabolism Stearoyl-CoA desaturase-1 (SCD1)

Suppression of epithelial mesenchymal 
transition

FcεRI, protein kinase C (PKC), Rac1, ERK, HSP90

Cancer Activation of cell death NF-kB, ROS/c-Jun N-terminal kinases (JNK) pathway, micro-RNAs, androgen receptor, HSP90, 
HIF/BNIP3, Fas/FasL pathway, mitochondrial respiratory chain complex I, PI3K/Akt/mTOR, 
AMP-activated protein kinase (AMPK), Erb-B2 receptor tyrosine kinase 2 (ErbB2) and estrogen 
receptors, caspases, topoisomerase II, AML1-ETO/C-KIT, STAT3/JAK2, Myb, ER stress-eIF2-
ATF4-CHOP, GSK3β, proteosomes

Inhibition of angiogenesis HIF-1α, HSP90, mTOR/p70S6K/eIF4E pathway, ERK1/2, ROS

Sensitization to treatment NF-kB, MAPK, EGFR, ErbB2, surviving, p53, ROS, ATF2/c-JUN, caspase-3, PARP, Bcr-Abl

Anti-invasive effect NF-kB, MMP-9, micro-RNAs, Akt, MAPK, Wnt signaling, CXCR4, TAK1, IKK

Neurodegenerative 
diseases

Inhibition of protein misfolding HSP, HSF-1

Protection of dopaminergic neurons HSP, HSF-1, NF-kB, cytochrome c, Bax/Bcl-2, caspase-9/3, MAPK, JNK/Akt/mTOR, PTEN

Reduction of β-amyloid NF-kB, HSP, Bcl-2, GSK-3β, ROS

Diabetes Amelioration of metabolic functions NF-kB, PI3K/Akt, AMPK, ROS, PKC

Protection of kidney and liver NF-kB, TLR4, MyD88

Reduction of diabetic myopathy AMPK/PGC1α/Sirt3

Obesity Induction of leptin sensitivity Pro-opiomelanocortin (POMC), NPY/AgRP, PGC-1α

Atherosclerosis Control of lipid metabolism NF-kB, low-density lipoprotein (LDL), lectin-like oxidized low-density lipoprotein  
receptor-1 (LOX-1), ROS

Hearing loss CO production and antioxidant activity HSP32/HO-1, JNK
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methide moiety (215). Different analogs of celastrol were already 
synthesized, and their neuroprotective properties against t-BHP-
induced cytotoxicity were studied in neuronal PC12 cells by Sun 
and colleagues. Authors have found that the compound CL12 
(celastrol coupled with tetramethylpyrazine) is more effective 
than the parent celastrol (216). In addition, celastrol derivatives 
with aromatic phenyl substituents appear to inhibit the growth of 
hepatocellular carcinoma patient-derived xenografts with reduced 
toxicity (217). Some structure modifications of celastrol were also 
carried out focusing on either the esterification or amidification 
of 20-carboxylic acid or the reduction products of A/B rings (215, 
216, 218, 219). Structural modifications at the C-2, 3 positions 
were described as inducers of heat shock response, while those 
at C-6 position lead to anticancer properties. However, previous 
studies also suggested that the intact quinone methide moiety was 
essential for its cytotoxic activity in cancer cells and neuroprotec-
tive effect (215, 216, 220).

CONCLuSiON

Accumulating evidence indicates that the anti-inflammatory, 
anticancer, and neuroprotective properties of celastrol can be 
mainly attributed to its ability to inhibit NF-kB, a central player in 
inflammation, cancer and neurodegenerative diseases. However, 
it also targets several other molecules, which allows celastrol to 
have a broad array of pharmacological mechanisms and potential 
therapeutic applications (Table 1). Celastrol is one of the main 
components of TW plant that has shown in clinical trials to be 
efficient in the treatment of different diseases, being generally 
well-tolerated, but with mild gastrointestinal side effects and 
possibly fertility issues. Despite the great therapeutic potential 
of celastrol, there are still some drawbacks in the process of 
developing it as a new drug. Hopefully, future preclinical studies 
will provide crucial information regarding celastrol formulation, 
pharmacokinetics, dosage, and toxicity for further optimization 
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of this compound. The development of new celastrol derivatives 
and analogs, with higher pharmacological activities and lower 
toxicological issues, seems to be the next logic step in the develop-
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