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In the central nervous system (CNS) neurons are classically considered the

functional unit of the brain. Analysis of the physical connections and co-

activation of neurons, referred to as structural and functional connectivity,

respectively, is a metric used to understand their interplay at a higher level.

A myriad of glial cell types throughout the brain composed of microglia,

astrocytes and oligodendrocytes are key players in the maintenance and

regulation of neuronal network dynamics. Microglia are the central immune

cells of the CNS, able to affect neuronal populations in number and

connectivity, allowing for maturation and plasticity of the CNS. Microglia

and astrocytes are part of the neurovascular unit, and together they are

essential to protect and supply nutrients to the CNS. Oligodendrocytes are

known for their canonical role in axonal myelination, but also contribute,

with microglia and astrocytes, to CNS energy metabolism. Glial cells can

achieve this variety of roles because of their heterogeneous populations

comprised of different states. The neuroglial relationship can be compromised

in various manners in case of pathologies affecting development and plasticity

of the CNS, but also consciousness and mood. This review covers structural

and functional connectivity alterations in schizophrenia, major depressive

disorder, and disorder of consciousness, as well as their correlation with

vascular connectivity. These networks are further explored at the cellular scale

by integrating the role of glial cell diversity across the CNS to explain how

these networks are affected in pathology.
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Introduction

The central nervous system (CNS) contains a myriad
of neurons, all of which converge in function to support
informational exchange (Purves, 2005; Thivierge, 2008; Bandler
et al., 2022). This informational exchange between neuronal
ensembles can be described via CNS networks – which can be
classified as functional, structural, or vascular (Sporns, 2013;
Bright et al., 2020). The CNS functional connectivity (FC) is
defined as the exchange of information in the context of a certain
task or CNS state, which is based on the temporal correlation
between signals among distinct brain regions (Hampson et al.,
2002). For example, previous studies have estimated the
topology of information flow in healthy participants at rest
(Wang et al., 2017) or performing working memory tasks
(Funahashi, 2017), and in patients suffering from locked-
in syndrome (Roquet et al., 2016). Structural connectivity
(SC), by contrast, exists independent of a given CNS state
or functional task, and refers to the anatomical connections
between CNS regions (Hagmann et al., 2010; Wang et al., 2011;
Tsang et al., 2017). These structural connections are formed
via axonal white matter tracts, which facilitate the flow of
information from the neuronal cell body to the axon terminals,
and ultimately to post-synaptic cells (Sporns, 2013). Brain
development can be considered a preprogramme important for
proper maturation, both structurally and functionally (King
et al., 2020). Alteration in this neurodevelopment plan can
be detrimental and lead to neurodevelopmental disorder-
like behaviors in animal models (Armstrong et al., 2020).
FC and SC are tightly interrelated and thus often share
similarities. However, they can sometimes diverge in important
ways, thereby offering uniquely informative measures of CNS
networks (Uddin, 2013). Vascular connectivity (VC) further
refers to the topology of blood vessels in the CNS which support
the metabolic demands of cellular activity (Shaw et al., 2021).
VC is closely tied to FC by means of neurovascular coupling
(Bright et al., 2020). A technique often used for measuring FC,
functional magnetic resonance imaging (fMRI), evaluates the
hemodynamic response rather than neuronal activity directly,
making it a paired measure of FC and VC.

Canonical classification of neurons divides them by the
neurotransmitter they use, but varied neuronal populations
can also be identified by their neurotrophic, beneficial for
neuronal growth, or neuroprotective factors (Que et al.,
2019; Sugino et al., 2019; Cizeron et al., 2020). Neurons
and non-neuronal cells work together to improve plasticity
and enhance the neuronal network by keeping efficient
connections (Tremblay, 2020). To ensure proper sending
and receiving of neuronal information, the CNS comprises
a complex support system primary composed of glial cells
such as microglia, astrocytes, and oligodendrocytes achieving
various roles (Figure 1; Oberheim et al., 2012; Butt and
Verkhratsky, 2018; Foerster et al., 2019; Stratoulias et al.,

2019). Microglia, astrocytes and oligodendrocytes were shown
to display a wide diversity across the CNS, by which they
play main roles as immune sentinels, metabolic regulators
and myelin producers, respectively (Davalos et al., 2005;
Nimmerjahn et al., 2005; Foerster et al., 2019; Zampieri and
Costa, 2022). Even though myelination is mainly performed
by oligodendrocytes, microglia are able to help by removing
myelin through phagocytosis, while releasing sulfatide, a
myelin-specific galactolipid, able to promote myelin basic
protein (MBP) production (Gitik et al., 2011; Traiffort et al.,
2020). Astrocytes also contribute to the myelination process,
similar to microglia, releasing growth factors that influence
oligodendrocyte’s maturation (Mason et al., 2001; Traiffort
et al., 2020). Recent discoveries highlight the diversity of
microglia and astrocytes, as they are highly dynamic cells with
states that change rapidly across space and time. Microglial
dynamism allows their maintenance of the CNS homeostasis,
surveillance of the parenchyma, regulation of neuronal activity
and synaptic plasticity, as well as removal of cellular debris
(Ginhoux et al., 2010; Matcovitch-Natan et al., 2016; Badimon
et al., 2020). While microglia reside in the CNS parenchyma,
peripheral immune cells are not necessarily limited by the
blood stream, plenty of these cells are able to migrate to
the CNS whenever needed (Fani Maleki and Rivest, 2019).
The communication between the CNS and peripheral immune
system is bidirectional (Watkins and Maier, 1999; Carrier
et al., 2021). The recruitment of lymphocytes and monocytes
can be triggered by neurotransmitters and neurochemicals
released from neurons or via cytokines (Kerage et al., 2019).
In order to migrate to the CNS during pathology and perform
their immune function, these peripheral cells can cross the
BBB or take an alternative route through the meninges or
choroid plexus (Benakis et al., 2018; Nishihara et al., 2020;
Huang et al., 2021). To understand CNS function, looking at
structure by investigating the neurovascular unit (NVU) and
the synapse can be insightful. This is also relevant in pathology,
where functional alterations are associated with observable
changes in structure, such as in developmental, emotional and
consciousness disorders (Tables 1–3).

Cellular variety forming the
neurovascular unit

To provide a selective border between the CNS and
circulatory system, the BBB is formed of a complex NVU
(Coelho-Santos et al., 2021). The endothelial cells lie on a
basement membrane (Coelho-Santos and Shih, 2020). This
main component is wrapped around by pericytes able to
control the blood flow (Gonzales et al., 2020). The NVU
is the perfect example of glial cell cross-communication,
with both microglia and astrocytes shown to play a role in
the regulation of blood flow (Mulligan and MacVicar, 2004;
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FIGURE 1

Summary of the roles accomplished by glial cells in the brain discussed in this review. Each glial cell, microglia, astrocyte, and oligodendrocyte,
achieves crucial roles in the healthy developing and mature brain. Colors were used to highlight the similar roles between glial cells.

MacVicar and Newman, 2015; Mishra et al., 2016; Kleinberger
et al., 2017; Császár et al., 2022). Similarly, oligodendrocytes
and microglia contribute to the NVU, working in conjunction
with astrocytes and endothelial cells to mediate hemodynamics
(Rajani and Williams, 2017; Haruwaka et al., 2019; Kugler et al.,
2021). Astrocytes achieve this function using their astrocytic
end-feet arranged around the outer layer of the NVU and are
able to constrict the vasculature (Mulligan and MacVicar, 2004).
Microglia, newly identified actors of the NVU, also secrete
factors such as nitric oxide and cyclic GMP contributing to
cerebral blood flow control (Lacoste and Gu, 2015; Császár
et al., 2022). They additionally have a more direct role, being

part of the outermost layer of the parenchyma or glia limitans,
interacting closely with the other parenchymal cells (Bisht et al.,
2016; Joost et al., 2019; Carrier et al., 2020). The NVU is a crucial
element of the CNS, able to provide the nutrients and oxygen
required by the CNS while directly coordinating their delivery
with the local brain activity (Carrier et al., 2020). Neuronal
activity involves a complex system metabolically that recruits the
brain community with major influences from all glial cell types,
dynamically changing together CNS connectivity on molecular
and cellular levels (Tremblay, 2011; Schafer et al., 2013; Chung
et al., 2015; Hughes and Appel, 2019; Lee et al., 2021a).
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TABLE 1 Summary of the cellular mechanisms found in schizophrenia and their suggested effect on the brain.

Schizophrenia (SCZ)

Cellular mechanisms Hypothesized effect on brain networks

Impaired astrocytic expression of GMR3 and GABBR1 (Goudriaan et al., 2014). Whole-brain FC abnormalities (Lynall et al., 2010; Damaraju et al.,
2014).

Abnormal lipid metabolism and oxidation-reduction genes in oligodendrocytes
(Goudriaan et al., 2014).

Damage to white matter projections, accelerated aging, and reduced SC
(Kochunov et al., 2013; Goudriaan et al., 2014) could help account for
abnormal cerebral asymmetry (Mitchell and Crow, 2005; Chang et al.,
2015).

Oligodendrocyte precursors not exiting the cell cycle (Kerns et al., 2010). Unmyelinated axons and thus SC (Kelly et al., 2018).

synaptic pruning by microglia (Sekar et al., 2016; Sellgren et al., 2019; Park et al.,
2020). SC and FC could help account for hypoconnectivity between sensory

regions and impairments sustaining strong, large-scale connections,
(Lynall et al., 2010; Damaraju et al., 2014)Dysregulated astrocytic release of synaptic remodeling factors (Watanabe et al.,

2007).

Bias towards expression of proteins which inhibit remodeling of the extracellular
matrix and brain vasculature (Jeffries et al., 2018)

Impaired and static VC (Won et al., 2013).‘

Abnormal expression of genes associated with GABAergic neuronal migration and
GABA signaling in periventricular endothelial cells (Won et al., 2013)

Abnormalities in VC and inhibitory FC/SC (Friston and Frith, 1995;
Friston, 1996; Won et al., 2013; Carrier et al., 2020).

TABLE 2 Summary of the cellular mechanisms found in disorder of consciousness and their suggested effect on the brain.

Disorder of consciousness (DOC)

Cellular mechanisms Hypothesized effect on brain networks

AMPK signaling and, in turn, lactate production by astrocytes and microglia (Saito
et al., 2019; Muraleedharan et al., 2020; Monsorno et al., 2022).

whole-brain FC (Moruzzi and Magoun, 1949; Soddu et al., 2009;
Rosazza et al., 2016; Tanabe et al., 2020).

microglial phagocytic activity, contact with neurons (“satellite microglia”),
secretion of pro-inflammatory cytokines, and synaptic pruning (Ramlackhansingh
et al., 2011; Donat et al., 2017; Krukowski et al., 2021).

SC, as indexed by increased NFL levels (Adams et al., 2000;
Guldenmund et al., 2016; Bagnato et al., 2017, 2021).

microglial phagocytosis of astrocytic endfeet and thus loss of BBB integrity (van
Vliet et al., 2020; Heithoff et al., 2021).

VC (Haruwaka et al., 2019; Heithoff et al., 2021).

Hyperactivity of microglial and astrocytic removal of amyloid-β from cerebrospinal
fluid (Bagnato et al., 2018; Wong et al., 2021).

Unknown network implications (Bagnato et al., 2017a, Bagnato et al.,
2018).

Impaired blood flow and metabolism in the DMN (Rosazza et al., 2016; Chennu
et al., 2017; Zhang et al., 2018).

FC and VC in the DMN (Vanhaudenhuyse et al., 2010;
Fernández-Espejo et al., 2012; van Vliet et al., 2020).

Non-neuronal cellular diversity
interacting with neurons and
synapses

Microglia, the specialized immune cell population of the
brain, interact with neurons in many ways (Marinelli et al.,
2019). Microglial recruitment is notably performed by neurons
through soluble and membrane bound factors. For instance, the
neuron-derived fractalkine (CX3CL1) binds to CX3CR1, which
is largely found on microglia (Paolicelli et al., 2011; Carrier et al.,
2021). Furthermore, the absence of this fractalkine signaling
pathway is shown to lead to social impairments (Cordella
et al., 2021). Perturbations in the CNS microenvironment
including levels of peptides and neurotransmitters are also
sensed by microglia notably through purinergic signaling via
P2Y12 receptor (Chen et al., 2019). Another role of microglia
involving their relationships with neurons and synapses is

synaptic pruning (Lewis, 2021). As phagocytes, microglia
can remove excessive or weak network connections (Geloso
and D’Ambrosi, 2021). Among the underlying mechanisms,
microglia can partially engulf pre-synaptic elements via
trogocytosis, effectively nibbling the synapse (Weinhard et al.,
2018). Microglia are further able to rewire networks in a non-
phagocytic way in a process called synaptic stripping where
they physically separate the pre- and post-synaptic elements
(Kettenmann et al., 2013).

Astrocytes additionally play crucial roles in communication
with neurons. For instance, astrocytes maintain extracellular
homeostasis, nutrient permeability and provide metabolic
support to neurons in the CNS (Verkhratsky and Nedergaard,
2018; Kim et al., 2019; Siracusa et al., 2019). Astrocytes
control Ca2+ variations and, like microglia, they hold plenty
of K+ channels which further influence neurotransmitters
release (Madry et al., 2018; Turovsky et al., 2020). Regarding
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TABLE 3 Summary of the cellular mechanisms found in major depressive disorder and their suggested effect on the brain.

Major depressive disorder (MDD)

Cellular mechanisms Hypothesized effect on brain networks

Altered astrocytic and microglial expression of various glutamate receptors, GABA
receptors, gap junction connexin proteins, and glutamate transporters (Choudary
et al., 2005; Bernard et al., 2011; Medina et al., 2016).

Abnormal FC in networks involving the hippocampus, locus coeruleus,
anterior cingulate cortex, and prefrontal cortex (Kaiser et al., 2016; Wise
et al., 2017; Li et al., 2018; Yan et al., 2019).

oligodendrocyte density in the amygdala (Hamidi et al., 2004). intrinsic FC in the amygdala (Ramasubbu et al., 2014) and SC in
networks involving the amygdala (Fang et al., 2012; Coloigner et al.,
2019).

Shorter telomeres and expression of oxidative defense enzymes in
oligodendrocytes (Szebeni et al., 2014).

Damage to white matter projections, accelerated aging, and SC (Fang
et al., 2012; de Kwaasteniet et al., 2013; Coloigner et al., 2019).

microglial expression of proinflammatory cytokines (Dowlati et al., 2010; Barnes
et al., 2017; Wang et al., 2019).

Dysregulating long term potentiation and depression (Innes et al., 2019),
thus impairing FC and SC (Fang et al., 2012; de Kwaasteniet et al., 2013;
Kaiser et al., 2016; Wise et al., 2017; Li et al., 2018; Coloigner et al., 2019).

Low expression of connexin 30 and 34 in the frontal cortex, mediodorsal thalamus,
and caudate nucleus of MDD patients who completed suicide (Ernst et al., 2011;
Nagy et al., 2017).

Dysfunctional astrocyte-to-astrocyte signaling,
astrocyte-to-oligodendrocyte signaling, FC, and SC in frontoparietal
networks (Fang et al., 2012; de Kwaasteniet et al., 2013; Long et al., 2015;
Coloigner et al., 2019; Wu et al., 2019).

connexin 30 expression in oligodendrocytes of the anterior cingulate cortex in
MDD suicide victims (Tanti et al., 2019).

Ischemic lesions (Alexopoulos et al., 1997; Menard et al., 2017) and white matter
lesions (de Groot et al., 2000; Kumar et al., 2000; Taylor et al., 2013; Rushia et al.,
2020), especially in the prefrontal cortex.

VC, SC, and FC in the frontal cortex and DMN (Coffey et al., 1988;
Wu et al., 2011).

synaptic function, astrocytes and microglia enhance synaptic
sites, via direct contact or support by soluble factors, proposing
the concept of “quad-partite synapses” comprised of pre and
postsynaptic neurons plus astrocytes and microglia, allowing
for the maintenance of homeostasis when a neurotransmitter
also binds to the adjacent astrocyte and microglia to modulate
different pathways (Tremblay and Majewska, 2011; Farhy-
Tselnicker and Allen, 2018; Kim et al., 2020). Moreover,
astrocytes are associated with synaptic pruning, together with
microglia, being able to engulf synaptic elements notably via the
MEGF10, MERTK, classical complement and TREM2 pathways
(Barnum, 1995; Lee and Chung, 2019). Oligodendrocytes, on
their part, are distant contributors of the quad-partite synapse
as insulator of the neuronal signal (Miyata, 2019; Carrier
et al., 2020). Oligodendrocytes’ membranes wrap around axonal
tracts, forming a sheath which facilitates saltatory conduction
(Duncan et al., 2021). Myelin can cover up to 60 axons
per oligodendrocyte, depending on the CNS parenchymal
location (Kuhn et al., 2019; Swire et al., 2021). A lot of
energy and metabolic functions are involved in producing
myelin proteins, such as MBP and myelin proteolipid protein
(PLP) (Kuhn et al., 2019). In addition, myelin acts as a
cover, avoiding the diffusion of metabolites through the axon.
Instead, oligodendrocytes can provide glycolytic products to
the axon, due to the presence of monocarboxylate transporter
(MCT-1) (Duncan et al., 2021). Oligodendrocytes also support
neurons via cytosolic myelin channels, able to bidirectionally
transport macromolecules between the oligodendrocyte process
and the axon (Simons and Nave, 2016; Frühbeis et al., 2020).

Large evidence highlights the implication of microglia and
astrocytes in roles attributed to oligodendrocytes (Domingues
et al., 2016; Lombardi et al., 2019; Traiffort et al., 2020;
Kalafatakis and Karagogeos, 2021; Santos and Fields, 2021).
Microglia are able to phagocytose myelin to prevent excessive
myelin production in zebrafish (Hughes and Appel, 2020).
Furthermore, microglia and astrocytes both secrete trophic
factors which support the differentiation of oligodendrocyte
progenitor cells, as extensively reviewed in Traiffort et al.
(2020). Microglia can also take an active role by pruning
the oligodendrocytic lineage cells directly to regulate the
myelination process (Nemes-Baran et al., 2020). Therefore,
glial cells partake in neuronal networks function in many
ways, helping one another, and acting on both the gray and
white matter. However, microglial interactions with neurons
can become altered, leading to disorders (Carrier et al.,
2021).

Immune and glial cells, which play beneficial roles during
development and plasticity, also contribute to recovery during
pathological processes (Skaper et al., 2018; Han et al.,
2021). However, these critical roles in healing can become
affected by genetic and environmental factors, for example
causing prolonged inflammation, hence leading to various
disorders depending on the stage of life (Comer et al.,
2020a,b; Carrier et al., 2021). These unresolved issues can
leave the CNS in an unhealthy state, due to neuronal
circuit alterations, increasing the risk of disorders such as
schizophrenia (SCZ) and major depressive disorder (MDD)
(Stevenson et al., 2020) and can also potentially exacerbate

Frontiers in Cellular Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncel.2022.1015556
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-1015556 November 11, 2022 Time: 6:40 # 6

Carrier et al. 10.3389/fncel.2022.1015556

disorders of consciousness (DOCs) (Bagnato et al., 2021). DOCs
here refer to a state of consciousness defined by impaired
wakefulness (e.g., inability to receive sensory stimuli) and
awareness (of oneself and/or the environment) after brain
damage. In the next sections, we will examine how the
structural, functional and vascular connectivity of the CNS
is affected in these disorders, then go deeper into the glial
dynamics at play in developmental (focusing on SCZ as an
example), consciousness (DOCs) and mood (particularly MDD)
disorders.

Glial cell remodeling of neural and
vascular networks in
schizophrenia

Functional connectivity

Schizophrenia has been robustly associated with altered
brain FC (Lynall et al., 2010; Damaraju et al., 2014; Lei et al.,
2020); so much so that SCZ has long been considered a
“disconnection syndrome” (Friston and Frith, 1995; Friston,
1996; Lei et al., 2020). When measuring resting state FC via
fMRI, patients with SCZ show long-term hyperconnectivity
between the thalamus and sensory cortices, and a contrasting
hypoconnectivity between cortical sensory regions (Damaraju
et al., 2014). Dynamic FC measurements suggest that patients
with SCZ have impairments in sustaining strong, large-scale
connections, while diverse connectivity patterns instead arise
(Lynall et al., 2010; Damaraju et al., 2014). These findings
were corroborated by studying a large cohort of patients with
SCZ, as whole-brain FC measured via fMRI could discriminate,
using machine learning algorithms, patients from controls
with an average accuracy of 81% (Lei et al., 2020). Whole-
brain FC measures were most informative of the individual
categorization; however, the thalamus and temporal cortex were
primary contributors to this overall dysconnectivity (Lei et al.,
2020).

Since glial cells perform critical functions in synaptic
transmission and network development, their role in
“disconnection syndromes” is beginning to be investigated
(Damaraju et al., 2014; Fields et al., 2015; Dietz et al., 2020).
For example, using genome-wide association analyses on
human data, SCZ was associated with abnormal astrocytic and
oligodendrocytic, but not microglial, genes (Goudriaan et al.,
2014). The affected astrocyte genes notably encoded GMR3
and GABBR1: G-protein coupled receptors for glutamate
and GABA, respectively, which enable astrocytes to detect
neurotransmitters and respond by releasing gliotransmitters,
thereby altering quad-partite synaptic strength (Goudriaan
et al., 2014). Since glutamate and GABA are used throughout the
mammalian brain (Zhou and Danbolt, 2013), this finding could

help explain the brain-wide changes of FC observed in SCZ
(Lei et al., 2020). Thus, genetic abnormalities in patients with
SCZ have large implications for overall FC via altering synaptic
formation, efficacy, and plasticity (Goudriaan et al., 2014).

Structural connectivity

The disconnection hypothesis of SCZ etiology includes SC
abnormalities (Friston, 1996; Fields et al., 2015). For instance,
SCZ symptomology is hypothesized to be, at least in part,
the resultant of disrupted interhemispheric communication
(Rotarska-Jagiela et al., 2008; Guo et al., 2013a; Chang et al.,
2015). Hemispheric asymmetry is observed ubiquitously in
both vertebrates and invertebrates, as it is thought to facilitate
functional specialization of brain networks (e.g., language
networks are typically lateralized to the left hemisphere;
(Corballis, 2014)). Abnormal hemispheric asymmetry has been
associated with SCZ — specifically in language networks, as
there is reduced left cerebral hemisphere dominance (Mitchell
and Crow, 2005; Chang et al., 2015). In fact, reduced left
hemisphere lateralization in the temporal lobes has been
correlated with SCZ symptom severity: patients with reduced
gray matter volume and hemodynamic activity, the variation
of blood movement in the vasculature, in the left temporal
lobe tended to experience more severe auditory hallucinations
(Oertel et al., 2010). A study of 1,963 patients revealed that
brain-wide, rather than regional, SC was most severely impaired
in SCZ (Kelly et al., 2018). For example, it was reported that
the major white matter fasciculi of patients with SCZ had
significantly decreased SC, as indicated by reduced fractional
anisotropy in diffusion tensor imaging (DTI) data (Kelly et al.,
2018). Fractional anisotropy is a measure of water diffusion
through the brain, with high values representing restricted
diffusion largely in one direction (this is inferred to be the result
of white matter tracts) and low values indexing a free flowing
diffusion (which is inferred to represent a reduction in white
matter volume and/or integrity (Alexander et al., 2007)). Thus,
the SC and FC findings in patients with SCZ mirror each other:
there does not seem to be selected foci which can account for
the dysconnectivity observed, rather, SC and FC abnormalities
appear widespread in the SCZ brain (Damaraju et al., 2014; Kelly
et al., 2018; Lei et al., 2020). Importantly, this global white matter
degradation may be correlated with accelerated biological aging,
and thus cognitive decline, in patients with SCZ (Kochunov
et al., 2013). When whole-brain averaged fractional anisotropy is
used as a biomarker for age-related changes in SC, past literature
has found a significant interaction between biological age and
SCZ symptoms (Kochunov et al., 2013).

As for the mechanisms involved in the decreased SC
observed in SCZ, many studies are pointing to abnormalities
in oligodendrocytes (Kerns et al., 2010; Goudriaan et al.,
2014). When studying human data via genome-wide association
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analyses, SCZ was linked to abnormal oligodendrocyte gene
sets which regulate lipid metabolism and gene transcription
(Goudriaan et al., 2014). Furthermore, abnormalities were
observed in oligodendrocyte oxidation-reduction gene sets,
which would affect lipid metabolism and could lead to the
production of reactive oxygen species, thereby damaging the
myelin sheath via oxidative stress (Goudriaan et al., 2014). Thus,
disrupted oligodendrocyte lipid metabolism may account for the
decreased white matter integrity observed in SC studies on SCZ
patients (Kochunov et al., 2013; Goudriaan et al., 2014), and
may also help explain the accelerated biological aging observed
in SCZ (Kochunov et al., 2013; Carrier et al., 2021). Further,
white matter degeneration at the level of commissural fibers may
help explain the reduced left cerebral hemisphere dominance
robustly observed in SCZ (Mitchell and Crow, 2005; Rotarska-
Jagiela et al., 2008; Guo et al., 2013a; Chang et al., 2015). Another
study used polymerase chain reaction in post mortem human
brain samples to examine mRNA expression of genes associated
with different stages of the cell cycle (Kerns et al., 2010). It was
found that, in SCZ, oligodendrocytes do not properly mature
and myelinate neurons, as oligodendrocyte precursors in the
SCZ brain avoid exiting the cell cycle (Kerns et al., 2010). The
expression of genes associated with maintenance of the cell cycle
was increased in patients with SCZ relative to controls, while
gene expression associated with cell cycle arrest was decreased
in SCZ (Kerns et al., 2010). Thus, cells of the oligodendrocytic
lineage appear to face a myriad of challenges in the brain
of patient with SCZ: accelerated aging (Kochunov et al.,
2013), oxidative damage (Goudriaan et al., 2014), disrupted
lipid metabolism (Goudriaan et al., 2014), and a reduced
maturation toward myelinating oligodendrocytes (Kerns et al.,
2010). Presumably this accelerated aging and oxidative damage
would have a maladaptive effect on microglia (e.g., a hyperactive
proinflammatory response, increased cytokine release, reduced
expression of neuroprotective factors (Gillen et al., 1981; Niraula
et al., 2017)) which warrants further investigation.

In addition to oligodendrocytes, the astrocytic and
microglial cell populations influence SC by means of their
synaptic pruning capabilities (Kuijlaars et al., 2016; Sellgren
et al., 2019; Park et al., 2020). For instance, using cultures
of human patient-derived microglia-like cells as a model
of synaptic pruning, an increased phagocytosis of synaptic
elements was found in the SCZ patient-derived cells, relative
to a population of cells from healthy controls (Sellgren et al.,
2019). Further, this same study found that exposing cultures
to minocycline, an antibiotic which normalizes microglial
proinflammatory and synaptic pruning functions under certain
contexts, reduced microglia-mediated synapse uptake (Scott
et al., 2018; Sellgren et al., 2019; Celorrio et al., 2022). Thus,
microglia have shown promise as therapeutic targets to slow
the neurogenerative changes observed in SCZ, particularly
as a pre-emptive measure for individuals identified as at risk
of developing SCZ (Glausier and Lewis, 2013; Cannon, 2015;

Sellgren et al., 2019). Indeed, this hypothesis and proposed
treatment corroborate longitudinal studies of SCZ: synaptic
pruning in the cerebral cortex is prevalent in late adolescence
and early adulthood, which coincides with the period when SCZ
symptoms typically begin to arise (Petanjek et al., 2011; Cannon,
2015). Further, mutations in the complement component 4 gene
constitute a risk factor for SCZ development (Sekar et al., 2016),
and notably, this SCZ susceptibility gene regulates microglia-
mediated synaptic pruning in mice during early postnatal
development (Sekar et al., 2016; Sellgren et al., 2019; Yilmaz
et al., 2021). Similarly, a study of cultured cerebral interneurons
derived from patients with SCZ or healthy controls found that,
in both types of cultures, exposure to inflammatory-cytokine-
releasing microglia resulted in reduced interneuron arborization
and synapse formation (Park et al., 2020). Critically, however,
once the microglia were removed from the cell cultures, the
neurons derived from healthy controls began to recover, whilst
the SCZ patient-derived cells did not (Park et al., 2020). As for
astrocytes, they secrete synaptic remodeling factors including
fatty acid binding proteins (FABP7), a protein which has
tentatively been associated with SCZ development in mice and
humans (Watanabe et al., 2007). It is worth noting, however,
that some studies have failed to replicate this FABP7 and SCZ
association (Iwayama et al., 2010). One should note that as
longitudinal studies are scarce, it is a possibility that the myelin
decrease seen would be in fact a lack of myelination happening
during development.

Vascular connectivity

Abnormalities in vascular and blood protein networks were
also identified in SCZ (Jeffries et al., 2018). Correlative models
predicting the potential development of SCZ in humans were
developed, revealing that blood factors differentiating patients at
risk for SCZ from controls largely involve proteins that regulate
tissue remodeling (e.g., of the BBB) (Jeffries et al., 2018). Control
subjects showed greater co-expression of proteins exerting
complementary effects on CNS remodeling, presumably to
facilitate homeostasis (Jeffries et al., 2018). For example,
controls demonstrated elevated co-expression of plasminogen
activator inhibitor-1 and several metalloproteinases: proteins
which inhibit and promote vascular remodeling, respectively.
In contrast, those at risk for SCZ, and especially patients who
eventually developed SCZ, showed co-expression of proteins
which inhibited remodeling of the extracellular matrix and
brain vasculature (Jeffries et al., 2018). Thus, the findings of
Jeffries et al. (2018) suggest that SCZ etiology may be inversely
related to the capacity of brain vascular networks to dynamically
remodel (Won et al., 2013). That is, endothelial cells in the
neurovascular network largely influence the development of
neural networks, including later established FC and SC (Won
et al., 2013; Andreone et al., 2015). Endothelial cells, in both
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pial and periventricular blood vessels, exert chemoattractant
functions via their expression of GABAA receptors and secretion
of GABA (Won et al., 2013). These properties facilitate a
bidirectional communication between endothelial cells and
GABAergic neurons, thereby promoting neuronal migration to
specific locations of the developing cortex (Won et al., 2013).
Critically, it was found that many genes associated with SCZ
are upregulated in periventricular endothelial cells (Won et al.,
2013). These genes modulate GABAergic neuronal migration
and GABA signaling, thus providing a potential mechanism
for the abnormal GABAergic FC often observed in SCZ (Won
et al., 2013; Goudriaan et al., 2014; Hoftman et al., 2015).
Abnormalities in the vascular network during embryonic and
postnatal development may therefore place individuals at risk
for developing SCZ later in life, and could help explain the
etiology of this neurodevelopmental disorder (Won et al., 2013;
Andreone et al., 2015; Carrier et al., 2020). Glial cells are of
great importance in regulating brain vasculature: for example,
astrocytic endfeet regulate vasoconstriction and vasodilation
(MacVicar and Newman, 2015), as well as BBB permeability
(Abbott et al., 2006). However, the precise mechanisms by
which glial cells influence vascular brain networks, and how
these mechanisms can be altered in SCZ, requires further
investigation: for example, microglial-vascular interactions are
only beginning to receive attention in the literature (Bisht et al.,
2021; Kisler et al., 2021).

In summary (Table 1), glial cells play many important
roles in establishing and maintaining network dynamics on
the levels of functional, structural, and vascular connectivity
(Won et al., 2013; Goudriaan et al., 2014; Andreone et al., 2015;
Kelly et al., 2018; Carrier et al., 2020). Aberrant functioning
of these mechanisms can help explain some of the etiology
and symptomology underlying SCZ, as well as suggest potential
modes for treatment (Bernstein et al., 2009; Takahashi and
Sakurai, 2013; Bisht et al., 2021). However, glial cells are
implicated in a wide variety of brain diseases and their influence
is not restricted to neurodevelopmental disorders alone. In the
next section, we will overview non-neuronal cell contributions
to the brain networks underlying consciousness.

Anesthesia/disorders of
consciousness: Recovery of
consciousness

Functional connectivity

In a clinical context, consciousness is defined by two
variables: (1) awareness and (2) wakefulness (Gosseries et al.,
2011; Mecarelli et al., 2019). Chronically reduced levels of
awareness and/or wakefulness thus define a DOC; for example,
a comatose patient (Gosseries et al., 2011). The same can

be said for anesthesia-induced consciousness, referring to a
controlled and medically induced coma (Brown et al., 2010;
An et al., 2015). As for the relevant FC, previous literature
revealed a robust relationship between conscious perception and
frontoparietal network activation (Linden et al., 1999; Corbetta
and Shulman, 2002; Corbetta et al., 2008; Braga et al., 2017);
specifically, the dorsal and ventral attention networks (the
DAN and VAN, respectively) (Vossel et al., 2014). As for their
functions, the DAN mediates visuospatial attention (e.g., when
using a stimulus to direct a participant’s attention to one side
of a screen) (Vossel et al., 2014). In contrast, the VAN has been
shown to mediate attention when behaviourally relevant stimuli
occur unexpectedly (e.g., during an oddball paradigm) (Vossel
et al., 2014). “Conscious awareness” (defined by the ability of an
individual to report their perception of a stimulus) is linked to
greater connectivity in these frontoparietal attention networks
(Linden et al., 1999; Corbetta and Shulman, 2002; Gosseries
et al., 2011). This effect has been replicated for participants in
various conscious states: including typical wakefulness, DOCs,
during sleep, and under anesthesia (Tanabe et al., 2020). The
second aforementioned tenet of consciousness–neurological
arousal–is defined by an organism’s ability to respond to
information in a context-specific and appropriate manner
(Gosseries et al., 2011). It has been long known that the reticular
activating system (RAS) is key to arousal (Moruzzi and Magoun,
1949), while functional abnormalities in the RAS cause brain
disorders (Garcia-Rill, 1997). In fact, the connectivity of the
RAS has been shown to inversely correlate with DOC severity
(Mecarelli et al., 2019). As the name suggests, this brain network
originates in the reticular formation, extends up the midbrain,
and into the thalamus, from which it coordinates global cortical
activity (Moruzzi and Magoun, 1949).

Many neurotransmitters critical to the functioning of the
RAS, general anesthetics (e.g., sevoflurane), and substances
accelerating anesthesia emergence (e.g., caffeine) stimulate
adenosine monophosphate-activated protein kinases (AMP)
(Finley, 2019). Thus, AMPK pathways appear as a critical
mechanism underlying the FC by facilitating awareness and
wakefulness. Importantly, AMPK is found throughout the
mammalian brain (e.g., in the thalamus, hypothalamus, cortical
pyramidal neurons), making the kinase a great target for
modulating widespread frontoparietal and RAS brain networks
(Finley, 2019). To track metabolic pathways, proton (1H)
magnetic resonance spectroscopy can be used to monitor
glucose flow through the brain, while 13C glucose mass
spectroscopy can be used to monitor a variety of brain
metabolites (e.g., lactate, glutamate; Muraleedharan et al.,
2020). Said techniques have thus been used in mouse and
fly models of brain metabolism, demonstrating that AMPK
signaling is highly reliant on glial cells (Muraleedharan
et al., 2020). For example, once glutamate is released into
the synaptic cleft, astrocytes uptake the neurotransmitter
via their glutamate transporters (e.g., GLAST and GLT-1),
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thereby regulating synaptic transmission (Bélanger et al., 2011;
Muraleedharan et al., 2020). Glycolysis then occurs within the
astrocyte, producing the lactate required by neurons for their
own ATP production (Bélanger et al., 2011; Muraleedharan
et al., 2020). AMPK activation is critical for this astrocytic
lactate production, as spectroscopy and immunohistochemistry
data suggest that AMPK knockout mice have impaired lactate
production, resulting in neuronal cell death and volume
reduction throughout the cerebral cortex during development
(Muraleedharan et al., 2020). Much like astrocytes, microglia
also produce lactate via glycolysis, a process which is again
mediated by AMPK signaling (Saito et al., 2019; Monsorno et al.,
2022) raising the question if microglia are another potential
lactate supplier for neurons. Thus, it appears that part of the
mechanism by which anesthesia and DOCs alter FC is by
targeting AMPK pathways; thereby depriving neurons of their
energy source and resulting in widespread neuronal hypoactivity
robustly observed in reduced states of consciousness (Moruzzi
and Magoun, 1949; Soddu et al., 2009; Rosazza et al., 2016;
Tanabe et al., 2020). FC measured by electroencephalography
(EEG) was shown to correlate with frontoparietal glucose
metabolism, behavioral responsiveness, and recovery in humans
with DOCs (Chennu et al., 2017).

Structural connectivity

In agreement with the FC literature, SC deficits in patients
with DOCs are consistently identified in thalamocortical and
frontoparietal networks (Wheeler and Malinak, 1989; Adams
et al., 2000; Fernández-Espejo et al., 2012), and in more
severe DOC cases, the brainstem (Edlow et al., 2012; Snider
et al., 2020). In fact, a DTI study of patients with DOCs
found reduced SC in four axonal tracts around the brainstem
to be associated with DOC severity; further implicating the
RAS network in maintaining wakefulness (Wu et al., 2018).
Thalamic neurons play a critical role in the RAS and in
establishing long-range cortico-thalamo-cortical connections
which are networks thought to be essential for consciousness
(Adams et al., 2000; Gosseries et al., 2011; Mecarelli et al.,
2019; Tanabe et al., 2020). SC impairments do not tend
to be localized, however: widespread reductions in SC, as
measured by fractional anisotropy (a metric extracted from DTI
measures), have been associated with DOC severity (Adams
et al., 2000; Guldenmund et al., 2016; Wu et al., 2018). For
example, behavioral measures of DOC severity were shown
to inversely correlate with radial diffusivity, contrary to axial
diffusivity (Wu et al., 2018). The data suggests that DOC
related deficits in SC do not result from axonal degeneration,
but are rather caused by demyelination, thereby implicating
oligodendrocytes (and their interactions with other non-
neuronal cells) in DOC pathology (Wu et al., 2018). This
trend of global SC impairment is perhaps unsurprising, as

DOCs are the result of major brain damage, either traumatic
or non-traumatic (Gosseries et al., 2011; Guldenmund et al.,
2016). This would imply the implication of astrocytes and
microglia, as both glial types are largely involved in post-brain
injury inflammatory responses; for example by releasing various
cytokines, chemokines and growth factors (Karve et al., 2016).
However, their exact role in DOC pathology remains to be
elucidated, as most studies have focused on general traumatic
brain injuries (i.e., not necessarily DOC inducing), and the
consequences of brain injuries tend to be largely heterogeneous
(Goldstein et al., 2010; Karve et al., 2016).

Given the axonal demyelination and brain injury mentioned
above, studies have begun to investigate biomarkers of
inflammation and tissue damage in patients with DOCs
(Bagnato et al., 2017, 2021; Sharma et al., 2020). For example,
a biomarker of axonal injury known as neurofilament light
chain (NFL) was measured at higher concentrations in
the serum and cerebrospinal fluid of patients with DOCs,
relative to controls (Bagnato et al., 2017, 2021). These
elevated NFL levels may indeed result from hyperactive
microglia induced by brain damage, thereby initiating chronic
inflammation, and incidentally making the damage worse
(Bagnato et al., 2021). Specifically, it is hypothesized that, after
DOC inducing brain injury, microglia show increased:
phagocytotic activity, contacts with neurons (“satellite
microglia”), secretion of pro-inflammatory cytokines, and
synaptic pruning (Ramlackhansingh et al., 2011; Donat et al.,
2017; Krukowski et al., 2021). As outlined by Bagnato et al.
(2021), increased NFL levels may additionally result from a
loss of BBB integrity and altered amyloid-β levels, evidence
for which have been observed after traumatic brain injury
in rats (Mannix and Whalen, 2012; van Vliet et al., 2020;
Wong et al., 2021) and in patients with DOCs (Bagnato et al.,
2017, 2018). Microglia and astrocytes also play critical roles
in maintaining BBB integrity and amyloid-β levels, further
implicating these cells in the observed DOC related NFL
concentrations (Rogers et al., 2002; Mannix and Whalen, 2012;
Ries and Sastre, 2016; Haruwaka et al., 2019; Heithoff et al.,
2021). Firstly, microglia and astrocytes have been shown to
regulate BBB permeability as discussed above (Abbott et al.,
2006; da Fonseca et al., 2014; Haruwaka et al., 2019; Bisht
et al., 2021; Heithoff et al., 2021). Under chronic inflammatory
conditions, as would be the case in DOCs, microglia engulf
astrocytic endfeet via phagocytosis, thereby making the BBB
more permeable (Haruwaka et al., 2019; Heithoff et al., 2021).
This mechanism could help explain the increased NFL levels
in patients with DOCs, as causal brain injury combined with
reduced BBB integrity would enable NFL to enter the patient’s
circulatory system with ease (Bagnato et al., 2021). Furthermore,
both microglia and astrocytes play critical roles in the removal
of amyloid-β (Rogers et al., 2002; Mannix and Whalen, 2012;
Ries and Sastre, 2016), and thus, their hyperactivity could
explain reduced amyloid-β levels in the cerebrospinal fluid of
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patients with DOCs (Bagnato et al., 2018). Glial cells indeed
appear to be a key factor in DOC brain connectivity, so much
so that clinical trials (Pizzol, 2021) have begun to investigate the
effects of minocycline, which normalizes microglial functions
but also shows potential in reducing chronic inflammation
after traumatic brain injury, in treating DOCs (Scott et al.,
2018; Celorrio et al., 2022). If administered acutely after brain
injury, the pharmacological effects of minocycline include
a reduction in the total number of microglia, and for the
microglia that remain, a diminished major histocompatibility
complex II expression (Celorrio et al., 2022) suggesting a
reduction in microglia-mediated CNS inflammation. This
mitigation of the acute proinflammatory actions of microglia
may thus serve to promote neuroprotective mechanisms
[e.g., by limiting section of pro-inflammatory cytokines and
normalizing synaptic pruning; (Ramlackhansingh et al., 2011;
Donat et al., 2017; Krukowski et al., 2021)]. Indeed, acute
minocycline administration was found to lessen long-term
neuronal, white matter, and synaptic degeneration in mice
with a traumatic brain injury, relative to animals given a saline
vehicle (Celorrio et al., 2022). However, it is important to
note that clinical trials on the ability of minocycline to treat
SCZ have produced mixed results, likely because minocycline
does not exert microglia-specific effects (Möller et al., 2016;
Šimončičová et al., 2022). Thus, further research is required
to elucidate the detailed mechanisms by which minocycline
acts on non-neuronal brain cells and identify therapeutics with
more specific targets.

Vascular connectivity

As highlighted previously, brain injuries often result in
increased BBB permeability, which is likely due to changes
in microglial and astrocytic function (Abbott et al., 2006;
da Fonseca et al., 2014; Haruwaka et al., 2019; Bisht et al.,
2021; Heithoff et al., 2021). Thus, abnormalities in the
NVU, due to prolonged inflammation after brain injury, are
to be expected in DOCs. Impairments of the BBB have
been widely studied in the context of general brain injuries
(Glushakova et al., 2014; Haruwaka et al., 2019; van Vliet
et al., 2020). However, to our knowledge, BBB alterations in
brain injuries which specifically cause DOCs remain to be
examined. Treatments for DOCs (e.g., spinal cord stimulation)
are thought to produce their beneficial effects, at least partly,
by stimulating blood flow to the frontal and parietal cortices
(Zhang et al., 2018). In addition to blood flow, positron
emission tomography (PET) studies suggest that frontoparietal
metabolism is impaired in patients with DOC (Rosazza et al.,
2016; Chennu et al., 2017). A specific frontoparietal network
known as the “default mode network” (DMN) is often associated
with altered states of consciousness and refers to the brain
regions which show increased hemodynamic activity when

a person is not focused on external stimuli (e.g., when
daydreaming) (Raichle et al., 2001; Qin and Northoff, 2011).
Thus, the DMN represents the pattern of “default” brain
activity observed when one is not engaged with the outside
world; accordingly, the DMN activity shows a robust negative
correlation with activity in the VAN/DAN (Vanhaudenhuyse
et al., 2010; Fernández-Espejo et al., 2012; Rosazza et al., 2016;
Chennu et al., 2017; Zhang et al., 2018). This DMN often
demonstrates reduced blood flow and metabolism in patients
with DOCs (Rosazza et al., 2016; Chennu et al., 2017; Zhang
et al., 2018), likely reflecting the fact that FC is decreased in
the DMN of affected patients (Vanhaudenhuyse et al., 2010;
Fernández-Espejo et al., 2012). However, it is worth noting
that many of these studies identified DMN areas as a priori
regions of interest (Rosazza et al., 2016; Chennu et al., 2017),
and this may be biasing the general consensus that the DMN
is involved (e.g., DOCs may be more accurately described via
a widespread hypometabolism, but by restricting our search
to the DMN, the role of this network becomes hyperbolized
(Stender et al., 2014)).

Brain network dynamics are clearly important for the
maintenance of behavioral wakefulness and neurological arousal
(Edlow et al., 2012; Mecarelli et al., 2019; Snider et al., 2020).
Further, they are heavily implicated in “conscious perception”:
the ability to access internal mental states (Linden et al., 1999;
Corbetta and Shulman, 2002; Corbetta et al., 2008; Braga
et al., 2017). Even with current hypotheses (Table 2), further
research is required to elucidate the mechanisms by which
glial cells contribute to the relevant brain networks: given
the roles that non-neuronal cells play in remodeling brain
connectivity, there is little doubt that astrocytes, microglia,
and oligodendrocytes have an important, yet often overlooked,
contribution to the RAS, VAN, DAN, and DMN (Tremblay,
2011; Tremblay and Majewska, 2011; Schafer et al., 2013;
Chung et al., 2015; Hughes and Appel, 2019; Duncan et al.,
2021; Lee et al., 2021a). As for specific recommendations
for future research, it would be informative to investigate
human glial cell structure and function in the context of
DOC inducing brain injuries using high resolution techniques
such as electron microscopy, since most of the current
literature is confined to more general traumatic brain injuries
(Ramlackhansingh et al., 2011; Glushakova et al., 2014;
Haruwaka et al., 2019; van Vliet et al., 2020; Krukowski
et al., 2021). This is especially problematic as traumatic
brain injuries are very heterogeneous and can have differing
effects ranging from chronic loss of consciousness to epilepsy
to depression (Goldstein et al., 2010; Karve et al., 2016).
Furthermore, advancements in treating DOCs could be made
if network neuroscience expanded beyond its typical “neuro-
centric” quantification of neural networks and moved into
analyzing brain networks more comprehensively. To our
knowledge, there has yet to be a study mapping topological
networks of quad-partite synapses, or the interactions between
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neural, vascular, and glial connectivity in altered states
of consciousness.

Major depressive disorder

Functional connectivity

Major depressive disorder in humans has been associated
with characteristic changes of resting-state FC, specifically in
frontal cortical regions of the DMN (Kaiser et al., 2016). This
network spans the midline of the brain, including the prefrontal
cortex, cingulate cortex, precuneus, and inferior parietal cortices
(Raichle et al., 2001). The DMN is thought to be associated with
self-referential processing and directing attention “inwards”
(e.g., through introspection, metacognition) (Raichle et al.,
2001; Qin and Northoff, 2011), and it has been implicated in
a variety of psychological/brain disorders ranging from MDD
to Alzheimer’s disease (Broyd et al., 2009). In fact, studies have
correlated abnormal DMN connectivity with the severity of
specific MDD symptoms: more dynamic FC (defined by greater
standard deviation in resting connectivity over time) between
the medial prefrontal cortex and insula was associated with
more frequent rumination (Kaiser et al., 2016) as measured via
the Behavioral Activation for Depression Avoidance Subscale
(Kanter et al., 2007). The same study also found MDD severity
to positively correlate with more dynamic connectivity between
the medial and dorsolateral regions of the prefrontal cortex
(Kaiser et al., 2016). General connectivity abnormalities and
instability of the DMN is a ubiquitous finding in patients with
MDD, which is hypothesized to help explain classic MDD
symptoms, such as depressive fixation on self and difficulty
engaging with outside activities (Brooks and Lippman, 1985;
Wise et al., 2017; Yan et al., 2019; Saris et al., 2020). In addition
to the DMN, past research has found robust hypoconnectivity in
frontoparietal control networks (e.g., the DAN), which are key
for effectively directing one’s attention to environmental stimuli;
further explaining why patients with MDD may have difficulty
engaging with their external environment (Kaiser et al., 2016; Ye
et al., 2016; Li et al., 2018). Reduced interhemispheric resting-
state FC between bilaterally symmetrical brain regions was
also ubiquitously observed in patients with MDD: for example,
in treatment resistant MDD (Guo et al., 2013b), recurrent
MDD (Zheng et al., 2022), and first episode drug naive MDD
(Wang et al., 2013). The bilateral regions displaying reduced
interhemispheric FC, relative to controls, included the medial
orbitofrontal gyrus, parahippocampal gyrus, medial prefrontal
cortex, fusiform gyrus, and calcarine cortex (Guo et al., 2013b;
Wang et al., 2013; Zheng et al., 2022). Finally, abnormalities
identified in limbic networks (e.g., involving the amygdala,
thalamus, and hippocampus) provide potential mechanisms for
the chronic dysphoria and anhedonia commonly experienced in
MDD (Kaiser et al., 2016; Ye et al., 2016; Li et al., 2018).

In trying to explain the altered FC observed in patients with
MDD, neurobiological studies have noted abnormalities
in astrocyte and microglial signaling which facilitate
neurochemical communication and restore homeostasis at
the synapse (Choudary et al., 2005; Medina et al., 2016).
For instance, altered mRNA expression of several glutamate
receptors (e.g., AMPA1, AMPA3, GluR5, GluR-KA2, mGluR5),
GABA receptors (e.g., GABAARβ3, GABAARδ, GABAARγ2),
gap junction connexin proteins (e.g., connexin 43 and 30),
and glutamate transporters (e.g., GLT-1, GLAST) have been
identified in the hippocampus (Medina et al., 2016), locus
coeruleus (Bernard et al., 2011), anterior cingulate cortex
(Choudary et al., 2005), and left dorsolateral prefrontal cortex
(Choudary et al., 2005) of patients diagnosed with MDD.
In fact, glia influence neural communication in MDD so
strongly that depressive symptoms can be induced in rats via
selectively ablating astrocytes in the prefrontal cortex (Banasr
and Duman, 2008). Histopathological studies of post mortem
human brain samples have found that, relative to healthy
controls, total glial cell density is reduced in the anterior
cingulate cortex (Cotter et al., 2001) and dorsolateral prefrontal
cortex (Cotter et al., 2002) of patients with MDD. However,
glial cell nuclei were analyzed indiscriminately by Cotter et al.
(2001, 2002) such that counts of astrocytes, microglia, and
oligodendrocytes were combined; thus, we do not know how
specific glial subtypes were altered. Many genetic studies have
focused on altered mRNA expression in astrocytes, as this glial
subtype can form cell-to-cell junctions, creating their own glial
communication network to help neurons return to homeostasis
after electrochemical activity (Kiyoshi and Zhou, 2019). For
instance, mRNA expression of genes encoding astrocytic
glutamate transporters (e.g., SLC1A2 and SLC1A3) and
enzymes (e.g., glutamine synthetase) are reduced in the anterior
cingulate cortex and dorsolateral prefrontal cortex of patients
with MDD (Choudary et al., 2005). These genetic abnormalities
would impair astrocytes in their ability to uptake glutamate
from the synaptic cleft after neurotransmission, thereby letting
the neurotransmitter exert its effects longer, and possibly
leading to excitotoxicity (Choudary et al., 2005). Notably,
mRNA expression for two specific GABA receptor subunits
(GABAAα1 and GABAAβ3) were selectively upregulated,
relative to non-suicidal controls, in the anterior cingulate
cortex of MDD patients who died by suicide, thus serving as
a potential biomarker for suicidality (Choudary et al., 2005).
Another biomarker would be the microglial functional state,
as microglial priming was shown to correlate with increase
suicidal behavior (Gonçalves de Andrade et al., 2022).

Structural connectivity

Structural abnormalities in MDD largely parallel
observations in FC: anatomical projections within the DMN
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and frontal cortex are markedly disrupted (Korgaonkar et al.,
2014; Long et al., 2015; Coloigner et al., 2019). Furthermore,
altered SC is consistently observed in frontolimbic networks of
patients with MDD, including the prefrontal cortex, anterior
cingulate cortex, hippocampus, and amygdala (de Kwaasteniet
et al., 2013; Coloigner et al., 2019). As for the directionality of
these disruptions, SC within the DMN and frontal cortex are
reduced (Korgaonkar et al., 2014). Findings of SC disruptions
between the frontal cortex and limbic regions in MDD are more
inconsistent, with some studies reporting hyperconnectivity
(e.g., Long et al., 2015) and others hypoconnectivity (e.g.,
Wu et al., 2019). Nonetheless, machine learning algorithms
can categorize patients with MDD versus controls, using
whole-brain SC data, with up to 91.7% accuracy (Fang et al.,
2012). When evaluating the data with the machine learning
algorithm found most helpful, it was discovered that SC within
frontolimbic networks were most informative in identifying
MDD brains, suggesting that said networks are a primary SC
biomarker of MDD (Fang et al., 2012). This would corroborate
clinical symptoms of MDD, as frontolimbic networks are
associated with stimulus reward associations (Gleich et al.,
2015; Long et al., 2015), emotional regulation (Kebets et al.,
2021), and executive functioning (Matsuo et al., 2007). Thus,
the aforementioned abnormal connectivity in these networks
may help explain the skewed evaluation of reward, negative
affect, and poor executive functioning which is common with
MDD (Kennedy, 2008). In fact, frontolimbic SC, as measured
via fractional anisotropy in DTI, positively correlated with the
symptoms of anhedonia in patients with MDD (Coloigner et al.,
2019). In particular, the strength of white matter connections
between the frontal lobes and limbic structures correlated with
a self-reported inability to feel pleasure (Coloigner et al., 2019).

In terms of non-neuronal cell mechanisms, evidence
suggests that reduced oligodendrocyte density is a potential
mechanism for the altered SC in MDD (Hamidi et al., 2004).
Relative to controls, amygdala tissue samples from people
diagnosed with MDD show reduced oligodendrocyte and total
glia density–as indexed via cell morphology visualized using
Nissl stains (Hamidi et al., 2004). Interestingly, this same study
found no difference between MDD samples and controls with
respect to astrocytic or microglial densities (these glia subtypes
were identified using S-100beta antibody for oligodendrocytes
and anti-HLA for microglia), suggesting that the reduction in
total glia density within the amygdala was mainly due to a
reduction in oligodendrocytes (Hamidi et al., 2004). Indeed, this
histological finding may help explain the reduced intrinsic FC
identified in the amygdala of patients with MDD (Ramasubbu
et al., 2014). Another study using end-point polymerase
chain reaction on astrocyte and oligodendrocyte samples from
patients with MDD found oligodendrocytes to have significantly
shorter telomeres and reduced gene expression of oxidative
defense enzymes, relative to time of death and age-matched
controls (Szebeni et al., 2014). This finding may provide a

cellular mechanism for the reduced oligodendrocyte density
found in the brains of patients with MDD (Hamidi et al., 2004),
as reduced telomere length and a deficiency in antioxidant
enzymes would make these glial cells more susceptible to
DNA damage and oxidative stress (Szebeni et al., 2014). In
corroboration with the null astrocytic findings of Hamidi
et al. (2004), telomere length and antioxidant enzyme levels
in astrocytes did not differ between MDD brains and controls
(Szebeni et al., 2014).

Microglia and astrocytes do, however, influence the
abnormal SC observed in patients with MDD, as mood
disorders are influenced by inflammation (and vice versa);
in fact, this has led to the development of a field of study
termed “affective immunology” (Yang et al., 2020). There is
strong evidence to suggest that abnormal immune function
and MDD are closely related: firstly, human patients diagnosed
with MDD were shown to exhibit greater blood concentrations
of proinflammatory cytokines (e.g., IL-6, TNF-α) (Dowlati
et al., 2010; Alboni et al., 2016). Meta-analyses on the effects
of selective serotonin reuptake inhibitors suggest that these
drugs induce their anti-depressant effects, at least in part,
by reducing the levels of said peripheral proinflammatory
cytokines including the aforementioned IL-6 and TNF-α
(Wang et al., 2019), with TNF-α also decreased in the brain.
Furthermore, genetic mutations in the genes encoding various
cytokines (e.g., IL-1β, IL-6, IL-10, TNF-α, C-reactive protein)
have been identified as risk factors for MDD development,
and cytokine mRNA expression (especially IL-1β) can
be used to help identify patients who will be resistant to
traditional MDD pharmacological therapies (Barnes et al.,
2017). A growing body of evidence suggests that microglia
have a large influence over long-term potentiation (LTP) and
long-term depression (LTD) (Innes et al., 2019). For example,
microglial fractalkine receptor CX3CR1 stimulation has been
hypothesized to stimulate excessive microglial-mediated
phagocytosis of synaptic elements, reducing opportunities
for LTP (Milior et al., 2016; Innes et al., 2019). Indeed, when
exposed to chronic unpredictable stress, CX3CR1 knockout
mice have shown greater resilience, relative to control mice,
against developing MDD-like symptoms (Corona et al.,
2010; Hellwig et al., 2016; Milior et al., 2016; Reshef et al.,
2017; Rimmerman et al., 2017). Abnormalities in astrocytic
communication via gap junctions were also robustly associated
with MDD specifically in patients who died via suicide (Ernst
et al., 2011; Nagy et al., 2017; Tanti et al., 2019). Reduced
expression of connexin 30 and 34 genes was observed in the
frontal cortex, mediodorsal thalamus, and caudate nucleus
of patients with MDD who committed suicide, relative to
matched sudden-death controls (Ernst et al., 2011; Nagy et al.,
2017). This would suggest that dysfunctional astrocyte-to-
astrocyte signaling may be related to MDD suicidality and
notably in the frontoparietal networks which show abnormal
SC in MDD (Fang et al., 2012; de Kwaasteniet et al., 2013;
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Long et al., 2015; Coloigner et al., 2019; Wu et al., 2019).
Astrocyte-to-oligodendrocyte signaling abnormalities were also
implicated in MDD: there was reduced connexin 30 expression
localized onto oligodendrocytes in the anterior cingulate cortex
of MDD suicide victims, relative to matched sudden-death
controls (Tanti et al., 2019). Still, the link between microglial
alterations and suicide remains to be elucidated.

Vascular connectivity

Major depressive disorder and vascular diseases often
occur comorbidly, especially in late-life depression, leading
to the development of a “vascular depression hypothesis”

(Alexopoulos et al., 1997; Menard et al., 2017). In line
with the aforementioned disruption of FC and SC in the
frontal cortex of patients with MDD, ischemic lesions in
prefrontal vascular networks were originally hypothesized to be
a central mechanism for the “vascular depression hypothesis”
(Alexopoulos et al., 1997). When it comes to late-life MDD, VC
and SC share an especially strong relationship: a characteristic
feature of vascular depression is the development of white
matter lesions, as detected via white matter hyperintensities
in T2 MRI scans (de Groot et al., 2000; Kumar et al., 2000;
Taylor et al., 2013; Rushia et al., 2020). In fact, a study of a
large cohort of elderly individuals found that those with severe
white matter lesions were 3 to 5 times more likely to present

FIGURE 2

Summary of the alterations to non-neuronal cells, functional, structural, and vascular networks reported in schizophrenia (SCZ), disorders of
consciousness (DOC) and major depressive disorder (MDD). Each disorder has been associated with alterations highlighted here. Some
alterations are linked (arrows) suggesting possible causality. Altered non-neuronal cells (highlighted with colored stars, yellow for
oligodendrocytes, green for microglia and pink for astrocytes) have been found in all these disorders suggesting their key involvement.
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MDD symptoms relative to those with mild/no white matter
lesions (de Groot et al., 2000). These white matter lesions are
hypothesized to index VC abnormalities, and are thus referred
to as “leukoaraiosis” (Coffey et al., 1988). In addition to its
influence on SC, the impaired VC often observed in late-life
depression has been shown to adversely affect FC in the DMN
(Wu et al., 2011). More specifically, resting-state connectivity in
the medial prefrontal cortex was found to negatively correlate
with the volume of leukoaraiosis in patients with late-life
depression (Wu et al., 2011). Based on current hypotheses in
MDD (Table 3), more research is to do on the causality of the
vascular component in MDD in order to consider therapeutic
targeting of these alterations.

Conclusion

As summarized (Figure 2), SCZ shows widespread decrease
in SC (Kelly et al., 2018) and abnormalities in FC (Damaraju
et al., 2014). SC alterations notably arise from deficits in
oligodendrocytes based on genome-wide association analyses
(Kerns et al., 2010; Goudriaan et al., 2014). This is in line with
other research on glial cells, including oligodendrocytes, which
observed signs of accelerated cellular aging in SCZ (Kochunov
et al., 2013; Carrier et al., 2021). Microglia and astrocytes are
known to over phagocytose in in vitro models of SCZ (Sellgren
et al., 2019). This pathological feature presents an opportunity
for therapeutics not taken yet by the field, as normalization of
glial cell functioning might prevent disorder progression. SCZ
also has a strong VC component (Carrier et al., 2020). An under-
developed vascular network would help explain the alteration
in FC and SC, as vasculature is involved in the establishment
and maintenance of the GABAergic signaling in the brain (Won
et al., 2013; Goudriaan et al., 2014; Hoftman et al., 2015). Proper
vascular connectivity is a process that requires the concerted
participation of microglia, oligodendrocyte and astrocytes, all
essential components of the NVU (Carrier et al., 2020).

DOCs generally present SC and FC impairments in
thalamocortical and frontoparietal networks, specifically the
RAS, DAN, VAN, and DMN (Wheeler and Malinak, 1989;
Adams et al., 2000; Fernández-Espejo et al., 2012; Mecarelli
et al., 2019; Tanabe et al., 2020). These abnormalities are
found to come mainly from demyelination, notably due to
microglia-mediated chronic inflammation (Gosseries et al.,
2011; Guldenmund et al., 2016; Bagnato et al., 2017, 2018,
2021), and increased BBB permeability resulting from impaired
microglial and astrocytic functioning (Haruwaka et al., 2019;
Heithoff et al., 2021). The BBB is at the center of VC alterations
after brain injury, but its influence on brain networks remains
to be investigated within the context of injuries specific to
DOCs. However, patients with DOC present reduced blood
flow in frontoparietal networks, including the DMN, which
may further explain the aforementioned FC observations

(Rosazza et al., 2016; Chennu et al., 2017; Zhang et al., 2018).
While glial cells are involved in blood flow modulation (Carrier
et al., 2020), their implication in the reduction of DMN blood
flow is still to be resolved.

Major depression has been associated with various FC and
SC network characteristics, including instability and reduced
connectivity of the DMN, hypoconnectivity in frontoparietal
control networks, and abnormalities in networks involving the
limbic system (Korgaonkar et al., 2014; Long et al., 2015; Kaiser
et al., 2016; Ye et al., 2016; Li et al., 2018; Coloigner et al., 2019).
Furthermore, patients with MDD demonstrate widespread
reduction in interhemispheric FC, relative to controls (Guo
et al., 2013b; Wang et al., 2013; Zheng et al., 2022). Microglia
and astrocytes are known to participate in MDD pathology,
particularly in the reduction of glutamate and GABA (Choudary
et al., 2005; Bernard et al., 2011; Medina et al., 2016). The
observed reduction of oligodendrocytes in the amygdala of
patients with MDD could also explain the reported deficits
in limbic SC, correlating with the reduction in white matter
(Coloigner et al., 2019). When investigating VC in MDD, a
vascular hypothesis emerges, much as for SCZ: namely the
hypothesis of “vascular depression” in the elderly (Alexopoulos
et al., 1997; Menard et al., 2017; Carrier et al., 2020). Critically,
vascular depression is consistently accompanied by white matter
lesions and thus impaired SC (de Groot et al., 2000; Kumar et al.,
2000; Taylor et al., 2013; Rushia et al., 2020).

It is important to keep in mind the essential physiological
role of microglia as immune cells of the brain, astrocytes as
central regulators of metabolism and nutrient suppliers, and
oligodendrocytes as the main insulator of the CNS (Davalos
et al., 2005; Nimmerjahn et al., 2005; Hughes and Appel, 2019;
Heithoff et al., 2021). These roles are compromised in many
diseases/disorders of the nervous system, especially when
persistent inflammation and oxidative stress lead to altered glial
cell functioning (Lassmann and van Horssen, 2016; Solleiro-
Villavicencio and Rivas-Arancibia, 2018; Chen et al., 2020; Lee
et al., 2021b). An important take away with respect to diseases
involving FC and VC abnormalities is the therapeutic potential
of targeting glial cell neurotransmitter signaling (e.g., glutamate
transporters on microglia and astrocytes) and oxidative stress
metabolism (Sanacora and Banasr, 2013; Oliveira et al., 2016;
Zhou et al., 2019; Zhu et al., 2022). However, further research
into the mechanisms by which non-neuronal cells contribute
to the brain networks underlying SCZ, DOCs, and MDD is
first required. It would be ideal to develop glial pharmacology
such that certain cell types and states can be targeted: for
instance, specifically targeting microglia (and their pathology-
specific states) rather than influencing the functioning of
microglia, astrocytes, neurons, and macrophages as a whole with
a pharmacological treatment (Šimončičová et al., 2022). Given
the complexity and mosaic of mechanisms contributing to
these disorders, as well as the individual differences in disorder
etiology, it is likely that novel advancements in the treatment
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of SCZ, DOCs, and MDD could be achieved if network
neuroscience expanded beyond typical “neuro-centric” studies
(Uher, 2011; Oliveira et al., 2016). This may be particularly
true for patients who show treatment-resistance to the current
neuron-focused therapies, a prevalent issue, as an estimated 30%
of patients being treated for MDD, and 34% of those being
treated for SCZ demonstrate treatment-resistance (Rush et al.,
2006; Al-Harbi, 2012; Potkin et al., 2020). With respect to DOCs,
this quad-partite network neuroscience approach may help
with the development of more accurate diagnostic techniques,
as common behavioral measures of DOCs are estimated to
have a misdiagnosis rate as high as 41% (Schnakers et al.,
2009). As mentioned, the field would gain from having more
longitudinal studies looking in depth into the pathogenesis of
neurodevelopmental disorders. Knowing if a lack of myelination
is at play or if accelerated aging is a key mechanism in this
disorder would benefit the field as well as prompt to take age
in account in each study (Carrier et al., 2020).
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