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Abstract 

Background:  To validate a contrast-enhanced CT (CECT)-based radiomics model (RM) for differentiating various risk 
subgroups of thymic epithelial tumors (TETs).

Methods:  A retrospective study was performed on 164 patients with TETs who underwent CECT scans before treat-
ment. A total of 130 patients (approximately 79%, from 2012 to 2018) were designated as the training set, and 34 
patients (approximately 21%, from 2019 to 2021) were designated as the testing set. The analysis of variance and least 
absolute shrinkage and selection operator algorithm methods were used to select the radiomics features. A logistic 
regression classifier was constructed to identify various subgroups of TETs. The predictive performance of RMs was 
evaluated based on receiver operating characteristic (ROC) curve analyses.

Results:  Two RMs included 16 and 13 radiomics features to identify three risk subgroups of traditional risk grouping 
[low-risk thymomas (LRT: Types A, AB and B1), high-risk thymomas (HRT: Types B2 and B3), thymic carcinoma (TC)] and 
improved risk grouping [LRT* (Types A and AB), HRT* (Types B1, B2 and B3), TC], respectively. For traditional risk group-
ing, the areas under the ROC curves (AUCs) of LRT, HRT, and TC were 0.795, 0.851, and 0.860, respectively, the accuracy 
was 0.65 in the training set, the AUCs were 0.621, 0.754, and 0.500, respectively, and the accuracy was 0.47 in the test-
ing set. For improved risk grouping, the AUCs of LRT*, HRT*, and TC were 0.855, 0.862, and 0.869, respectively, and the 
accuracy was 0.72 in the training set; the AUCs were 0.778, 0.716, and 0.879, respectively, and the accuracy was 0.62 in 
the testing set.

Conclusions:  CECT-based RMs help to differentiate three risk subgroups of TETs, and RM established according to 
improved risk grouping performed better than traditional risk grouping.
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Background
Thymic epithelial tumors (TETs) originate from the thy-
mus and are the most common primary neoplasms in 
the anterior mediastinum, accounting for approximately 

47% of cases [1]. Pathological subtypes of TETs were 
determined by the World Health Organization (WHO) 
in 2004, including thymomas (Types A, AB, B1, B2, and 
B3) and thymic carcinoma (TC), based on morphologic 
manifestations of epithelial cells and the ratio of lym-
phocytes to epithelial cells [2]. In 2014, the International 
Thymic Malignancy Interest Group (ITMIG) affirmed 
the description of WHO histologic subtypes of TETs [3]. 
The six different subtypes were divided into three risk 
subgroups according to increasing grade of malignancy: 
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low-risk thymomas (LRT; Types A, AB and B1), high-risk 
thymomas (HRT; Types B2 and B3), and TC in 2004 [4]. 
It has been agreed that TC has a poorer prognosis and 
a higher recurrence rate than HRT and LRT. According 
to the different subgroups of TETs, different standardized 
and appropriate treatment options and methods of pre-
dicting the clinical course and prognosis of the disease 
are used for each patient by the clinical multidisciplinary 
team [5, 6]. Therefore, accurate and noninvasive identi-
fication of TETs before treatment, and even of the sub-
groups, is of clinical significance.

According to the National Comprehensive Cancer Net-
work (NCCN) guidelines for thymomas and thymic car-
cinomas in 2021, chest contrast-enhanced CT (CECT) 
with contrast is still the first choice for imaging evalua-
tion before treatment [7]. Chest CECT imaging can pro-
vide many general morphologic parameters. However, 
there are many overlapping features in the histological 
subgroups of TETs, and certain difficulties in distin-
guishing different subgroups may be encountered [8, 9]. 
Radiomics, a diagnostic technology based on radiom-
ics signatures, has aroused increasing attention, mainly 
because it can extract different kinds and large quantities 
of high-throughput imaging features and transform med-
ical images into mineable high-dimensional data [10, 11]. 
The subsequent quantitative analysis of these data can 
offer help in differential diagnosis, risk classification, pre-
dicting prognosis and efficacy evaluation of tumors based 
on different kinds of medical images [12–15]. Although 
several CT-based radiomics analyses have been used to 
identify the risk classification of thymic epithelial tumors, 
most studies were based on two-classification [16, 17]. 
Only one study was based on triple classification, and 
the accuracy of the clinical-semantic radiomics model 
(RM) in the risk assessment of three subgroups in the 
validation group was only 48.3% [18]. Therefore, radiom-
ics research based on triple classification needs further 
research.

Previous studies have found that although type B1 
thymomas are LRTs in terms of biological characteris-
tics and invasive performance, their imaging features 
are more similar to those of types B2 and B3 thymomas 
[19]. In addition, the results of Kim et al. showed that the 
disease-free survival at 5 years of type B1, B2 and B3 thy-
momas was basically similar [20]. Therefore, we tried to 
regroup the six subtypes into three risk subgroups: LRT* 
(Types A and AB), HRT* (Types B1, B2, and B3), and TC. 
In this article, the subgroups were named traditional risk 
grouping (LRT, HRT, and TC) and improved risk group-
ing (LRT*, HRT*, and TC) to facilitate the description of 
articles and statistics of data.

This study aimed to build two CECT-based RMs and 
validate their predictive abilities in differentiating three 

different risk subgroups of TETs in the two simplified 
groups.

Methods
Patients
The retrospective study was approved by the institu-
tional review board of Shanxi Province Tumor Hospital. 
The individual written informed consent was waived. 
The study included 179 patients with pathologically con-
firmed TETs in the anterior mediastinum from October 
2012 to March 2021. Accurate pathological classifica-
tions were obtained in 164 patients, including 45 cases 
of biopsy and 119 cases of surgical resection, while not 
accurate pathological classifications were obtained in 15 
patients, including 14 cases of biopsy and 1 case of surgi-
cal resection. All 164 patients who were included in this 
radiomics study underwent CECT scans before treat-
ment. The inclusion criteria were as follows: (a) solid 
anterior mediastinal TETs; (b) lesions > 2.0 cm in diame-
ter based on the longest diameter; (c) good-quality CECT 
images without movement artifacts; and (d) patients who 
did not undergo biopsy, treatment with chemotherapy, 
radiation therapy, or surgery before CT scan.

Determine the number of patients in the training set 
and test set according to the time. A total of 130 patients 
(approximately 79%, from 2012 to 2018) were designated 
as the training set, and 34 patients (approximately 21%, 
from 2019 to 2021) were designated as the testing set. 
The distribution of the training set and testing set of 164 
patients is shown in Table 1. The workflow was shown in 
Fig. 1.

CT images
The Digital Imaging and Communications in Medicine 
(DICOM) CECT images were scanned by a GE Discovery 
CT 750HD scanner (Waukesha, WI) and a GE lightspeed 
Healthcare CT scanner. Automatic tube current modula-
tion techniques were adopted with the tube voltage set 
at 120 kVp. Before scanning, patients were instructed 
to hold their breath to avoid motion artifacts. The first 
series was a thorax noncontrast CT study (helical scan 
type, 100 kV and automatic mAs, the rotation time was 
0.6 s, the slice thickness and interval were each 5 mm, the 
pitch was 1.375:1, the scanning field of view (SFOV) was 
50 cm, and the matrix was 512*512); the scan range was 
from the thoracic inlet to the diaphragmatic level. A total 
of 50 to 120  mL (1  mL/kg weight) of contrast medium 
(iohexol, 300  mg/mL, iodine) was injected by using a 
pump injector at a rate of 3.0  mL/s. Venou phase scan-
ning began 35  s after the trigger attenuation threshold 
(120 HU) achieved the level of the thoracic aorta. The 
scanning parameters were the same as those in the non-
contrast CT study.
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Lesion delineation and segmentation
All DICOM CECT images were loaded into the Rad-
Cloud platform (Huiying Medical Technology Co., Ltd. 
https://​mics.​radcl​oud.​cn). RadCould radiomics platform 
used open source code, which can be obtained online 
(https://​readt​hedocs.​org/​proje​cts/​pyrad​iomics/​downl​
oads/). The region of interest (ROI) of the lesion was 
handcrafted layer by layer on 5 mm thick venous CECT 
images on the platform by a radiologist with 10 years of 
experience (X.L.). Volumes of interest (VOIs) were auto-
matically calculated and generated (Fig. 2).

Radiomics features
In total, 1409 quantitative imaging features were extracted 
from venous-phase CECT images with the RadCloud plat-
form, which the feature extraction module is based on the 
“pyradiomics” (version 2.2.0, https://​pyrad​iomics.​readt​
hedocs.​io/) package in Python (Version 2.7). They were 
grouped into four categories. Category 1 covered the inten-
sity features (including 18 descriptors) that quantitatively 

delineated the distribution of voxel intensities within the 
CT image through the basic metrics found in common. 
Category 2 (shape features) consists of 14 three-dimen-
sional (3D) features that describe the geometric features of 
the target area, such as shape and size. Category 3 (texture 
features). The 75 features described the characteristics of 
voxel spatial distribution intensity levels and were divided 
into five types based on the gray level cooccurrence matrix 
(GLCM), gray size area band matrix (GLSZM), gray run 
length matrix (GLRLM), gray level dependence matrix 
(GLDM), and neighboring gray tone difference matrix 
(NGTDM). The above three categories all extracted fea-
tures from the VOIs of the original image. Category 4 
(higher-order features), with 1302 features, included the 
intensity and texture features that were derived from the 
wavelet transformation and the filters of the original image. 
In this study, a total of 14 filters were used for the filtering 
of the original image, including exponential, square, square 
root, logarithm, gradient, local binary pattern and wavelet 
(wavelet-LLL, wavelet-HHH, wavelet-HLL, wavelet-HHL, 
wavelet-LLH, wavelet-HLH, wavelet-LHL, wavelet-LHL, 

164 CECT TETs in the anterior mediastinum (date from Oct.2012-Mar.2021)

All images were loaded into RadCloud platform. Lesions were delineated, segmented.

Selecting VOIs and calculating the characteristic values of lesions.

Radiomics analysis was performed according to two different simplified groups.
Traditional risk grouping [LRT (Type A,AB,B1), LRT (Type B2,B3), TC)] 
Improved risk grouping [LRT* (Type A,AB), HRT* (Type B1,B2,B3), TC]

16 and 13 valuable radiomics features were extracted from the two training data sets respectively.

training data set: 130 VOIs (2012-2018) testing data set: 34 VOIs (2019-2021)

Use ROC curve analysis to illustrate the prediction performance of the radiomics model.

Fig. 1  Radiomics analysis workflow. First, 164 TETs in the anterior mediastinum on CECT were collected. Second, image segmentation was used 
to delineate the TET lesions on the RadCloud platform, the volume of interest (VOIs) was checked manually, and the radiomics features of VOIs 
were calculated automatically. In addition, the two kinds of valuable radiomics features were extracted by the automated high-throughput feature 
analysis algorithm according to two different simplified groups in the training set. Finally, statistical analysis was applied, and ROC curve analysis was 
used to illustrate the prediction performance of RM for the risk subgroups of TETs

https://mics.radcloud.cn
https://readthedocs.org/projects/pyradiomics/downloads/
https://readthedocs.org/projects/pyradiomics/downloads/
https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
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wavelet-LHH). Before feature extraction, the images were 
resampled to 1  *  1  *  1, and the gray-level normalization 
were applied for the standardization of the CT images.

Radiomics feature selection and model establishment
All statistical analyses were performed in Python (Ver-
sion 2.7) using “scitkit-learn” (V0.2 https://​scikit-​learn.​
org/​stable/). Before feature selection, Z-Score was used 
for feature standardization. We used analysis of variance 
(ANOVA) and least absolute shrinkage and selection oper-
ator (LASSO) algorithm methods for feature selection to 
identify the optimal features. The cost function of LASSO 
method is:

where X is the matrix of radiomic features, y is the vector 
of the sample labels, n is the number of samples, w is the 
coefficient vector of the regression model, and α‖w‖1 is 
the LASSO penalty with the constant α and the l1-norm 
of coefficient vector ‖w‖1.

We used a logistic regression (LR) classifier on CECT 
selected features. A logistic function or logistic curve is a 
common "S" shape (sigmoid curve), with the following 
equation:

where e is the natural logarithm base (also known as Eul-
er’s number),x0 is the x-value of the sigmoid’s midpoint, 

min
w

1

2n

∥

∥Xw − y
∥

∥

2

2
+ α�w�1

y =
L

1+ exp (−k(x − x0))

L is the curve’s maximum value, and k is the steepness of 
the curve.

The cost function of LR as following:

where the parameters are the same as the cost function 
for LASSO [21].

Assessment of inter‑ and intraclass correlation coefficients 
(ICCs)
To ensure reproducibility of radiomics feature extraction, 
we employed inter- and intraclass correlation coefficients 
(ICCs) for assessing the intra- and interobserver agree-
ment of VOI delineation. Thirty lesions were selected 
randomly by statistical software. After 1 month, another 
radiologist (Z.Z.K) with 13  years of clinical experience 
used the same method to extract radiomics features. An 
ICC > 0.75 was considered to represent good agreement.

Predictive performance of RMs after machine learning
Receiver operating characteristic (ROC) curve analy-
sis was used to evaluate the prediction ability of the two 
different RMs. The optimal cutoff value was selected as 
the point when both the sensitivity and specificity were 
maximal. The area under the curve (AUC) and accu-
racy were calculated in both the training and testing 
sets. The three indicators were P (precision = true posi-
tives/(true positives + false positives)), R (recall = true 
positives/(true positives + false negatives)), and f1-score 

min
w,c

1

2
wTw +

n
∑

i=1

log
(

exp
(

−yi

(

XT
i + c

))

+ 1
)

Fig. 2  TET lesions segmentation. On all consecutive CECT images, the contour of the lesions was drawn manually along the edge of the lesions, 
and VOIs were automatically obtained

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/


Page 6 of 12Yu et al. BMC Medical Imaging           (2022) 22:37 

(f1-score = P × R × 2/(P + R)), to evaluate the perfor-
mance of the LR classifier. The clinical benefits of two 
RMs were estimated by decision curve analyses, and 
the goodness-of-fits of the two RMs were evaluated by 
calibration curves. They were accomplished with R 4.0.3 
(www.R-​proje​ct.​org/).

Results
General data
A total of 164 patients (mean age: 54 ± 10.33  years, age 
range: 24–78  years) with TETs for CECT scans were 
enrolled: 78 men and 86 women. According to the histo-
logical and immunohistochemical results, with regard to 
WHO pathological subtypes, there were 15 (9.1%) Type 
A patients, 19 (11.6%) Type AB, 26 (15.9%) Type B1, 34 
(20.7%) Type B2, 24 (14.6%) Type B3, and 46 (28.0%) TC 
(including 4 cases of thymic carcinoid) (Table 1).

Radiomics features selection
The inter- and intraobserver reproducibility of feature 
extraction was achieved with ICCs > 0.75 between the 
two different radiologists. The 16 and 13 features were 
selected by the ANOVA and Lasso algorithm method, 
and the corresponding optimal values of the lasso tun-
ing parameter (alpha) were 1.241 and 1.239, respectively. 
Then, the two RMs included 16 and 13 radiomics features 
to identify three different subgroups of TETs according 
to traditional risk grouping [LRT (Types A, AB and B1), 

LRT (Types B2 and B3), TC] and improved risk grouping 
[LRT* (Types A and AB), HRT* (Types B1, B2 and B3), 
TC], respectively (Figs. 3, 4).

The features in the two RMs were all high-order fea-
tures without any intensity, shape or texture features, 
four of which were the same: wavelet-LLL_glcm_Inverse-
Variance, wavelet-LLH_glcm_Imc2, gradient_glcm_Imc1 
and wavelet-LLH_glszm_GrayLevelNonUniformityNor-
malized.

Diagnostic performance of the two RMs
The 16- and 13-feature RMs were trained with the LR 
classifier on CECT images, and the ROC curve analysis 
results are shown in Figs.  5 and 6. In the training set 
of traditional risk grouping, the areas under the ROC 
curve (AUCs) of LRT, HRT, and TC were 0.795, 0.851, 
and 0.860, respectively, and the accuracy was 0.65; in 
the testing set, the AUCs were 0.621, 0.754, and 0.500, 
respectively, and the accuracy was 47%. In the train-
ing set of improved risk grouping, the AUCs of LRT*, 
HRT*, and TC were 0.855, 0.862, and 0.869, respec-
tively, the accuracy was 0.72, and in the testing set, the 
AUCs were 0.778, 0.716, and 0.879, respectively, and 
the accuracy was 0.62. For the testing set, the AUC of 
TC in improved risk grouping was 0.879, which was 
significantly larger than 0.500 in traditional risk group-
ing (Table  2). Additional file  1: Tables S1–S4 showed 
the confusion matrices. The calibration curves showed 

Fig. 3  Valuable radiomics feature selection of traditional risk grouping [LRT (Types A, AB and B1), HRT (Types B2 and B3), TC)] using LASSO 
regression. The optimal value of the lasso tuning parameter (alpha = 1.241) was found, and 16 features that corresponded to the optimal alpha 
value were extracted following coefficients on CECT images

http://www.R-project.org/
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that the predicted performance of RM according to the 
improved risk grouping for HRT* and TC were in satis-
factory agreement with the actual risk level, while the 

performance of the RM according to the traditional risk 
grouping was unsatisfactory (Fig. 7). In addition, Analy-
ses of decision curves showed that the RM according to 

Fig. 4  Valuable radiomics feature selection of improved risk grouping [LRT* (Types A and AB), HRT* (Types B1, B2 and B3), TC] using LASSO 
regression. The optimal value of the lasso tuning parameter (alpha = 1.239) was found, and 13 features that corresponded to the optimal alpha 
value were extracted following coefficients on CECT images

Fig. 5  Receiver operating characteristic curve (ROC) on CECT-based RM according to traditional risk grouping [LRT (Types A, AB and B1), HRT (Types 
B2 and B3), TC)]. a The 16-feature RM was trained in the training set with the LR classifier. The areas under the ROC curve (AUCs) of LRT, HRT, and TC 
were 0.795, 0.851, and 0.860, respectively. b The 16-feature RM was tested in the training set with the LR classifier. The AUCs of LRT, HRT, and TC were 
0.621, 0.754, and 0.500, respectively
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the improved risk grouping for HRT* and TC obtained 
higher clinical utility (Fig. 8).

Discussion
This study built two RMs based on CECT images using 
LASSO to extract the features and LR as the classifier to 
identify three different subgroups of TETs. After machine 
learning, the 13-feature RM (accuracy = 0.62) established 
according to improved risk grouping [LRT* (Types A and 
AB), HRT* (Types B1, B2 and B3), TC] showed a better 
predictive performance than the 16-feature RM (accu-
racy = 0.47) established according to traditional risk 
grouping [LRT (Types A, AB and B1), HRT (Types B2 
and B3), TC] in the test set.

Recently, six popular machine learning algorithms 
have been used to construct RMs: k-nearest neighbor 
(KNN), support vector machine (SVM), eXtreme Gra-
dient Boosting (XGBoost), random forest (RF), logistic 
regression (LR), and decision tree (DT). Among them, 
the results using the LR algorithm were the most ideal 
in many CT-based radiomics studies to predict different 
risk subgroups of TETs or thymomas [18, 21, 22]. There-
fore, in this study, we only chose LR algorithm. In this 
study, the prediction accuracy of 16-feature RM accord-
ing to traditional risk grouping was not ideal (only 0.47), 
which was basically consistent with the research results 
(0.45) of Liu et al. [18] in the testing set. Therefore, it can 
be seen from our and Liu et al.’s studies that the ability of 

Fig. 6  Receiver operating characteristic curve (ROC) on CECT-based RM according to improved risk grouping [LRT* (Types A and AB), HRT* (Types 
B1, B2 and B3), TC]. a The 13-feature RM was trained in the training set with the LR classifier. The areas under the ROC curve (AUCs) of LRT, HRT, and 
TC were 0.855, 0.862, and 0.869, respectively. b The 13-feature RM was tested in the training set with the LR classifier. The AUCs of LRT, HRT, and TC 
were 0.778, 0.716, and 0.879, respectively

Table 2  The prediction performance of the two RMs

RM, radiomics model; LRT, low-risk thymomas; HRT, high-risk thymomas; TC, thymic carcinoma; AUC, area under the curve

Simplified groups Subgroups AUC (95%CI) Accuracy Precision Recall F1-score

Traditional risk grouping Training set LRT (A,AB,B1) 0.795 (0.731–0.859) 0.65 0.73 0.67 0.70

HRT (B2,B3) 0.851 (0.788–0.900) 0.65 0.63 0.57 0.60

TC 0.860 (0.797–0.906) 0.65 0.58 0.72 0.64

Testing set LRT (A,AB,B1) 0.621 (0.434–0.768) 0.47 0.70 0.58 0.64

HRT (B2,B3) 0.754 (0.583–0.898) 0.47 0.46 0.50 0.48

TC 0.500 (0.320–0.683) 0.47 0.27 0.30 0.29

Improved risk grouping Training set LRT* (A,AB) 0.855 (0.802–0.906) 0.72 0.73 0.59 0.65

HRT* (B1,B2,B3) 0.862 (0.780–0.931) 0.72 0.74 0.85 0.79

TC 0.869 (0.815–0.916) 0.72 0.65 0.56 0.60

Testing set LRT* (A,AB) 0.716 (0.554–0.868) 0.62 0.40 0.29 0.33

HRT* (B1,B2,B3) 0.778 (0.591–0.935) 0.62 0.61 0.82 0.70

TC 0.879 (0.760–0.983) 0.62 0.83 0.50 0.62
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CT-based RM to distinguish the three conventional risk 
groups of TETs was not ideal.

Several studies have shown that although type B1 thy-
moma belongs to LRT, its conventional CECT findings 
overlap with type B2 and B3 thymomas in HRT to a cer-
tain extent, especially with type B2 thymoma [9, 19]. At 
the same time, a study showed that the prognosis of type 
B1 thymoma is not significantly different from that of 
type B2 and B3 thymomas [20]. Therefore, based on the 
above contradictions, we propose the idea of regroup-
ing, and we hypothesized that regrouping may be more 

conducive to the identification of TETs. To the best of 
our knowledge, this is the first study to propose the con-
cept of improved risk grouping of TETs. In this study, 
we found that the prediction accuracy of 13-feature RM 
according to improved risk grouping was 0.62, which 
was higher than the 0.45 of the simple CECT-based 
model and the 0.48 of the CECT-based clinical-semantic-
radiomics model of Liu et al. [18] in the testing set. The 
results of this study verified our hypothesis. In pathol-
ogy, type B thymomas apparently represent a continuum 
from B1 to B3 thymomas, which shows a spectrum of 

Fig. 7  The calibration curves of the two RMs in the testing sets respectively. a For the traditional risk grouping [LRT (Types A, AB and B1), HRT 
(Types B2 and B3), TC)], the prediction performance of RM for LRT, HRT and TC did not show satisfactory consistency with the actual risk level. b For 
the traditional risk grouping [LRT* (Types A and AB), HRT* (Types B1, B2 and B3), TC], the prediction performance of RM for HRT* and TC showed 
satisfactory consistency with the actual risk level

Fig. 8  The decision curve analyses of the two RMs in the testing sets respectively. a The RM according to the traditional risk grouping [LRT (Types 
A, AB and B1), HRT (Types B2 and B3), TC)] had general clinical utility for LRT, HRT and TC. b The RM according to the improved risk grouping [LRT* 
(Types A and AB), HRT* (Types B1, B2 and B3), TC] had good clinical utility for HRT* and TC
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lymphocyte to epithelial predominance [23]. It can also 
be understood that the pathological similarity between 
type B1 thymoma and type B2 thymoma is higher than 
that between type B1 thymoma and type A or AB thy-
moma. Therefore, pathologists may overlap in the diag-
nosis of type B1 and B2 thymomas (approximately 15% 
disagreement) [3]. This pathological manifestation may 
explain the phenomenon that there was a certain overlap 
between type B1 thymoma and type B2 and B3 thymo-
mas on conventional CT features, and it is also a feasible 
basis for regrouping. Therefore, we applied the improved 
risk grouping method to fundamentally reduce the inter-
ference of type B1 thymoma in LRT and HRT, and the 
established RM improved the accuracy of diagnosis. In 
this study, for the improved risk grouping, the perfor-
mance of the CECT-based RM also declined when mov-
ing from training set to testing set (from 0.72 to 0.62). 
Significant TET atypia should be one of the main reasons 
for the general decline of performance. We also found 
that the AUC of TC according to improved risk group-
ing was 0.879, which was significantly larger than 0.500 
according to traditional risk grouping in the testing set. 
This indicated that the RM established according to the 
improved risk grouping method may have a higher accu-
racy in predicting the risk of TC. We speculated that 
the reason may be that the extracted valuable radiomics 
features were more specific for TC or that some thymo-
mas in LRT* and HRT* were very similar in pathological 
manifestations.

The 3D analysis of the whole lesion could reflect the 
heterogeneity of the tumor more representative and pro-
vide more comprehensive information. Chaddad et  al. 
[24] found that a 3D wavelet transform can distinguish 
colorectal cancer classification, which has higher accu-
racy and sensitivity than 2D wavelet transform. There-
fore, we manually depicted ROIs along the lesion contour 
on each image and converted ROIs to VOIs. Finally, 
there were 11 and 9 3D-wavelet texture features in the 
two RMs, respectively. In our study, there was no shape 
feature in any of the extracted features in the two RMs, 
indicating that the shape features were not significantly 
different in the three different risk subgroups of TETs. 
The results of Han et  al.’s conventional CT imaging to 
identify different risks of TETs showed that tumor size 
and contour significantly differed between LRT and HRT 
[25]. Our results were inconsistent with these results, 
which might be due to the relatively small number of 
cases, especially type A and AB thymomas.

Chest CECT was the first choice of imaging evalua-
tion before treatment for TETs. In this study, the images 
with 5 mm thickness in the venous phase of conventional 
CECT were used for radiomics analysis because the 
image stability in the venous phase was better than that in 

the arterial phase. In the arterial phase, the concentration 
of contrast medium in the superior vena cava or brachio-
cephalic vein was quite high, and the adjacent area had 
obvious artifacts, which may affect the display of lesions. 
Wang et al. [26] used radiomics based on CECT images 
and noncontrast-enhanced CT (NECT) images to iden-
tify high-risk and low-risk thymomas with similar AUCs. 
We did not use the NECT image because in some of the 
NECT images, the obvious artifact in the lesion may 
affect the authenticity of the tumor heterogeneity, and 
the unclear edge is not conducive to the segmentation 
of the lesion. Therefore, we think that radiomics analysis 
based on CECT and 3D segmentation of all lesions may 
have broader application prospects for the evaluation of 
TETs. According to the improved risk grouping method, 
we only selected the images with a 5  mm thickness of 
the venous phase as the training set, segmented them to 
generate VOIs, and used LR as the classifier to extract 
features and establish the most simplified RM. After 
machine learning, the prediction accuracy of the test set 
was significantly higher than that of the CECT-based 
clinical-semantic-radiomics model of Liu et al. [18]. This 
indicated that improved risk grouping may have potential 
clinical popularization and application value. In addition, 
several studies have shown that the iodine concentration 
(IC) value of dual-energy CT (DECT) is valuable for dis-
tinguishing different risks of TETs [27, 28]. The radiom-
ics evaluation of TETs based on DECT images combined 
with IC values is worthy of further study.

We know that only when patients obtain accurate path-
ological diagnosis results can a multidisciplinary diagno-
sis and treatment team give them the most appropriate 
treatment plan [29]. Although pathological diagnosis is 
the gold standard, not all patients can obtain a specific 
pathological diagnosis after biopsy. Similarly, we found 
that 15 patients with TETs did not obtain accurate patho-
logical classification during our follow-up. For patients 
who could not obtain accurate pathological diagnosis 
results in time, we could use RM to evaluate their risk 
level before treatment and provide a multidisciplinary 
diagnosis and treatment team with suggestions on the 
tumor risk level. Our RM may also have important value 
for the risk assessment of TET patients without specific 
pathological classification.

This study had some limitations. First, individual medi-
cal centers were included in the study, and the number of 
cases was small. Combining multiple centers with a larger 
number of patients will be needed to verify our results. 
Second, although our study was a retrospective cohort 
study, there was selection bias. Third, to compare the 
prediction performance of the two RMs, cross validation 
was not used in this study. We grouped the data accord-
ing to time, which may avoid the selection bias caused by 
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machine learning to a certain extent. Further research 
is needed to verify our results. In addition, it was time-
consuming and subjective to draw the contour manually. 
Therefore, it is necessary to develop a more efficient and 
accurate method of image contour drawing.

Conclusions
Our study established a simple RM established based 
only on venous CECT images to distinguish the three 
risk subgroups [low-risk thymoma (Types A, AB and 
B1), high-risk thymoma (Types B2 and B3), thymic car-
cinoma] of TETs. If type B1 thymoma is reclassified as 
high-risk thymoma, RM established according to the 
improved grouping mode may have higher accuracy in 
predicting the three risk subgroups.
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