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Background: Long-term trends in freshwater bacterial community composition (BCC) and dynamics are not yet
well characterized, particularly in large lake ecosystems. We addressed this gap by temporally (15 months) and
spatially (6 sampling locations) characterizing BCC variation in lakes Erie and St. Clair; two connected ecosystems in

Results: We found a spatial variation of the BCC between the two lakes and among the sampling locations
(significant changes in the relative abundance of 16% of the identified OTUs at the sampling location level). We
observed five distinct temporal clusters (UPGMA broad-scale temporal variation) corresponding to seasonal variation
over the 15 months of sampling. Temporal variation among months was high, with significant variation in the
relative abundance of 69% of the OTUs. We identified significant differences in taxonomic composition between
summer months of 2016 and 2017, with a corresponding significant reduction in the diversity of BCC in summer

Conclusions: As bacteria play a key role in biogeochemical cycling, and hence in healthy ecosystem function our
study defines the scope for temporal and spatial variation in large lake ecosystems. Our data also show that
freshwater BCC could serve as an effective proxy and monitoring tool to access large lake health.
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Background

The Laurentian Great Lakes (LGLs) in North America
differ markedly in their hydraulic residence time, annual
lake surface temperatures, ice cover and extent, and pri-
mary production levels [1]. The LGLs are warming rap-
idly, and thus are highly susceptible and responsive to
any added anthropogenic induced stressors [2]. Lake
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Erie, the smallest and shallowest of the LGLs, has under-
gone dramatic swings in water quality over the past cen-
tury due to nutrient loading (primarily phosphates) from
agricultural and urban sources [3]. Phosphate removal
programs ultimately resulted in significant improvement
in the state of Lake Erie [4]. However, key ecosystem
services such as drinking water (for ~ 11 million people),
important aquatic species habitat, water for the indus-
trial sector and tourism/recreational activities (boating,
shipping and fisheries; >$50 billion annually) are cur-
rently threatened by frequent cyanobacterial harmful
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algal blooms (cHABs) and hypoxia [5]. Lake St. Clair is
also heavily impacted by densely populated urban areas,
and because of its location upstream [6]. Lake St. Clair is
very shallow and highly affected by recurrent eutrophica-
tion symptoms [7].

Microbes play fundamental roles in transforming or-
ganic carbon and reintroducing it into the food web,
thus characterizing temporal and spatial changes in bac-
terial community composition (BCC) can provide deeper
insight into the processes and mechanisms operating in
lake ecosystems and ultimately improve our basic know-
ledge and ability to predict BCC dynamics and function.
BCC temporal variation can occur hourly [8] to seasonal
[9] and interannual [10]. Cyclic abiotic factors such as
light [11] and temperature [12], as well as biotic factors
such as bacteriophages [13], may contribute to daily,
weekly and seasonal cycles, but temporal variation goes
beyond such straightforward cyclic relationships. BCC
spatial variation also has reported in fine-scale (within
pounds) [14] to large-scale; between the lakes [15] and
in the lakes [16]. Despite these studies, the temporal
(long-term continuous sampling) and spatial (between
the lakes and in the lakes across multiple locations)
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dynamics of freshwater bacterial communities still needs
more characterization in the Great Lakes.

Despite numerous studies addressing the biogeograph-
ical distribution of microbial species [8, 10, 15, 16], mi-
crobial ecologists lack a basic understanding of the
characteristic scales of temporal (long-term) and spatial
(between the lakes and in the lakes across multiple loca-
tions) variation in aquatic BCC; as BCC form the corner-
stone of whole freshwater ecosystems. Arguably, this is a
key gap in our basic understanding of aquatic bacterial
diversity that hinders our ability to develop theories
about how microbially mediated function and the stabil-
ity of those functions are maintained across space and
time. Considering previous studies [8, 10, 15, 16], we
must integrate long-term temporal sampling with large
scale spatial sampling to allow not only assessment of
change over time and space, but also the potential for
the interaction between location and date of sampling.
To address this knowledge gap, we sampled bi-weekly 6
recreational beaches in Lake Erie (4 locations) and St.
Clair (2 locations) at Windsor-Essex County (Windsor,
Ontario, Canada) from June 2016 to August 2017 to
characterize the BCC (Fig. 1). We used 16S rRNA

LP

Windsor-Essex County

Fig. 1 The sampling sites used for bacterial community composition in Lake Erie (Cedar Beach; CB, Colchester Harbour Beach; CH; Holiday Beach;
HB and Point Pelee Beach; PP), and Lake St. Clair (Lakeview Park Beach; LP and Sand Point Beach; SP) in Windsor-Essex County. The map
generated by the authors of this paper
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metabarcoding via next-generation sequencing (NGS) to
ensure accurate and complete BCC characterization. We
hypothesize both significant temporal (bi-weekly,
monthly and seasonal) and spatial (sampling location
and lake) variation in freshwater BCC, given the spatial
and temporal scale of this study. Specifically, we pre-
dicted stronger temporal than spatial effects, primarily
due to the expected large seasonal effects, but due to en-
vironmental similarity and connectivity among the sam-
pled sites, only subtle spatial effects. More specifically,
we expected to observe highly divergent BCCs among
the seasons, but with the two summer season samples
more similar. We also expected that environmental pa-
rameters (water temperature, season, precipitation and
day light hours) have influence on the BCC dynamic.
The outcome of this study will increase our basic under-
standing of how freshwater BCC changes at different
scales of time and space which is critical for monitoring
the ecological service of BCC and aquatic ecosystem
health.

Results

Global spatial and temporal effect

After quality control, 5.1 million Ion Torrent sequence
reads remained across all 6 sample locations and 15
months. Each sample (replicate) had between 2102 and
8509 reads, with an average of 4789 reads. In total,
27,643 OTUs were detected. After removing singleton
and doubleton sequence reads, as well as OTUs with
<20 reads from the data set, 2100 OTUs were included
in this study. The OTU table was rarefied to 2000 reads/
sample.

We collected 2 samples per location and time and
found that replicates had no significant differences in
the BCC (p > 0.05). We also observed no significant rep-
licate effect with 3-9 samples/location in our recently
published study of aquatic bacterial community dynam-
ics in north temperate lakes [17], thus we combined se-
quence read data of the two replicates for each week at
each location to increase the read depth for all further
statistical analyses.

Based on our global GLMM, we found that lake (as a
broad spatial factor) had significant effects (p <0.05)
only on Chaol and Shannon indexes; however, month
(as a broad temporal factor) had significant effects (p <
0.05) on Chaol, Shannon, PCol, PCo2 and PCo3 (Sup-
plementary Table 1). In the lake-specific models (two
models), sampling location had a significant effect (p <
0.05) only on Chaol and Shannon indexes, but month
had a significant impact on Chaol, Shannon, PCol,
PCo2 and PCo3 (Supplementary Table 1). The interac-
tions of sampling location with month also had signifi-
cant (p <0.05) effects on Chaol, Shannon, PCol, PCo2
and PCo3 in two lake-specific models (Supplementary
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Table 1). Our Kruskal-Wallis analyses showed that out
of 2100 OTUs, the relative abundance of 336 (16%) of
the OTUs were significantly affected by location (6 sam-
pling locations), while the relative abundance of 1453
(69%) of the OTUs were significantly affected by month
(15 sampling months) (Fig. 2). The interaction of loca-
tion and month had a significant effect on the relative
abundance of 311 (14%) OTUs (Fig. 2). Supplementary
Table 2 presented top 20 OTUs which were mostly af-
fected by month, location (6 sampling locations) and
their interaction. It is important to note that significance
was not corrected for multiple simultaneous compari-
sons; however, the goal of this analysis was to show the
pattern of effects on OTU relative abundance, highlight-
ing the dominance of temporal effects relative to spatial
and interaction effects (Fig. 2).

Spatial variation

Broad spatial variation

There was no significant difference in the Bray—Curtis
dissimilarity matrix for the BCCs of Lake Erie and Lake
St. Clair across the full sampling period (PERMANOVA;
df=1, F=2.064, p =0.07) (Supplementary Fig. 1). Simi-
larly, we found no significant variation in the mean of
the Chaol (F =1.2), PCol (F =0.42), PCo2 (F =0.92) and
PCo3 (F=0.94) values between two lakes by one-way
ANOVA (df =1, p >0.05). Out of the 30 detected classes
of bacteria across all samples, the relative abundance of
only 5 of the classes was significantly higher (LDA; p <
0.05) in the BCCs of Lake Erie in comparison to Lake St.
Clair (Supplementary Fig. 2).

Spatial variation among different locations

There was no significant difference in the Bray—Curtis dis-
similarity matrix for the BCCs of the 6 sampling locations
(PERMANOVA; df =5, F=1.06, p = 0.34) (Supplementary
Fig. 1). One-way ANOVA showed a significant effect of
sampling locations on the Chaol index (F=532, p <
0.001). Tukey post-hoc test revealed that only the mean of
Chaol index in CB was significantly higher (p < 0.05) than
HB, PP and SP but not from CH and LP. Using one-way
ANOVA, there was no significant effect of sampling loca-
tions on PCol (df=5, F=0.644, p =0.66), PCo2 (df =5,
F=038, p =0.85) and PCo3 (df=5, F=0.39, p =0.88).
Out of the 2100 OTUs, 336 OTUs (4 highly abundant, 21
moderately abundant and 311 rare OTUs) showed signifi-
cant variation among the 6 sampling locations (Fig. 2). We
identified 1-5 classes of bacteria with significant diver-
gence for some of the pairwise comparisons at the class
level between the BCC of different sampling locations
(Supplementary Table 3). We identified a maximum 5
classes of bacteria with significant variation in their rela-
tive abundance between CB and LP; between CB and SP;
between CH and SP; between HB and SP and between LP
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Fig. 2 Histograms showing the effect (Kruskal-Wallis P-value) of location (6 sampling locations) and month (15 sampling months) and their
interactions on the relative abundance of 2100 bacterial OTUs sampled at 6 sites over 15 months. Panel A; temporal effect (month), panel B;
spatial effect (location) and panel C; the interaction of spatial and temporal effects (Location x Month). Uncorrected p values are shown on the in
Y-axis and p =0.05 was used as cut-off of the significant effect (dashed line in each plot)

and SP (Supplementary Table 3). Further analysis at order
and family levels shown that some bacteria had common
patterns among different sampling locations (Supplemen-
tary Table 3). For example, order Aeromonadales (phylum
Proteobacteria and class Gammaproteobacteria) had sig-
nificantly higher relative abundance in LP and SP in com-
parison to CH, HP, and PP (Supplementary Table 3).
Also, order Acidimicrobiales (phylum Actinobacteria and

class Acidimicrobiia) had significantly lower relative abun-
dance in LP and SP in comparison to CB, CH, and PP
(Supplementary Table 3).

Temporal variation

PCol (16.1%) and PCo2 (8.1%) (Fig. 3) and PCo3 (6.5%)
(not shown), which represented the most variation in the
BCC PCoA, varied substantially over the 15months
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Fig. 3 Line plots showing mean bi-weekly variation in Chao1 index (panel A) and Bray—Curtis dissimilarity PCo1 (panel B) and PCo2 (panel C) for
the six different sampling locations (CB, CH, HB, LP, PP and SP) over 15 sampling months (June 2016—-August 2017). Error bars show standard

deviation. In X-axis; numbers indicate the month in years, W shows weeks 1 and 2; 16 and 17 indicate 2016 and 2017 years respectively

sampling period, while PCo4 (3.5%), PCo5 (3.4), PCo6 (2.2%)
and PCo7 (1.5%) represented only minor levels of variation
in the bi-weekly BCCs. Inspection of the bi-weekly plots of
alpha diversity also shows substantial temporal variation
throughout the 15-month sampling period (Fig. 3 and Sup-

plementary Fig. 3).

Broad temporal variation

BCCs variation

As we were only interested in long term temporal vari-
ation, we combined bi-weekly data from each location
within each month. We thus had a total of 90 samples
(15 months x 6 locations) for our cluster analysis.
UPGMA clustering showed five major clusters diverging

at between 50 and 60% similarity based on the Bray—
Curtis similarity index (Fig. 4). The BCCs of summer
2016 (June, July and August) were grouped in cluster 1.
The BCCs of December (2016) and January (2017) were
grouped as cluster 2. The BCCs of 5 months including
February, March, April, May and June 2017 clustered to-
gether as cluster 3. The BCCs of July and August (sum-
mer 2017) were grouped as cluster 4 and the BCCs of
fall 2016 (September, October and November) grouped
into cluster 5 (Fig. 4). There was significant variation
among the BCCs of 5 clusters (PERMANOVA test; df =
4, F=9.57, p =0.0001) and their pairwise comparisons.
The overall average dissimilarity of the BCCs of 5 broad clus-
ters was 51% using SIMPER analysis (Supplementary Table 4).
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Diversity variation among clusters

The clusters differed significantly (df =4, p <0.0001) in
Chaol (F =27.42), PCol (F=28.2,), PCo2 (F=27.9) and
PCo3 (F=20.2) using one-way ANOVA. Figure 5 pre-
sented variation of Chaol, PCol and PCo2 over 15
months of sampling. Tukey post-hoc analysis showing
that Chaol and PCol of cluster 1 were significantly (p <
0.05) higher than all 4 other clusters. PCo2 of cluster 2
was significantly (p <0.05) lower than all 4 other clus-
ters. More interestingly, the mean of Chaol for cluster 3
was significantly lower than all other clusters and the
mean of PCol also was the lowest among all clusters but
significantly lower than clusters 1 and 4 (Supplementary
Fig. 4 and Supplementary Table 5).

OTUs and taxonomic variation

At the OTU level, clusters 1, 2, 3, 4 and 5 had 7, 12, 11,
9 and 11 highly abundant (relative abundance > 1%)
OTUs, respectively. Only four OTUs (2, 3, 4 and 6) were
common among all 5 clusters. Taxa information of the
abundant OTUs in the clusters were presented in Fig. 6.

Only OTUs 2 and 3 (phylum Actinobacteria and family
ACK-M1), OTU4 (phylum Firmicutes and family Exiguo-
bacteraceae) and OTU6 (phylum Proteobacteria and
family Comamonadaceae) were abundant across all clus-
ters. The relative abundance of many OTUs significantly
varied among the clusters, as expected given that the
clusters were defined based on variation in BCC. For ex-
ample, the relative abundance of OTU2 (family ACK-
M1) was significantly higher in the BCC of cluster 1
(9.5%) than all other clusters (2.5-3.8%). Out of 2100
OTUs; 75, 90, 79, 61 and 79 moderately abundant OTUs
were detected in the BCCs of clusters 1, 2, 3, 4 and 5,
respectively.

While the BCCs of the clusters (1-5) were dominated
by four phyla, the relative proportions of these phyla var-
ied substantially (Fig. 4). Actinobacteria was the most
common taxon (~ 50%) versus Firmicutes (7.16%) as the
less common taxon in the BCC of cluster 1. In the BCC
of clusters 4 and 5, Actinobacteria (~ 32% in both clus-
ters 4 and 5) was dominant but Firmicutes (~32% in
cluster 4 and ~30% in cluster 5) became the second
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most common taxon. In the BCC of cluster 2, Proteobac-
teria (~39%) was the most common taxon and Firmi-
cutes (~19%) became the third most common phylum
after Actinobacteria (~26%). More interestingly, Cyano-
bacteria levels were elevated in the BCC of cluster 2
(2.25%) compared to the other clusters (0.75 + 0.35%).
The BCC of cluster 3 was enriched for Firmicutes (~
35%) as the dominant phylum and by Proteobacteria (~
30%) as the second most common phylum. We observed

substantial variation in the relative abundance of 30 clas-
ses of bacteria. For example, the relative abundance of
Bacilli was significantly lower in the BCC of cluster 1
compared to all other clusters, while some classes such
as Actinobacteria and Thermoleophilia (belonging to
Actinobacteria) and Cytophagia and Saprospirae (be-
longing to Bacteroidetes) conversely had significantly
higher relative abundance in the BCC of cluster 1 rela-
tive to all the other clusters (Supplementary Table 6).
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Monthly temporal variation

BCCs variation

There was a statistically significant effect of sampling
month (df=14, F=6.1 and p =0.0001) on the Bray—
Curtis dissimilarity matrix of the BCCs based on PER-
MANOVA. The pairwise comparison of the BCCs of the
months showed significant differences for most compari-
sons (Supplementary Table 7). For example, there was
no significant variation between the BCC of April and
May (2017) in comparison to the BCC of March (2017)
and the BCC of May and June (2017) in comparison to
the BCC of April (2017).

Diversity variation

We observed significant variation (df=14, p <0.001) in
Chaol (F=8.97), PCol (F =5.7), PCo2 (F = 4.5) and PCo3
(F=3.9) indexes among the 15 months of sampling using
one-way ANOVA. Tukey post-hoc tests showed that 30%
of the comparisons among sampling months were statisti-
cally significant (p < 0.05) for Chaol among 15 months of
sampling, while 10% of the Tukey post-hoc test compari-
sons of PCol and only 3% of the Tukey post-hoc test
comparisons of PCo2 showed significant divergence (p <
0.05) (Fig. 5, Supplementary Table 8).

OTUs and taxa variation

Out of 2100 OTUs, the relative abundance of 1453
(69%) OTUs changed significantly (Fig. 2) across the
months. The BCCs of July (2016) had the lowest number
(6 OTUs) of highly abundant OTUs while the BCCs of
February (2017) and June (2017) had the highest number
of highly abundant OTUs (12 OTUs) among the 15
months of sampling. OTUs 2, 3 (family ACK-M1), 4
(family Exiguobacteraceae) and 6 (family

Comamonadaceae) were highly abundant across all 15
months of sampling, but the relative abundance of
others with high relative abundance dropped to <1% in
some months (Fig. 6). Some highly abundant OTUs
showed highly variable patterns over 15 months of sam-
pling. For example, the relative abundance of OTU2 was
8.2, 10.8 and 9.5% in June, July and August (2016) re-
spectively but dropped to between 2.0 and 5.7% across
all other months. In contrast, the relative abundance of
OTU13 (phylum Bacteroidetes and family Cyclobacteria-
ceae) was 0.02-4.4% in the BCCs of June 2016 — June
2017 but increased up to 10.7 and 7.2% in the BCCs of
July and August (2017) respectively (Fig. 6A). Many of
even the highly abundant taxa exhibited unpredictable
variation across the study period, highlighting the cha-
otic nature of BCCs. Interestingly, the relative abun-
dance of family Flavobacteriaceae belonging to
Bacteroidetes (OTU50) and Oscillatoriaceae belonging
to Cyanobacteria (OTUs 65 and 90) were elevated in the
January BCCs relative to all other months (Fig. 6B).

At the phyla level, the BCCs of June (47.56%), July
(49.83%) and August (53.37%) in the summer of 2016,
were enriched by Actinobacteria compared to June
(27.47%), July (30%) and August (34.78%) in summer
2017 and all other months. In contrast, taxa belong to
Firmicutes was not common in the BCCs of June
(6.93%), July (7.24%) and August (7.31%) in summer
2016 while they were consistently common in the com-
position of the BCCs in other months (30.43 + 6.88%).
The relative abundance of taxa belonging to class Proteo-
bacteria increased in January (34.72%) and February
(43.34%) compared to other months (26.21 + 3.84%).

At the class level, significant variation (p <0.05) was
detected among months by pairwise LDA among the 30
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identified taxonomic classes. Only 2 bacterial classes
showed significant differences between the BCCs of June
and July (2016), meanwhile, 24 bacterial classes showed
significant variation between the BCCs of July 2016 and
June 2017. Classes Actinobacteria, Acidimicrobiia, Ther-
moleophilia (phylum Actinobacteria) and Saprospirae
and Cytophagia (phylum Bacteroidetes) showed high
relative abundance in the June and July and August
(2016) BCCs compared to other months (Supplementary
Fig. 5). Conversely, class Bacilli had low relative abun-
dance in the June and July and August (2016) BCCs
compared to all other sampling months (Supplementary
Fig. 5). Chloroplast became a highly abundant taxa in
the BCCs of cold months (November and December;
2016 and January; 2017). We also observed a noticeable
increase in the relative abundance of classes Beta, Delta
and Gammaproteobacteria in the BCC of January (2017)
and a shift in the relative abundance of class Planctomy-
cetia from highly to moderately abundant in the cold
months (November—May) (Supplementary Fig. 5).
Surveys of heterotrophic bacteria revealed significant
changes in the composition of heterotrophic bacteria be-
tween the two summers (2016 and 2017). The change was
characterized by significant reductions in the relative
abundance of families such as C111 and ACK-M1 (Actino-
bacteria) in summer 2017 relative to summer 2016,
coupled with increased abundance of Cyclobacteriaceae
(Bacteroidetes), Enterobacteriaceae (Gammaproteobac-
teria) and Bacillaceae (Bacilli) in summer 2017 (Supple-
mentary Fig. 6). Surveys of phototrophic bacteria revealed
noticeably higher abundance of Oscillatoriaceae (Cyano-
bacteria) in colder and lower sunlight months which coin-
cided with an increase in the abundance of
Flavobacteriaceae family (a heterotrophic bacteria) in the
colder months; November—March (Supplementary Fig. 6).

Influences of environmental parameters

The mean water temperature varied considerably, as
high as 24.3+0.4°C and 22 +0.2°C for summer 2016
and 2017 respectively, with the highest and lowest
water temperatures in August 2016 (28 +0.72°C) and
January 2017 (0.05 + 0.070°C) (Supplementary Fig. 7).
Environmental parameters (daylight, precipitation,
water temperature and season) correlated with the
BCCs of 6 sampling locations over 15 sampling
months (Spearman Rho=0.30, p <0.05). Daylight
(4%), precipitation (4%) and water temperature (13%)
together explained 21% of the total variation of the
biological data (Supplementary Fig. 8).

Discussion

Our results showed spatial variation (between lakes and
among sampling locations). It has been reported that
variation of environmental parameters such as salinity,
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redox conditions and dissolved organic matters (DOM),
etc. [18], as well as habitat variation [14], among sam-
pling locations, are strong drivers of the spatial variation
of the microbial communities. We did not measure abi-
otic parameters such as nutrient levels at our sampling
locations; however, due to the connectivity of the two
lakes by the Detroit River [19], the short distances
among the sampling locations and the eutrophication of
Lake Erie [5] and St. Clair [20], our sampling locations
might have similar habitat features which consequently
resulted in the little spatial variation of the BCCs in our
study. The chao 1 index of CB was higher than other
sampling sites, potentially due to presence of more
greenhouse agriculture area and consequently higher
bioavailability of nutrients; however, more studies are
needed to address the influence of greenhouse agricul-
ture area on BC diversity. Comparisons of upper Great
Lakes (lakes Superior and Huron) BCC data with Lake
Erie returned only a few OTUs (383 out of ~ 13,000
OTUs) with significant differences in their abundance
[16], consistent with our observation of only relatively
minor spatial variation effects on BCC sampled at the
same time. A report of only minor spatial variation in
the metabolic profiles in 8 carbon substrates out of 31 in
the sediment microbial communities of Lake St. Clair
[21] highlighted the lack of substantial spatial variation
among sites even at the functional level. Three distinctly
different bacterial assemblages were reported in the
upper, middle and lower Yenisei River (1800 km) [22] —
that study also reported matching nutrient spatial vari-
ation. The reported presence of distinct BCCs across
large spatial scales versus our weak spatial effects across
short distances may reflect nutrients gradients that may
occur across long distance and drives microbial habitat
variation.

We observed strong temporal variation over our sam-
pling effort that included more than a year (15 months),
which captured vast temporal (seasonal) variation. Clus-
tering of the BCCs for the 15 sampling months resulted
in five highly divergent BCC clades, which closely
matched to seasonal patterns. Many studies have re-
ported high prokaryotic microbial diversity in summer
relative to winter [23], which we also observed. More
interestingly, we found significant variation between the
BCC of summer 2016 and 2017, with a significant de-
crease in the diversity indexes of the BCC of summer
2017. As the water temperature of two summers was not
significantly different, the variation of the two summer
BCCs is likely related to other abiotic (such nutrients
bioavailability) and biotic factors that differed between
the two summers [24, 25]. Perhaps not surprisingly, we
found significant correlations between selected environ-
mental factors (daylight hours, precipitation, water
temperature and season/cluster) and the BCC; however,
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all these environmental factors only explained 30% of
the total variation in BCC across the 15 months. Our en-
vironmental factors are indeed confounded with our
temporal variation (so, for example daylight, precipita-
tion and temperature all co-vary with season), indicating
that the covariance of the environmental factors with
the temporal variation (season/cluster) may reflect the
mechanisms for the temporal effects. We did not meas-
ure the nutrients, oxygen content or other environmen-
tal parameters in this study which could be consider one
of the limitations of this study. It will be interesting to
measure those environmental parameters to better
understand the reasons behind the BCC variation with
the time and locations.

This study was not designed to test for annual effects;
however, significant differences in the BCC in the two
sampled summers (2016 and 2017) highlights the poten-
tial for unpredicted annual temporal variation along with
a seasonal and monthly temporal variation of freshwater
BCCs. Few studies have characterized monthly temporal
variation in freshwater BCC. However, one study re-
ported monthly monitoring of BCC of Lake Taihu over
3years (2009-2011) at four different sites, and showed
significant monthly (and consequently seasonal) vari-
ation of diversity indexes of the BCC [26]. In line with
our observation of strong seasonal variation in BCC,
drastic seasonal transitions of microbial abundance and
diversity have been reported in lakes [27]. Reported high
levels of variability in BCC of bog lakes over 5 years
(with unique communities in each year of sampling) [28]
was also consistent with our limited results regarding
annual (summer) BCC variation in large freshwater lake
ecosystems.

Few microbial taxa showed higher abundance in Lake
Erie relative to Lake St. Clair, despite Lake Erie is a sub-
stantially larger and deeper lake. The few that were more
abundant in Lake Erie mostly belong to Actinobacteria.
Actinobacteria are often the numerically dominant
phylum in lakes [25], but their abundance decreases with
oxygen limitation [29] and overloading of the nutrients
[30]. Low abundance of this phylum in Lake St. Clair is
likely due to the low level of oxygen or higher loading of
nutrients in the smaller, shallower Lake St. Clair. We
found little evidence for taxonomic variation (at the class
level) among sampling locations in Lake Erie perhaps
reflecting relatively uniform microbial habitat character-
istics among the three sampling locations (all public bea-
ches). Interestingly, the abundance of Bacteroidetes and
Verrucomicrobia (two taxa associated with high-nutrient
environments) [25] and Planctomycetes (a key taxon in
anaerobic ammonium oxidation) [31] were significantly dif-
ferent between the two sampling locations in Lake St. Clair
potentially due to overloading of nutrients from an adjacent
urban tributary near one of the sampling sites (LP).
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Actinobacteria has been reported as an important
components of the microbial community in Lake Erie,
particularly in the summer [32] which matched our find-
ing for 2016 but not in 2017. The summer 2017 BCC
showed a significant reduction of Actinobacteria com-
pared to summer 2016, potentially due to changes in
abiotic variables such as reduced oxygen levels [29] or
nutrient overloading [30] in summer 2017. Cyclic high
abundance of Actinobacteria within the bacterioplankton
(89%) has been reported recently by late spring in years
2013 and 2014 in parallel to high abundance of zoo-
plankton grazing at Astatic soda pans [33]. The abun-
dance of Actinobacteria did not show cyclic pattern
among 2 years (summer 2016 and 2017) in our study
but decreased from summer 2016 to summer 2017 con-
tinuously which potentially could not relate to the zoo-
plankton grazing. OTUs belonging to Proteobacteria
were in the top three most abundant phyla in the BCCs
across different months and seasons. For example, Pro-
teobacteria was the most abundant phylum in January
and June (2017); the second most common in summer
2016 (June, July and August) and third most common in
July (2017). Proteobacteria are reported as very abundant
in many different freshwater lake habitats, but their rela-
tive abundance varies among lakes, within lakes and over
time [25]. Curiously, one ubiquitous group of metabolic-
ally versatile bacterial was observed at high abundance
in the coldest months of our study; order Pseudomona-
dales (such as families Moraxellaceae and Pseudomona-
daceae) in January and February and Enterobacteriaceae
(such as Gammaproteobacteria) in January, March, May,
June and July (2017). Freshwater lake Bacteroidetes are
often found in high abundance during periods following
cyanobacterial blooms [25]. It has been reported that
Flavobacterium spp. (belonging to Bacteroidetes) is the
dominant taxa of the winter community in Lake Erie
[32], and while we also found a significant elevation of
Flavobacteriaceae over the cold months, we identified
Proteobacteria as the dominant phylum in the winter
(cluster 2). In our data set, the relative abundance of
Cyanobacteria (family Oscillatoriaceae) and Bacteroi-
detes (family Flavobacteriaceae) exhibited correlated
abundance in the BCC of November to March, likely
reflecting the dependency of Bacteroidetes on the or-
ganic matter loading by Cyanobacteria [34]. Previous
studies have also noted high levels of Cyanobacteria dur-
ing winter months in freshwater reservoirs [35]. It has
been suggested that high concentrations of overwinter-
ing vegetative Cyanobacteria cells may provide a large
inoculum for blooms during warmer seasons [36], but
the impact of family Oscillatoriaceae on algal bloom dy-
namics in Lake Erie and St. Clair is not well known.

Cytophaga is well known to be proficient in degrading
biopolymers such as cellulose and chitin, part of the high
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molecular mass fraction of DOM ([25]. In our study, the
relative abundance of Cytophaga (phylum Bacteroidetes)
changed from being a rare component of the community
in June, July and August (summer 2016) to high abun-
dance in May, July and August (2017), indicating poten-
tially elevated availability of DOM in the summer of
2017. Although Firmicutes is generally a minor fresh-
water lake community taxon [25], in our study the rela-
tive abundance of OTUs belonging to Firmicutes
increased over time. Indeed, this phylum became one of
the most dominant phyla across all sampling points after
the summer of 2016. Similar to our finding, a high abun-
dance of Firmicutes (23%) was reported from water sam-
ples collected from freshwater public beaches (Ohio,
Madison lake) [37]. In that study, Exiguobacterium and
Paenisporosarcina were the most dominant Firmicutes
genera [37], while in our study Bacillaceae (September
2016—August 2017) and Exiguobacteraceae (December,
February and March 2016—17) were the most abundant
genera in Lake Erie and St. Clair.

We noted a composition shift of the freshwater BCC
from a community enriched by Actinobacteria (sensitive
to nutrient overloading and low oxygen level) to one
enriched by Proteobacteria (adapted to nutrient over-
loading) [25], Bacteroidetes (proficient in the degradation
of complex biopolymers and DOM) [25] and Firmicutes
(diverse metabolic capabilities and resistant to oxygen
limitation) [38] over time. Although we did not measure
nutrients in our study, the observed pattern of BCC
change indicated likely increases in the loading of nutri-
ents into both lakes from fall 2016 onwards. However,
the mechanism(s) responsible for the observed BCC shift
requires further investigation. Furthermore, we observed
temporal variation in Enterobacteriaceae abundance; a
family that includes many waterborne pathogens and
fecal indicator bacteria (FIBs) [39], Pseudomonadales; a
taxon which may act as an opportunistic pathogen in
fish [40] and humans [41] and Oscillatoriaceae (Cyano-
bacteria), all of which reflect variation in potential path-
ogens and health risk, particularly over the summer.

Conclusion

Our results showed that although freshwater BCC may
have a cyclic seasonal or annual variation, the details of
the composition of the community can change unpre-
dictably over the temporal and spatial scales included in
our study. The observed BCC variation could be linked
to the functional activity of the community, making add-
itional studies necessary to characterize the consequence
of this variation on the ecological services of BCC in a
large freshwater ecosystem. Our results also showed that
long term monitoring of the bacterial community could
serve as a sensitive proxy of freshwater ecosystems
health and perhaps even function.
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Methods

Study sites and sample collection

Freshwater samples were collected bi-weekly over 15 months
from June 2016 to August 2017 from shorelines at 6 loca-
tions, including four locations from Lake Erie (Cedar Beach
(CB), Colchester Harbour (CH) Beach, Holiday Beach (HB),
and Point Pelee (PP) Beach) and 2 locations from Lake St.
Clair (Lakeview Park (LP) Beach and Sand Point (SP) Beach)
at Windsor-Essex County (Windsor, Ontario, Canada). LP
and SP are in urban areas, while CB, CH, HB and PP are lo-
cated in agricultural areas. Among these 4 sampling sites, CB
is more impacted by greenhouse agriculture area. LP is near
an urban tributary (the Belle River joins Lake St. Clair at LP
beach), while SP and HB are near the inlet and outlet of the
Detroit River respectively. Two water samples (each 250 mL)
were collected at 0.5 m depth at each location and 2—-3 m far
from shore. Only for LP; the samples were collected from 3
m distance of shorline to meet 0.5 m depth of sampling. In
total, we collected 60 samples (2 replicates * 2 weeks/month
* 15 months = 60 samples) at each location between 8:00—11:
00 AM. Water samples were transported to the laboratory
on ice and were filtered using 0.2 um polycarbonate mem-
branes (Millipore, USA), and the filter immediately stored at
-20°C until DNA extractions were performed. Water
temperature was measured at the time of sample collection
at each location. Other environmental variables, such as pre-
cipitation and daylight hours, were collected from Environ-
ment Canada (http://climate.weather.gc.ca/historical_data/
search_historic_data_e.html) according to the sampling date.

DNA extraction, PCR, library preparation and NGS

DNA was extracted following Shahraki et al. [42]. The
extracted DNA was used as a template to amplify the
V5-V6 region (~350bp) of the 16S rRNA gene using
V5F and V6R primers [43]. Then sample barcode and
adaptor sequences were ligated to each PCR product by
a second, ligation, PCR [43]. Second-round PCR prod-
ucts were pooled and purified using the QIAquick Gel
Extraction Kit (QIAGEN, Toronto, ON, Canada). The li-
brary was then diluted to 60 pmol/L and sequenced on
an Ion PGM™ System (Thermo Fisher Scientific, Burling-
ton, ON, Canada) with 400-base read length chemistry.

Bioinformatics

Sequence handling

We used the Quantitative Insights into Microbial Ecol-
ogy (QIIME V. 1.9.1) bioinformatics pipeline to de-
multiplex the sequences, quality filters and trim of the
adaptor and primers [44]. Briefly, a length cut-off of 200
bp was selected for quality assurance of the sequences.
We used usearch quality filter pipeline (usearch_qf
script) using USEARCH integrated into QIIME V. 1.9.1
to perform filtering of noisy sequences, chimera check-
ing, and operational taxonomic units (OTUs) picking on
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a set of de-multiplexed (post split_libraries.py) se-
quences. Sequences were initially sorted by length, and
then de-replication was performed using —max_rejects =
500, followed by sorting by abundance. The sequences
were clustered using 97% sequence identity to filter
noisy reads. Chimera checking was performed using
UCHIME and chimera-free sequences were used for
OTU assignment using the Basic Local Alignment
Search Tool (BLAST) against Greengenes 16S rRNA
database as a reference data file [45]. The representative
sequence for each OTU was selected using the most
abundant method for assigning taxonomy in the Riboso-
mal Database Project (RDP) classifier program with a
minimum 80% confidence level [46]. To minimize the
impact of zero-inflation, after removing of single and
double read OTUs using QIIME command (filter_otus_
from_otu_table.py), we further removed the OTUs with
<20 reads from the whole library manually. Then we
used arcsine square root transformation to normalize
the compositional and library size variation of the bio-
logical data (OTU table). The OTU table was rarefied to
2000 quality passed sequences for each sample to calcu-
late alpha diversity. The original OTU table (non-rar-
efied) was used to calculate relative abundance. We
defined an OTU as “abundant” when it had a relative
abundance above 1% of the community, “moderate”
when the relative abundance was between 0.1-0.99%
and “rare” when the abundance was below 0.1% [47].
Original fastq files with metadata are deposited in NCBI
Sequence Read Archive (ID PRINA662419).

Statistical analysis

Global spatial and temporal effects

We used nested ANOVA in R environment (version
3.1.1) [48] to determine replicate effect on the BCC.
Alpha diversity indexes (Chaol and Shannon) and the
first (PCol) and second (PCo2) principal coordinates
from the principal coordinates analysis (PCoA) across all
samples (including replicates) were used as a dependent
variable in the nested ANOVA to test specifically for a
replicate effect.

We used a generalized linear mixed model (GLMM)
with Maximum Likelihood (ML) method in R environ-
ment (package Ime4) [49] to test the effect of sampling
location, lake (Erie and St Clair), month and the their in-
teractions effects on Chaol, Shannon, PCol and PCo2
as dependent variables. Chaol and Shannon were calcu-
lated using the rarified OTU table. The Bray—Curtis dis-
similarity matrix was calculated using Primer-e software
version 7.0.13 and after PCoA, we selected PCol (16.1%)
and PCo2 (8.1%) and PCo3 (6.5%), which represented
the most variation in the BCC PCoA. For each
dependent variable, we run a global GLMM model by
nesting sampling locations (6 locations) within the lake
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(2 lakes) and sampling weeks (2 weeks/month) within
sampling month (15 months) to determine the effect size
of month and lake on the BCCs. We used replicates as a
random factor and sampling month and lake as fixed
factors. To evaluate the effect of the sampling location
by month interaction, we ran GLMM models on data
from each lake separately. In these models, we consid-
ered month (weeks nested within 15 sampling months)
and sampling locations as a fixed factor and replicates as
a random factor. We also measured the impact of spatial
(sampling locations) and temporal (sampling months)
variation on the relative abundance of each OTU (n =
2100) using the Kruskal-Wallis one-way analysis of vari-
ance using R environment (version 3.1.1) [48].

Spatial variation

To characterize BCC spatial variation (between lakes
and sampling locations), we used i) permutational multi-
variate analysis of variance (PERMANOVA) with 9999
permutations using Primer-e software to compare the
Bray—Curtis dissimilarity of the BCCs, ii) PCoA of the
Bray—Curtis similarity matrix to visualize the pattern of
the BCC variation using Primer-e software, iii) one-way
ANOVA to compare the mean of diversity indexes and
PCol and PCo2 of the BCCs using R environment (ver-
sion 3.1.1) [48], and iv) linear discriminant analysis
(LDA) using the LEfSe method [50] to compare the rela-
tive abundance of taxa (class, order and family levels) in
the bacterial communities.

Temporal variation

We applied hierarchical agglomerative clustering on the
Bray—Curtis similarity matrix of the BCCs (top 300
highly abundant OTUs) using the group average method
using Primer-e software to explore the possibility of sea-
sonal clustering in terms of BCC. Once we identified
clear clusters, we tested for differences in BCC among
the clusters and the 15 months of sampling following the
same approach as we used for the spatial variation (see
above). Moreover, we used SIMPER analysis on the
Bray—Curtis dissimilarity matrix to compare the overall
dissimilarity among clusters and the 15 months of sam-
pling in the vegan package [51]. Plots and graphs were
generated using R (version 3.1.1) [48].

Environmental effects

We applied a RELATE analysis (Spearman’s p correl-
ation coefficient) on the Bray-Curtis similarity matrix
calculated from whole data sets and the matrix of Eu-
clidean distances calculated from normalized environ-
mental data (daylight hours, precipitation, water
temperature and season) as the environmental matrix to
evaluate the relationship between the BCC and environ-
mental factors. A distance-based linear model (distLM)
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was used for analyzing the relationship between the
Bray-Curtis similarity matrix of the BCC and the envir-
onmental variables using Primer-e software version.
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Additional file 1: Supplementary Fig. 1. Multivariant principal

coordinate analysis (PCoA) plot of the Bray—Curtis similarity matrix of the
BCCs of Lake Erie and Lake St. Clair (Top panel) and six different locations
(CB, CH, HB, LP, PP and SP) (bottom panel) across 15 months of sampling.

Additional file 2: Supplementary Fig. 2. Taxa with significant spatial
variation in their relative abundance among two lakes (Lake Erie and St.
Clair). The relative abundance of all 5 classes were significantly higher
(p <0.05) in Lake Eire relative to Lake St. Clair.

Additional file 3: Supplementary Fig. 3. Bi-weekly variation in the
Shannon index for the 6 different sampling locations (CB, CH, HB, LP, PP
and SP) over 15 months of sampling (June 2016-August 2017). The X-axis
shows time of sampling (bi-weekly sampling).

Additional file 4: Supplementary Fig. 4. Line plots of monthly
changes of A) Shannon and B) Bray-Curtis dissimilarity components;
PCo3-5 of 6 different locations over 15 months of sampling. C1-5:
Clusters 1-5 are based on Fig. 4.

Additional file 5: Supplementary Fig. 5. Bar chart showing the
relative abundance of the BCCs at the class-level for combined sampling
locations and bi-weekly sampling over the 15 months of sampling.

Additional file 6: Supplementary Fig. 6. Phylogenetic affiliations of
the top heterotrophic bacterial (panel a) and phototrophic (panel b) OTU
groups from the 15 months of sampling in Lake Erie and St. Clair over
2016 and 2017. Due to space constraints, only taxa that had a relative
abundance of more than 1% in at least one sampling month are
presented for heterotrophic bacterial (panel a).

Additional file 7: Supplementary Fig. 7. The pattern of
environmental parameter variation (water temperature, precipitation and
daylight duration) for the 6 sampling locations over 15 months of the
sampling. As air and water temperature both had the same pattern
spatially and temporally (no significant variation) we only plotted water
temperature. For each month, 2 different weeks were sampled (weeks 1
and 2). Sampling was started in June 2016 and ended in August 2017.
Error bars, showing the standard deviation of water temperature and
precipitation among 6 sampling locations.

Additional file 8: Supplementary Fig. 8. Distance-based Redundancy
Analysis (dbRDA) of freshwater microbiota. The relative position of water
samples in the biplot is based on Bray Curtis similarity of arcsine square
root transformed relative abundance at the OTU level. Vectors indicate
the weight and direction of the environmental variables that were best
predictors of the BCCs of different months as suggested by the results of
the distance-based linear model (distLM). The dbRDA axes describe the
percentage of the fitted or total variation explained by each axis while
being constrained to account for group differences. Sample IDs indicate
the sampling months.

Additional file 9: Supplementary Table 1. Results of GLMM analysis
of bacterial community variation temporally and spatially. Dependent
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variables included alpha diversity indexes and Bray—Curtis dissimilarity
principal coordinate analysis axes (PCoT1 and PCo2). Degrees of freedom,
F value and p values are shown (significant p values are highlighted).

Additional file 10: Supplementary Table 2. List of top 20 abundant
OTUs affected by time, location and their interaction.

Additional file 11: Supplementary Table 3. Taxa which shown
significant spatial variation (p < 0.05) in the six sampling locations in
Lakes Erie and St Clair.

Additional file 12: Supplementary Table 4. SIMPER results (above the
diagonal) and pairwise PERMANOVA probabilities (below the diagonal) of
5 broad clusters of the BCCs. p values were adjusted using a sequential
Bonferroni correction for multiple comparisons.

Additional file 13: Supplementary Table 5. Pairwise comparison of
diversity indexes between the BCCs of 5 clusters.

Additional file 14: Supplementary Table 6. Pairwise comparison of
temporal variation of taxa (class level) between the BCCs of 5 clusters.

Additional file 15: Supplementary Table 7. Pairwise dissimilarity (%;
SIMPER) (above the diagonal) and PERMANOVA significance probabilities
(below the diagonal) for the BCCs across the 15 months of sampling
(numbers indicate months, 16 and 17 show 2016 and 2017 respectively. P
values were adjusted using a Bonferroni correction for multiple
comparisons.

Additional file 16: Supplementary Table 8. Pairwise comparison of
alpha diversity and Bray—Curtis dissimilarity PCo1 & 2 indexes among 15
months of sampling across 6 different locations.

Acknowledgments

We thank Shelby Mackie (Environmental Genomics Facility, Great Lakes
Institute for Environmental Research, Windsor University) for her support and
assistance in eDNA extraction and sequencing of the samples.

Authors’ contributions

AHS was mostly involved in laboratory works and data analysis and writing
the first draft. DH and SRC had the main contribution in the study's
conception and design, revising, and approving the first draft. All authors
have read and agreed to the published version of the manuscript.

Funding

This work was supported by grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC). The funders had no role in
study design, data collection, and analysis, decision to publish, or preparation
of the manuscript.

Availability of data and materials
The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors of this manuscript declare they have no conflict of interest.

Author details

!Great Lakes Institute for Environmental Research, University of Windsor,
Windsor, Ontario, Canada. “Present Address: Cooperative Institute for Great
Lakes Research, School of Environmental and Sustainability, University of
Michigan, Ann Arbor, MI, USA. *Department of Integrative Biology, University
of Windsor, Windsor, Ontario, Canada.


https://doi.org/10.1186/s12866-021-02306-y
https://doi.org/10.1186/s12866-021-02306-y

Shahraki et al. BMC Microbiology

(2021) 21:253

Received: 25 December 2020 Accepted: 1 September 2021
Published online: 21 September 2021

References

1.

Sterner RW, Ostrom P, Ostrom NE, Klump JV, Steinman AD, Dreelin EA, et al.
Grand challenges for research in the Laurentian Great Lakes. Limnol
Oceanogr. 2017,62(6):2510-23. https://doi.org/10.1002/In0.10585.

Adrian R, O'Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, et al.
Lakes as sentinels of climate change. Limnol Oceanogr. 2009;54(2):2283-97.
https://doi.org/10.4319/10.2009.54.6_part_2.2283.

Davis CC. Evidence for the eutrophication of Lake Erie from phytoplankton
records. Limnol Oceanogr. 1964;9(3):275-83. https://doi.org/10.4319/10.1964.
9.3.0275.

Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM. Reducing
phosphorus to curb lake eutrophication is a successin: ACS Publications.
Environ Sci Technol. 2016;50(17):8923-9. https://doi.org/10.1021/acs.est.
6002204

Watson SB, Miller C, Arhonditsis G, Boyer GL, Carmichael W, Charlton MN,
et al. The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia.
Harmful Algae. 2016;56:44-66. https://doi.org/10.1016/j.hal.2016.04.010.
Scavia D, DePinto JV, Bertani I. A multi-model approach to evaluating target
phosphorus loads for Lake Erie. J Great Lakes Res. 2016;42(6):1139-50.
https.//doi.org/10.1016/jglr.2016.09.007.

Casey GD: National water-quality assessment of the Lake Erie-Lake St. Clair
Basin, Michigan, Indiana, Ohio, Pennsylvania, and New York: Environmental
and hydrologic setting, vol. 97: US Department of the Interior, US
Geological Survey; 1998.

Shahraki AH, Chaganti SR, Heath DD. Diel dynamics of freshwater bacterial
communities at beaches in Lake Erie and Lake St. Clair, Windsor, Ontario.
Microb Ecol. 2020;129:1-13.

Bush T, Diao M, Allen RJ, Sinnige R, Muyzer G, Huisman J. Oxic-anoxic
regime shifts mediated by feedbacks between biogeochemical processes
and microbial community dynamics. Nat Commun. 2017;8(1):789. https://
doi.org/10.1038/541467-017-00912-x.

Wang H, Zhang C, Chen F, Kan J. Spatial and temporal variations of
bacterioplankton in the Chesapeake Bay: a re-examination with high-
throughput sequencing analysis. Limnol Oceanogr. 2020;65(12):3032-45.
https://doi.org/10.1002/In0.11572.

Holker F, Wurzbacher C, Weienborn C, Monaghan MT, Holzhauer SI,
Premke K. Microbial diversity and community respiration in freshwater
sediments influenced by artificial light at night. Philos Trans R Soc Lond Ser
B Biol Sci. 2015;370(1667):20140130. https://doi.org/10.1098/rsth.2014.0130.
Villaescusa JA, Jergensen SE, Rochera C, Veldzquez D, Quesada A, Camacho
A. Carbon dynamics modelization and biological community sensitivity to
temperature in an oligotrophic freshwater Antarctic lake. Ecol Model. 2016;
319:21-30. https;//doi.org/10.1016/j.ecolmodel.2015.03.008.

Yoshida T, Nishimura Y, Watai H, Haruki N, Morimoto D, Kaneko H, et al.
Locality and diel cycling of viral production revealed by a 24 h time course
cross-omics analysis in a coastal region of Japan. ISME J. 2018;12(12):1287-
95. https://doi.org/10.1038/541396-018-0052-x.

Lear G, Bellamy J, Case BS, Lee JE, Buckley HL. Fine-scale spatial patterns in
bacterial community composition and function within freshwater ponds.
ISME J. 2014;8(8):1715-26. https;//doi.org/10.1038/ismej.2014.21.

Small GE, Finlay JC, McKay R, Rozmarynowycz MJ, Brovold S, Bullerjahn GS,
et al. Large differences in potential denitrification and sediment microbial
communities across the Laurentian great lakes. Biogeochemistry. 2016;
128(3):353-68. https://doi.org/10.1007/510533-016-0212-x.

Rozmarynowycz MJ, Beall BF, Bullerjahn GS, Small GE, Sterner RW, Brovold
SS, et al. Transitions in microbial communities along a 1600 km freshwater
trophic gradient. J Great Lakes Res. 2019;45(2):263-76. https.//doi.org/10.101
6/jjgir2019.01.004.

Sadeghi J, Chaganti SR, Shahraki AH, Heath DD. Microbial community and
abiotic effects on aquatic bacterial communities in north temperate lakes.
Sci Total Environ. 2021;781:146771. https://doi.org/10.1016/j.scitotenv.2
021.146771.

Beck M, Reckhardt A, Amelsberg J, Bartholomé A, Brumsack H-J, Cypionka H,

et al. The drivers of biogeochemistry in beach ecosystems: a cross-shore
transect from the dunes to the low-water line. Mar Chem. 2017;190:35-50.
https://doi.org/10.1016/j.marchem.2017.01.001.

Burniston D, Dove A, Backus S, Thompson A. Nutrient concentrations and
loadings in the St. Clair River-Detroit River Great Lakes Interconnecting

20.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

Page 14 of 15

Channel. J Great Lakes Res. 2018;44(3):398-411. https.//doi.org/10.1016/j.
jgIr.2018.02.005.

Bocaniov SA, Van Cappellen P, Scavia D. On the role of a large shallow lake
(Lake St. Clair, USA-Canada) in modulating phosphorus loads to Lake Erie.
Water Resour Res. 2019;55(12):10548-65. https://doi.org/10.1029/2019WR02
5019.

Qest A, Alsaffar A, Fenner M, Azzopardi D, Tiquia-Arashiro SM. Patterns of
change in metabolic capabilities of sediment microbial communities in river
and lake ecosystems. Int J Microbiol. 2018;2018:1-15. https://doi.org/10.11
55/2018/6234931.

Kolmakova OV, Gladyshev MI, Rozanov AS, Peltek SE, Trusova MY. Spatial
biodiversity of bacteria along the largest Arctic river determined by next-
generation sequencing. FEMS Microbiol Ecol. 2014;89(2):442-50. https://doi.
org/10.1111/1574-6941.12355.

Hao C, Wei P, Pei L, Du Z, Zhang Y, Lu Y, et al. Significant seasonal
variations of microbial community in an acid mine drainage lake in Anhui
Province, China. Environ Pollut. 2017;223:507-16. https://doi.org/10.1016/j.
envpol.2017.01.052.

BiZi¢-lonescu M, Amann R, Grossart H-P. Massive regime shifts and high
activity of heterotrophic bacteria in an ice-covered lake. PLoS One. 2014;
9(11):e113611. https://doi.org/10.1371/journal.pone.0113611.

Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the
natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;
75(1):14-49. https://doi.org/10.1128/MMBR.00028-10.

Peng Y, Yue D, Xiao L, Qian X. Temporal variation and co-occurrence
patterns of bacterial communities in eutrophic Lake Taihu, China.
Geomicrobiol J. 2018;35(3):186-97. https://doi.org/10.1080/01490451.201
7.1348406.

Butler TM, Wilhelm A-C, Dwyer AC, Webb PN, Baldwin AL, Techtmann SM.
Microbial community dynamics during lake ice freezing. Sci Rep. 2019,9(1):
1-11. https//doi.org/10.1038/541598-019-42609-9.

Linz AM, Crary BC, Shade A, Owens S, Gilbert JA, Knight R, et al. Bacterial
community composition and dynamics spanning five years in freshwater
bog lakes. MSphere. 2017,2(3):e00169-17.

Taipale S, Jones RI, Tiirola M. Vertical diversity of bacteria in an oxygen-
stratified humic lake, evaluated using DNA and phospholipid analyses.
Aquat Microb Ecol. 2009;55(1):1-16.

Haukka K, Kolmonen E, Hyder R, Hietala J, Vakkilainen K, Kairesalo T, et al.
Effect of nutrient loading on bacterioplankton community composition in
lake mesocosms. Microb Ecol. 2006;51(2):137-46. https.//doi.org/10.1007/
500248-005-0049-7.

Wagner M, Horn M. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister
phyla comprise a superphylum with biotechnological and medical relevance. Curr
Opin Biotechnol. 2006;17(3):241-9. https//doi.org/10.1016/jcopbio.200605.005.
Wilhelm SW, LeCleir GR, Bullerjahn GS, McKay RM, Saxton MA, Twiss MR,

et al. Seasonal changes in microbial community structure and activity imply
winter production is linked to summer hypoxia in a large lake. FEMS
Microbiol Ecol. 2014;87(2):475-85. https://doi.org/10.1111/1574-6941.12238.
Szabo A, Korponai K, Somogyi B, Vajna B, Voros L, Horvath Z, et al. Grazing
pressure-induced shift in planktonic bacterial communities with the
dominance of aclll-AT actinobacterial lineage in soda pans. Sci Rep. 2020;
10(1):19871. https://doi.org/10.1038/541598-020-76822-8.

Eiler A, Bertilsson S. Flavobacteria blooms in four eutrophic lakes: linking
population dynamics of freshwater bacterioplankton to resource availability.
Appl Environ Microbiol. 2007;73(11):3511-8. https://doi.org/10.1128/AEM.02
534-06.

Valério E, Faria N, Paulino S, Pereira P. Seasonal variation of phytoplankton and
cyanobacteria composition and associated microcystins in six Portuguese freshwater
reservoirs. Int J Lim. 200844(3):189-96. https//doiorg/10.1051/imn:2008003.

Ma J, Qin B, Paerl HW, Brookes JD, Hall NS, Shi K, et al. The persistence of
cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu,
China. Limnol Oceanogr. 2016,61(2):711-22. https://doi.org/10.1002/In0.10246.
Lee CS, Kim M, Lee C, Yu Z, Lee J. The microbiota of recreational
freshwaters and the implications for environmental and public health. Front
Microbiol. 2016;7:1826. https://doi.org/10.3389/fmicb.2016.01826.

Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL,

et al. Microbial biogeography: putting microorganisms on the map. Nat Rev
Microbiol. 2006;4(2):102-12. https://doi.org/10.1038/nrmicro1341.
Ramirez-Castillo F, Loera-Muro A, Jacques M, Garneau P, Avelar-Gonzalez F,
Harel J, et al. Waterborne pathogens: detection methods and challenges.
Pathogens. 2015:4(2):307-34. https://doi.org/10.3390/pathogens4020307.


https://doi.org/10.1002/lno.10585
https://doi.org/10.4319/lo.2009.54.6_part_2.2283
https://doi.org/10.4319/lo.1964.9.3.0275
https://doi.org/10.4319/lo.1964.9.3.0275
https://doi.org/10.1021/acs.est.6b02204
https://doi.org/10.1021/acs.est.6b02204
https://doi.org/10.1016/j.hal.2016.04.010
https://doi.org/10.1016/j.jglr.2016.09.007
https://doi.org/10.1038/s41467-017-00912-x
https://doi.org/10.1038/s41467-017-00912-x
https://doi.org/10.1002/lno.11572
https://doi.org/10.1098/rstb.2014.0130
https://doi.org/10.1016/j.ecolmodel.2015.03.008
https://doi.org/10.1038/s41396-018-0052-x
https://doi.org/10.1038/ismej.2014.21
https://doi.org/10.1007/s10533-016-0212-x
https://doi.org/10.1016/j.jglr.2019.01.004
https://doi.org/10.1016/j.jglr.2019.01.004
https://doi.org/10.1016/j.scitotenv.2021.146771
https://doi.org/10.1016/j.scitotenv.2021.146771
https://doi.org/10.1016/j.marchem.2017.01.001
https://doi.org/10.1016/j.jglr.2018.02.005
https://doi.org/10.1016/j.jglr.2018.02.005
https://doi.org/10.1029/2019WR025019
https://doi.org/10.1029/2019WR025019
https://doi.org/10.1155/2018/6234931
https://doi.org/10.1155/2018/6234931
https://doi.org/10.1111/1574-6941.12355
https://doi.org/10.1111/1574-6941.12355
https://doi.org/10.1016/j.envpol.2017.01.052
https://doi.org/10.1016/j.envpol.2017.01.052
https://doi.org/10.1371/journal.pone.0113611
https://doi.org/10.1128/MMBR.00028-10
https://doi.org/10.1080/01490451.2017.1348406
https://doi.org/10.1080/01490451.2017.1348406
https://doi.org/10.1038/s41598-019-42609-9
https://doi.org/10.1007/s00248-005-0049-7
https://doi.org/10.1007/s00248-005-0049-7
https://doi.org/10.1016/j.copbio.2006.05.005
https://doi.org/10.1111/1574-6941.12238
https://doi.org/10.1038/s41598-020-76822-8
https://doi.org/10.1128/AEM.02534-06
https://doi.org/10.1128/AEM.02534-06
https://doi.org/10.1051/limn:2008003
https://doi.org/10.1002/lno.10246
https://doi.org/10.3389/fmicb.2016.01826
https://doi.org/10.1038/nrmicro1341
https://doi.org/10.3390/pathogens4020307

Shahraki et al. BMC Microbiology

40.

41.

42.

43.

44,

45,

46.

47.
48.
49.

50.

51.

(2021) 21:253

Su'L, Xu G, Cai L, Qiu N, Hou M, Wang J. Susceptibility and immune
responses after challenge with Flavobacterium columnare and
Pseudomonas fluorescens in conventional and specific pathogen-free rare
minnow (Gobiocypris rarus). Fish Shellfish Immun. 2020,98:875-86. https://
doi.org/10.1016/j.51.2019.11.047.

Malhotra S, Hayes D, Wozniak DJ. Cystic fibrosis and Pseudomonas
aeruginosa: the host-microbe interface. Clin Microbiol Rev. 2019;32(3):
€00138-18. https://doi.org/10.1128/CMR.00138-18.

Shahraki AH, Chaganti SR, Heath D. Assessing high-throughput
environmental DNA extraction methods for meta-barcode characterization
of aquatic microbial communities. J Water Health. 2019;17(1):37-49. https.//
doi.org/10.2166/wh.2018.108.

He X, Chaganti SR, Heath DD. Population-specific responses to interspecific
competition in the gut microbiota of two Atlantic Salmon (Salmo salar)
populations. Microb Ecol. 2017;75(1):1-12. https://doi.org/10.1007/500248-01
7-1035-6.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello
EK, et al. QIIME allows analysis of high-throughput community sequencing
data. Nat Methods. 2010;7(5):335-6. https://doi.org/10.1038/nmeth £.303.
Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26(19):2460-1. https://doi.org/10.1093/bioinformatics/
btq461.

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Appl
Environ Microbiol. 2007;73(16):5261-7. https://doi.org/10.1128/AEM.00062-
07.

Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, et al. Patterns of
rare and abundant marine microbial eukaryotes. Curr Biol. 2014;24(8):813-
21. https://doi.org/10.1016/j.cub.2014.02.050.

Team RC. R: a language and environment for statistical computing; 2013.
Bates D, Machler M, Bolker B, Walker S: Fitting linear mixed-effects models
using Ime4. arXiv preprint arXiv:14065823. 2014.

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al.
Metagenomic biomarker discovery and explanation. Genome Biol. 2011;
12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.

Dixon P. VEGAN, a package of R functions for community ecology. J Veg
Sci. 2003;14(6):927-30. https://doi.org/10.1111/}.1654-1103.2003.tb02228 x.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 15 of 15

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1016/j.fsi.2019.11.047
https://doi.org/10.1016/j.fsi.2019.11.047
https://doi.org/10.1128/CMR.00138-18
https://doi.org/10.2166/wh.2018.108
https://doi.org/10.2166/wh.2018.108
https://doi.org/10.1007/s00248-017-1035-6
https://doi.org/10.1007/s00248-017-1035-6
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1016/j.cub.2014.02.050
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Global spatial and temporal effect
	Spatial variation
	Broad spatial variation
	Spatial variation among different locations

	Temporal variation
	Broad temporal variation
	BCCs variation
	Diversity variation among clusters
	OTUs and taxonomic variation

	Monthly temporal variation
	BCCs variation
	Diversity variation
	OTUs and taxa variation
	Influences of environmental parameters


	Discussion
	Conclusion
	Methods
	Study sites and sample collection
	DNA extraction, PCR, library preparation and NGS
	Bioinformatics
	Sequence handling

	Statistical analysis
	Global spatial and temporal effects
	Spatial variation
	Temporal variation
	Environmental effects
	Abbreviations


	Supplementary Information
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

