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Abstract

Background: Likelihood of developing acute kidney injury (AKI) increases with age. We aimed to explore whether
the predictability of AKI varies between age groups and assess the volatility of risk factors using electronic medical
records (EMR).

Methods: We constructed a retrospective cohort of adult patients from all inpatient units of a tertiary care
academic hospital and stratified it into four age groups: 18–35, 36–55, 56–65, and > 65. Potential risk factors
collected from EMR for the study cohort included demographics, vital signs, medications, laboratory values, past
medical diagnoses, and admission diagnoses. AKI was defined based on the Kidney Disease Improving Global
Outcomes (KDIGO) serum creatinine criteria. We analyzed relative importance of the risk factors in predicting AKI
using Gradient Boosting Machine algorithm and explored the predictability of AKI across age groups using multiple
machine learning models.

Results: In our cohort, older patients showed a significantly higher incidence of AKI than younger adults: 18–35
(7.29%), 36–55 (8.82%), 56–65 (10.53%), and > 65 (10.55%) (p < 0.001). However, the predictability of AKI decreased
with age, where the best cross-validated area under the receiver operating characteristic curve (AUROC) achieved
for age groups 18–35, 36–55, 56–65, and > 65 were 0.784 (95% CI, 0.769–0.800), 0.766 (95% CI, 0.754–0.777), 0.754
(95% CI, 0.741–0.768), and 0.725 (95% CI, 0.709–0.737), respectively. We also observed that the relative risk of AKI
predictors fluctuated between age groups.

Conclusions: As complexity of the cases increases with age, it is more difficult to quantify AKI risk for older adults
in inpatient population.
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Background
Acute kidney injury (AKI) is a common and highly lethal
clinical problem, affecting 11–12% of all hospitalized pa-
tients worldwide with a mortality rate of ~ 10% [1]. AKI is
associated with significant short- and long-term morbidity
and mortality [2], and prevention is the best means for
dealing with AKI. Delays in identification and intervention
for AKI may lead to rapid progression of the kidney injury,
likelihood of developing chronic kidney disease (CKD),
need for renal replacement therapy, and risk of death [3].
Hence, AKI risk assessment and management based on
susceptibilities and exposures are recommended by the
Kidney Disease Improving Global Outcomes (KDIGO)
guidelines as it may trigger early effective interventions
such as drug dose adjustment, avoidance of nephrotoxins,
and intravenous fluids management [4]. Early subspecialist
(nephrologist, intensivist) or pharmacist involvement in
the care of AKI patients can reduce the risk of further kid-
ney function decline [5].
AKI is associated with various risk factors including in-

herent factors, exposure to nephrotoxins (e.g. non-steroidal
anti-inflammatory drugs [6]), acute illnesses (e.g. sepsis [7])
and major surgeries (e.g. cardiopulmonary bypass or coron-
ary angiography [8–10]). Inherent risk factors include sus-
ceptibilities of each individual patient (e.g. age [11]) and
those associated with reduced kidney reserve or failure of
other organs with known cross-talk with the kidneys (e.g.
heart, liver, and respiratory system) [12]. There is strong
evidence supporting the role of advanced age in AKI. Eld-
erly patients are at much higher risk for developing AKI
due to their decreasing renal reserve and structural changes
in the aged kidney that impair its ability to withstand and
recover from injury [13].
Primary focus of existing AKI studies has been prediction

tools for the early identification of at-risk patients. Studies
[11, 14, 15] mainly used a small set of highly correlated risk
factors based on existing evidence to build prediction
models, which may miss potential unknown risk factors. In
addition, there has been significant progress in the applica-
tions of machine learning to predict AKI risk using elec-
tronic health records (EHR) [16]. Sutherland et al. [17]
found that most models had modest predictive success with
AUC approximating 0.75. Li et al. applied convolutional
neural network to ICU patients achieving an AUC of 0.78.
In particular, Tomasev et al. [18] used EHR from the US
VA health system to build a deep prediction model achiev-
ing an AUC of 0.92 for the 48-h prediction time window.
Existing studies suggest that age can modify the inten-

sity of relationships between other factors and AKI. For
instance, Kane-Gill et al. [11] analyzed risk factors of AKI
for older patients in intensive care units (ICU), and found
that the impact of age was so substantial that other risk
factors (e.g. sepsis, hypertension, nephrotoxins) lost their
ability to predict AKI risk among patients older than 75

years. However, most previous studies [11, 14, 15] exam-
ined age as the main effect and considered its interactions
with other risk factors one at a time. Despite higher AKI
incidence in older adults, how the predictability of AKI
risk changes with age is an unanswered question in the
current literature. In this study, we investigated the pre-
dictability trend of hospital-acquired AKI across age
groups using machine learning algorithms and assessed
whether relative importance of risk factors in predicting
AKI change across age groups.

Methods
Study population
All adult patients (age at visit≥18) admitted to the Uni-
versity of Kansas Health System (a tertiary academic
hospital) for 2 days or more from November 2007 to
December 2016 were included in this retrospective ob-
servational cohort study, which included adult patients
from all ICU, surgical, and general wards. From a total
of 179,370 encounters, we excluded those samples that
lacked necessary data elements required to determine
the outcome, that is, less than two serum creatinine
measurements; and patients with evidences of moderate
or severe kidney dysfunction at admission (estimated
Glomerular Filtration Rate (eGFR) less than 60mL/min/
1.73 m2 or serum creatinine (SCr) level of > 1.3 mg/dL)
were also excluded. eGFR was calculated with the Modi-
fication of Diet in Renal Disease (MDRD) equation. The
final analysis cohort contained 76,957 encounters.

AKI definition
We staged AKI for severity according to the SCr-based
criteria described in the KDIGO clinical practice guide-
lines [19] (see Supplementary Table S1). Baseline SCr
level was defined as the most recent SCr value within
two-day window prior to admission if available; other-
wise the first SCr value after admission was used as the
baseline. Then all pairs of SCr levels measured between
admission and discharge were evaluated on a rolling
basis to determine the occurrence of AKI.

Clinical variables
For each hospital encounter in the final analysis cohort,
we extracted time stamped clinical data on demograph-
ics, vital signs, medications, laboratory values, past med-
ical diagnoses, and admission diagnoses. This study
explored the entirety of the above mentioned EHR data
types except for laboratory tests where a selected list of
labs that may represent potential presence of a comor-
bidity correlated with AKI [14] was considered. Details
of the 1888 clinical variables considered are available in
Table 1. It is important to note that SCr and eGFR were
not included as predictive variables because they were
used to determine the outcome variable, and we aimed
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to focus on the contribution of other factors. Laboratory
values were categorized as unknown, less than reference
normal range, within normal range, or greater than the
reference normal range. Patient vital signs were discre-
tized into groups as shown in Supplementary Table S2.
Drug exposure included inpatient (i.e. dispensed during

hospitalization) and outpatient drugs (i.e. medication rec-
onciliation and prior outpatient prescriptions). All medi-
cation names were standardized by mapping to RxNorm
components. Admission diagnosis, that is, the detailed
diagnosis-related group (APR-DRG) of all patients, were
collected from the data source of the University Health
System Consortium (UHC; http://www.vizientinc.com) in
HERON. Patient past medical history was captured as pri-
mary diagnoses (ICD-9 codes grouped based on the Clin-
ical Classifications Software (CCS) diagnosis categories by
the Agency for Healthcare Research and Quality.

Data processing and statistical analysis
Only the most recently recorded vitals and lab tests be-
fore the AKI prediction point (i.e. 24 h prior to AKI
event or last normal SCr for non-AKI cases) were used
for each encounter. For vital signs, if no values were
available, then the median value across the entire cohort
for that variable was imputed [20] (information on miss-
ing percentages is available in Supplementary Table S3).
Missing values among lab tests were captured as a separ-
ate category because information may be contained in
the choice to not perform a particular test [14]. Medica-
tion exposure was defined as true if it was taken within
7-days before the AKI prediction point. Medical history
was defined as true if it occurred before the AKI predic-
tion point. Hence, medical history, medication and ad-
mission diagnosis were all binary variables (i.e. presence
or absence). Finally, we stratified the cohort into four
age groups: 18–35, 36–55, 56–65 and > 65 years.
To analyze the volatility of relative risk and prediction

performance associated with AKI across age groups, we
implemented the following steps: (a) Feature selection or
ranking – applied a multivariate embedded Gradient

Boosting Machine (GBM [21]) method to rank individ-
ual variables according to its importance in AKI predic-
tion. This step ranked the candidate variables among
1888 features to obtain the top-k most important predic-
tors for AKI; (b) Predictive modeling – explored four
machine learning methods, i.e. logistic regression, sup-
port vector machine (SVM) [2], LogitBoost [22, 23], and
random forest [24], to assess the prediction performance
across age strata. Area under the receiver operating
characteristic curve (AUROC) [25] was calculated as the
evaluation metric for prediction performance through a
10-fold cross-validation scheme. To determine stable
feature ranking across the 10-folds, we averaged the rela-
tive importance weights of variables obtained from each
fold. Additionally, to address the imbalanced positive-to-
negative class issue (AKI to non-AKI ratio), we imple-
mented an under-sampling strategy that would ensure
the same number of samples per class in training the
model for each fold but keeping the original class ratio
in the test dataset. Under-sampling of training dataset is
necessary because skewed samples can mislead machine
learning algorithms to favor the majority class, in this
case non-AKI samples. For comparison, evaluation strat-
egy without under-sampling was also established for the
prediction models. Two-tailed P values < 0.05 were used
to denote statistical significance for all comparisons.
Data extraction and processing were executed using Py-
thon 3.7 software with scikit-learn package, and other
analysis and graphs were drawn using MATLAB soft-
ware, version R2017b.

Results
Of the 76,957 encounters meeting the inclusion and ex-
clusion criteria, any stages of AKI occurred in 7259
(9.43%), and 38,887 (50.53%) were aged 56 years or
older. Table 2 illustrates the characteristics of patients
by age groups, showing that the incidence of AKI rises
with age from 7.29% in the youngest group to 10.55% in
the oldest group, and the incidence of AKI in male pa-
tients is slightly higher than that of females.

Table 1 Clinical variables extracted for the study cohort

Feature Category # of
Variables

Details

Demographics (Demo) 3 Age, race, gender;

Vitals (Vitals) 5 BMI, diastolic BP, systolic BP, pulse, temperature;

Lab tests (Lab) 14 Albumin, ALT, AST, Ammonia, Calcium, BUN, Bilirubin, CK-MB, CK, Glucose, Lipase, Platelets, Troponin,
WBC;

Admission diagnoses
(DRG)

315 University Health System Consortium (UHC) APR-DRG;
(e.g. liver transplant, heart &/or lung transplant, etc.)

Medications (MED) 1271 All medications are mapped to RxNorm ingredient;
(e.g. lithium carbonate, pentostatin, ospemifene, oxybutynin, etc.)

Medical History (CCS) 280 ICD9 codes mapped to CCS major diagnoses.
(e.g. Nervous system congenital anomalies, other congenital anomalies, etc.)
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Additionally, Table 2 shows that most AKI episodes
(namely, AKI onset time in terms of number of days
from admission) occurred within a week after admission
and there is no significant difference between age
groups.
Figure 1 is the Venn diagram of the top 200 risk fac-

tors identified for each of the four age groups obtained
by the GBM algorithm and shows the number of over-
lapping factors identified across strata. Figure 2 shows
the common factors that appear in the top 200 import-
ant risk factor list across all four age groups. The vari-
able importance plots for the top-ranked features for
predicting AKI across age strata are shown in Supple-
mentary Fig. S1, which illustrated an exponential decline

trend in the contribution of top-k variables to AUROC
gain. Moreover, overlapping factors in the top 200 list
across only three age groups are shown in Supplemen-
tary Fig. S2.
To further assess the discrimination of the top-ranked

features for AKI prediction, we conducted a series of pre-
diction experiments by including different numbers of
top-k features (i.e. k = 10 to 300) in four machine learning
models (i.e., logistic regression, SVM, LogitBoost, and ran-
dom forest). Figure 3 shows the predictability trend of
top-k important features with under-sampling of the ma-
jority class (please refer to Supplementary Fig. S3 for re-
sults from without under-sampling). Supplementary
Table S4 illustrates the AUROC and corresponding 95%

Table 2 Demographic characteristics and AKI onset time of patients by age category

Variable Age 18–35 (n = 12,873) Age 36–55 (n = 25,197) Age 56–65 (n = 18,098) Age > 65 (n = 20,789)

AKI Non-AKI AKI Non-AKI AKI Non-AKI AKI Non-AKI

Age, years, n (%)

n (%) 983 (7.29) 11,890 (92.71) 2222 (8.82) 22,975 (91.18) 1906 (10.53) 16,192 (89.47) 2193 (10.55) 18,596 (98.45)

Race, n (%)

White 660 (67.14) 8038 (67.60) 1537 (69.17) 16,652 (72.48) 1444 (75.76) 13,024 (80.43) 1767 (80.57) 15,463 (83.15)

Black 150 (15.26) 1958 (16.47) 420 (18.90) 3808 (16.57) 264 (13.85) 1926 (11.89) 231 (10.53) 1644 (8.84)

Asian 7 (0.71) 147 (1.24) 12 (0.54) 190 (0.83) 17 (0.89) 112 (0.69) 18 (0.82) 151 (0.81)

Other 121 (12.31) 1792 (15.07) 253 (11.39) 2325 (10.12) 181 (9.50) 1130 (6.98) 177 (8.07) 1338 (7.20)

Gender, n (%)

Male 549 (55.85) 6066 (51.02) 1302 (58.60) 12,337 (53.70) 1170 (61.39) 9297 (57.42) 1288 (58.73) 10,150 (54.58)

BMI, n (%)

Unknown 39 (4.16) 1209 (10.13) 92 (4.14) 1848 (8.04) 57 (2.99) 830 (5.13) 65 (2.96) 947 (5.09)

< 18.5 81 (8.63) 563 (4.72) 56 (2.52) 537 (2.34) 44 (2.31) 479 (2.96) 69 (3.15) 680 (3.66)

18.5–24.9 325 (34.65) 4076 (34.15) 460 (20.70) 5133 (22.34) 379 (19.88) 3630 (22.42) 535 (24.40) 5542 (29.80)

25.0–29.9 201 (21.43) 2594 (21.73) 567 (25.52) 5879 (25.59) 493 (25.87) 4454 (27.51) 701 (31.97) 5950 (32.00)

> 30.0 292 (31.13) 3493 (29.27) 1047 (47.12) 9578 (41.69) 933 (48.95) 6799 (41.99) 823 (37.53) 5477 (29.45)

DRG, Liver transplant (LT), Cystic fibrosis (CF), Heart failure (HF), n (%)

LT 9 (0.96) 9 (0.08) 68 (3.06) 49 (0.21) 65 (3.41) 69 (0.43) 15 (0.68) 20 (0.11)

CF 121 (12.90) 564 (4.73) 26 (1.17) 125 (0.54) 6 (0.31) 39(.24) 0 (0.00) 3 (0.02)

HF 6 (0.64) 19 (0.16) 45 (2.03) 127 (0.55) 36 (1.89) 121 (0.75) 62 (2.83) 277 (1.49)

CCS, Nutritional deficiencies (ND), Esophageal disorders (ED), Essential hypertension (EH), n (%)

ND 193 (20.58) 1040 (8.71) 203 (9.14) 1844 (8.03) 156 (8.18) 1416 (8.75) 172 (7.84) 1721 (9.25)

ED 112 (11.94) 585 (4.90) 228 (10.26) 2283 (9.94) 239 (12.54) 1959 (12.10) 271 (12.36) 2551 (13.72)

EH 104 (11.09) 886 (7.42) 648 (29.16) 5834 (25.39) 825 (43.28) 5968 (36.86) 1053 (48.02) 8715 (6.86)

MED, Tazobactam (T), Vancomycin (V), Acetaminophen (A), n (%)

T 403 (42.96) 2089 (17.50) 791 (35.60) 3742 (16.29) 567 (29.75) 2662 (16.44) 515 (23.48) 2892 (15.55)

V 366 (39.02) 1936 (16.22) 762 (34.29) 4485 (19.52) 620 (32.53) 3656 (22.58) 655 (29.87) 489 (22.53)

A 755 (80.49) 9883 (82.81) 1816 (81.73) 19,782 (86.10) 1585 (83.16) 14,097 (87.06) 1889 (86.14) 16,601 (89.27)

Onset time, days, median [interquartile range]

Days 3 [2–6] – 3 [2–5] – 3 [2–6] – 3 [2–6] –

Note: AKI Acute kidney injury, Non-AKI Not acute kidney injury. Values for categorical variables are given as number (percentage), AKI onset time is given as
median [interquartile range] of admission days
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confidence interval values (CI) for AKI prediction with
under-sampling using top-200 variables of four age groups
based on four machine learning models. Supplementary
Table S5 provides results for several predicted probability
cutoffs for the final model and corresponding sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV) in predicting AKI across age
groups. Figure 4 shows the AUROC achieved by random
forest using top-200 features without under-sampling for
age groups 18–35, 36–55, 55–65, and > 65 years at 0.809
(95% CI, 0.769–0.842), 0.787 (95% CI, 0.758–0.813), 0.776
(95% CI, 0.729–0.803), and 0.740 (95% CI, 0.716–0.756)
respectively. Above results demonstrated the predictability
of AKI in the general inpatient population decreased as
age increased, which may be due to more complex physi-
ology of older adults. Table 3 shows that the significance
levels of pairwise comparison of AKI incidence and pre-
diction performance based on four machine learning
methods between age groups, in which older patients
showed a significantly higher incidence of AKI than youn-
ger age groups (p < 0.001), however the predictive power
of the older group (i.e. > 65 age group) was significantly
lower than that of other young groups (p < 0.05).

Discussion
Advanced age is an established independent risk factor
for AKI [17], which may be due to the deterioration of
renal function and the decrease in detoxification ability
of drugs in the elderly [11, 26], making elderly highly
sensitive to nephrotoxic drugs and susceptible to AKI.
Findings from previous studies [11, 13, 27–30] support
the proposition that age represents an important risk

factor among the spectrum of risk factors for AKI. Al-
though the incidence of AKI increases with age, we ob-
served the predictability of AKI in the general inpatient
population to decrease with age (Fig. 4). When compar-
ing two data-sample processing mechanisms for addressing
the imbalanced AKI vs non-AKI classification problem,
namely with or without under-sampling, we consistently
observed the predictive power of the four age-stratified
models to decrease as age increased. The predictability of
AKI risk in the older age group was significantly lower than
that of the younger groups (p < 0.05).
Our research reached the same conclusions as Kane-

Gill et al. [11]; however, our study had more patients
(179,370 vs. 45,655) from all inpatient units (only ICU
patients in Kane-Gill et al.), collected more clinical vari-
ables (1888 vs. 25), and achieved higher overall AUR-
OCs. Moreover, the recent AKI prediction work by
Google published in Nature [18] utilized EHR data from
the U.S. Department of Veterans Affairs with over 700,
000 patients and 366,856 distinct clinical variables, and
their subgroup analysis on age showed lower AUROCs
for patients in the older age groups which may also be
due to patient heterogeneity.
To examine the change in relative risk of AKI predic-

tors in the general inpatient population, we applied a
machine learning-based feature selection algorithm over
a large EMR dataset with close to two thousand variables
to derive the relative ranking profiles and compared pro-
files across different age groups. Based on our previous
research [31], we acknowledge that relative importance
rankings of variables are affected by data samplings and
feature selection methods. This study is not in any way

Fig. 1 Venn diagram for the top 200 features identified in four age groups. This figure shows the number of overlapping features identified as
top 200 across the four age groups
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to provide an absolute ranking of important predictors.
It is to analyze and compare the relative variability and
volatility of predictors between age groups using a single
feature selection method (i.e., GBM). Figures 1 and 2
and Supplementary Fig. S2 illustrated the phenomenon
that the relative risk of AKI predictors fluctuated be-
tween age groups.
Specifically, as shown in Table 2, low body mass index

(BMI) was found to be associated with higher AKI risk
in younger patients, but high BMI was found to be asso-
ciated with higher AKI risk in elderly patients; and youn-
ger patients with cystic fibrosis, nutritional deficiencies
or esophageal disorders have a higher risk of developing
AKI compared with the older patients. Since efforts to

quantify risk of AKI in older patients may be more diffi-
cult and older adults frequently have impaired drug
clearance in addition to polypharmacy [26], clinical deci-
sion support systems to ensure proper drug usage and
dosing in elderly may have special value. These findings
implicate that AKI risk factors are heterogeneous, and age
can modify the intensity of relationships between other fac-
tors and AKI. Therefore, future studies that evaluate risk
factors needs to consider complex interactions between fac-
tors and their combinatorial effect on the outcome.
It is worth noting that feature selection method can

identify factors with strong predictive ability, but these
factors are not necessarily causal inducers. More specif-
ically, some medicines by themselves do not increase

Fig. 2 Heat map of the top-200 risk factors appeared in all four age groups. The figure shows the corresponding ranking of each factor in the
GBM model
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risk for AKI, but the disease that is treated by the medi-
cine increases the risk of AKI. The data we extracted is
time-stamped with daily interval since admission, so the
data granularity is coarse, and it is difficult to affirm
whether a disease caused AKI or taking a medicine for
an illness led to AKI. For example, in Supplementary
Fig. S3, insulin (MED548) was identified as an important
predictor of AKI in all age groups, and presumably this
is just a marker for diabetes, i.e. patients with diabetes
or diabetic nephropathy are at higher risk for AKI. An-
other example, polyethylene glycol 3350 (MED677, see
Supplementary Fig. S3) is an osmotically acting laxative
and its relative risk ranking for predicting AKI increases
with age (namely, 69, 84, 22, 18 across the four age
groups). However, we cannot clearly affirm in this case
whether AKI was caused by the clinical indication that
requires laxatives or because using a large amount of
such laxatives would cause disturbance of water and
electrolytes in the intestine, thereby inducing AKI. Thus,
whether a drug increases patient risk for developing AKI
requires rigorous demonstration from clinical
experiments.
Furthermore, the granularity of medication data ex-

traction and processing may not change prediction

performance but will affect the knowledge learned by
the machine learning models [32]. Considering the drug
metabolism cycle, in this study, we only considered med-
ications taken within a week, which would treat long-
term (> 7 days) and short-term medication intakes the
same. In recent years clinical studies have recognized
that long-term use of drugs that inhibit gastric acid se-
cretion (e.g., proton pump inhibitor [33, 34]) is likely to
cause acute renal failure. Our model identified glycopyr-
ronium bromide (MED566, see Supplementary Fig. S3)
typically used for functional gastrointestinal disorders
with an effect of inhibiting gastric secretion and regulat-
ing gastrointestinal motility, to have a higher relative risk
ranking with respect to AKI that increased with age
(namely, 136, 40, 28, 23 for four age groups). Hence, fu-
ture work needs to consider length and amount of drug
usage.
Several limitations in the present research must be

considered. First, we limited the analysis to patients with
a minimum eGFR (estimated glomerular filtration rate)
of 60 ml/min/1.73m2 and normal serum creatinine on
the day of admission at hospital admission. We acknow-
ledge that patients with reduced eGFR have an increased
risk of developing AKI; however, we made the decision

Fig. 3 Prediction trends of the top-ranking features with under-sampling for the four age groups across different machine learning models
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Table 3 Significant level of pairwise comparison

Age Group G1 ~ G2 G1 ~ G3 G1 ~ G4 G2 ~ G3 G2 ~ G4 G3 ~ G4

Prevalence (%) 7.29 ~ 8.82 7.29 ~ 10.53 7.29 ~ 10.55 8.82 ~ 10.53 8.82 ~ 10.55 10.53 ~ 10.55

P value (prevalence) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.97

AUC (LR) 0.759
[0.728–0.789]
~
0.760
[0.750–0.770]

0.759
[0.728–0.789]
~
0.746
[0.731–0.760]

0.759
[0.728–0.789]
~
0.725
[0.713–0.736]

0.760
[0.750–0.770]
~
0.746
[0.731–0.760]

0.760
[0.750–0.770]
~
0.725
[0.713–0.736]

0.746
[0.731–0.760]
~
0.725
[0.713–0.736]

P value (LR) 0.81 0.13 < 0.001 0.022 < 0.001 0.004

AUC (SVM) 0.767
[0.743–0.790]
~
0.766
[0.753–0.780]

0.767
[0.743–0.790]
~
0.742
[0.729–0.756]

0.767
[0.743–0.790]
~
0.723
[0.702–0.744]

0.766
[0.753–0.780]
~
0.742
[0.729–0.756]

0.766
[0.753–0.780]
~
0.723
[0.702–0.744]

0.742
[0.729–0.756]
~
0.723
[0.702–0.744]

P value (SVM) 0.10 0.005 < 0.001 0.12 < 0.001 0.06

AUC (LB) 0.750
[0.728–0.773]
~
0.753
[0.733–0.772]

0.750
[0.728–0.773]
~
0.738
[0.727–0.750]

0.750
[0.728–0.773]
~
0.712
[0.701–0.724]

0.753
[0.733–0.772]
~
0.738
[0.727–0.750]

0.753
[0.733–0.772]
~
0.712
[0.701–0.724]

0.738
[0.727–0.750]
~
0.712
[0.701–0.724]

P value (LB) 0.73 0.33 0.002 0.09 < 0.001 0.009

AUC (RF) 0.784
[0.769–0.800]
~
0.766
[0.754–0.777]

0.784
[0.769–0.800]
~
0.754
[0.741–0.768]

0.784
[0.769–0.800]
~
0.723
[0.709–0.737]

0.766
[0.754–0.777]
~
0.754
[0.741–0.768]

0.766
[0.754–0.777]
~
0.723
[0.709–0.737]

0.754
[0.741–0.768]
~
0.723
[0.709–0.737]

P value (RF) 0.11 0.006 < 0.001 0.11 < 0.001 0.004

Abbreviation: AUC the area under the receiver operating characteristic curve for top-200 features with under-sampling, LR Logistic Regression, SVM Support Vector
Machine, LB LogistBoost, RF Random Forest, G1 18–35 age group; G2 36–55 age group, G3 56–65 age group, G4 > 65 age group. P value in bold
represents p < 0.05

Fig. 4 ROC curves of random forest without under-sampling for the four age groups
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to focus on hospital-acquired AKI. Second, to enhance
machine learning model interpretability, our discretization
of lab tests and vitals would lead to the loss of some infor-
mation in data. Third, we did not include service unit as a
risk factor and only selected certain lab tests based on pre-
vious literature for AKI prediction. Fourth, since our study
was not limited to the ICU, we did not include urine out-
put criteria as a predictor nor using it to define AKI. Fifth,
our age stratification was not fine grained, for example pa-
tients > 65 years old were lumped into one category. Fi-
nally, although we utilized a large cohort observed for up
to a decade, they only reflect the population of one aca-
demic medical center. Replicating this study in other insti-
tutions would generalize conclusions.

Conclusion
In conclusion, we took advantage of a large EMR dataset
and applied machine learning methods to analyze the
changing relative risk and prediction performance of
AKI across age strata. Analysis results demonstrate that
(a) AKI risk increases with age, but the ability to predict
AKI declines with age due to the increasing complexity
of the patients; (b) the relative importance of clinical
predictors in predicting hospital-acquired AKI fluctuates
between age groups. The study findings suggest that ac-
curate AKI risk prediction in elderly may require add-
itional effort. It highlights the importance of considering
age-specific risk differences in hospitalized patients to
enhance AKI prevention in clinical care.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12882-020-01980-w.

Additional file 1: Table S1. The KDIGO serum creatinine based staging
system for acute kidney injury.

Additional file 2: Table S2. Discretization for patient vital signs.

Additional file 3: Table S3. The percentage of missing values in vital
signs.

Additional file 4: Table S4. Prediction performance in terms of area-
under-the-operating-characteristic-curve (AUROC) for model built with
top-200 important features and under-sampling of majority class samples.

Additional file 5: Table S5. Sensitivity and specificity at different
operating probability cutoffs for the random forest model prediction of
acute kidney injury.

Additional file 6: Figure S1. Variable importance plot for top-ranked
features across four age groups.

Additional file 7: Figure S2. Heat map of the top-200 important risk
factors that appeared in only three age groups with the corresponding
ranking of each factor in the GBM model.

Additional file 8: Figure S3. Prediction performance trend of different
machine learning models learned with top-ranking features and without
under-sampling of majority class samples across the four age groups.

Additional file 9: Supplementary Method: Gradient Boosting
Machine (GBM).

Abbreviations
AKI: Acute kidney injury; EMR: Electronic medical records; KDIGO: Kidney
Disease Improving Global Outcomes; AUROC: Area under the receiver
operating characteristic curve; CKD: Chronic kidney disease; ICU: Intensive
care units; eGFR: Estimated Glomerular Filtration Rate; SCr: Serum creatinine;
MDRD: Modification of Diet in Renal Disease; HERON: Health Enterprise
Repository for Ontological Narration; HIPAA: Health Insurance Portability and
Accountability Act; Demo: Demographics; Lab: Lab tests; DRG: Admission
diagnoses; CCS: Medical History; MED: Medications; GBM: Gradient boosting
machine; SVM: Support vector machine; CI: Confidence interval values;
PPV: Positive predictive value; NPV: Negative predictive value

Acknowledgements
The authors are grateful to reviewers for their valuable suggestion.

Authors’ contributions
LW designed the overall study, carried out the experiments, and wrote the
manuscript. ML and YH critically appraised and revised the manuscript. ML
and LRW performed the EMR data extraction. XZ and WQ contributed in
data processing. AY and JK advised on the clinical experiment design and
result interpretation. All authors reviewed the manuscript critically for
scientific content, and all authors gave final approval of the manuscript for
publication.

Funding
This research was partially supported by the Major Research Plan of the
National Natural Science Foundation of China (Key Program, Grant No.
91746204), the Youth Science Fund of the National Natural Science
Foundation of China (Grant No. 61802149), the Science and Technology
Development in Guangdong Province (Major Projects of Advanced and Key
Techniques Innovation, Grant No.2017B030308008), Guangdong Engineering
Technology Research Center for Big Data Precision Healthcare (Grant
No.603141789047), and the Fundamental Research Funds for the Central
Universities (Grant No.21618315). ML, LRW, AY, and JK were supported by the
National Institute of Diabetes and Digestive and Kidney Diseases of the
National Institutes of Health (NIH) under award number R01DK116986. The
clinical dataset used for analysis described in this study was obtained from
the University of Kansas Medical Center (KUMC) HERON clinical data
repository which is supported by institutional funding and by the KUMC
Clinical Translational Science Award (CTSA) grant UL1TR002366 from NIH.

Availability of data and materials
The clinical dataset used for analysis described in this study was obtained
from the University of Kansas Medical Center (KUMC) HERON clinical data
repository, which are not publicly available. Open reasonable request,
amendment can be requested to the corresponding author to share the
necessary data.

Ethics approval and consent to participate
The retrospective cohort was built using the University of Kansas Medical
Center’s de-identified clinical data repository called HERON (Health Enterprise
Repository for Ontological Narration). No approval by the Institutional Review
Board was required for the study because all identifiers were removed and
event date were shifted, meeting the de-identification criteria specified in
the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule.
The de-identified data request for this study was approved by the HERON
Data Request Oversight Committee.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interest.

Author details
1Big Data Decision Institute (BDDI), Jinan University, Guangzhou 510632,
China. 2Guangdong Engineering Technology Research Center for Big Data
Precision Healthcare, Guangzhou 510632, China. 3Division of Nephrology and
Hypertension and the Kidney Institute, University of Kansas Medical Center,
Kansas City 66160, USA. 4Center for Critical Care Nephrology, Department of
Critical Care Medicine, University of Pittsburgh School of Medicine,

Wu et al. BMC Nephrology          (2020) 21:321 Page 9 of 10

https://doi.org/10.1186/s12882-020-01980-w
https://doi.org/10.1186/s12882-020-01980-w


Pittsburgh 15260, USA. 5Department of Internal Medicine, Division of Medical
Informatics, University of Kansas Medical Center, Kansas City 66160, USA.

Received: 4 January 2020 Accepted: 23 July 2020

References
1. Al-jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA. Clinical

decision support for in-hospital AKI. J Am Soc Nephrol. 2018;29:654–60.
2. Kate RJ, Perez RM, Mazumdar D, Pasupathy KS, Nilakantan V. Prediction and

detection models for acute kidney injury in hospitalized older adults. BMC
Med Inform Decis Mak. 2016;16:39.

3. Himmelfarb J, Joannidis M, Molitoris B, Schietz M, Okusa MD, Warnock D,
et al. Evaluation and initial management of acute kidney injury. Clin J Am
Soc Nephrol. 2008;3:962–7.

4. Group IGO. (KDIGO) AKIW. KDIGO clinical practice guideline for acute kidney
injury. Kidney Int Suppl. 2012;2. https://doi.org/10.1038/kisup.2012.2. https://
kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.
pdf.

5. Balasubramanian G, Moiz A, Rauchman M, Zhang Z, Gopalakrishnan R,
Balasubramanian S. Early nephrologist involvement in hospital-acquired
acute kidney injury : a pilot study. Am J Kidney Dis. 2011;57:228–34. https://
doi.org/10.1053/j.ajkd.2010.08.026.

6. Cronin RM, VanHouten JP, Siew ED, Eden SK, Fihn SD, Nielson CD, et al. National
Veterans Health Administration inpatient risk stratification models for hospital-
acquired acute kidney injury. J Am Med Inform Assoc. 2015;22:1054–71.

7. Malhotra R, Kashani KB, Macedo E, Kim J, Bouchard J, Wynn S, et al. A risk
prediction score for acute kidney injury in the intensive care unit. Nephrol
Dial Transplant. 2017;32:814–22.

8. Jiang W, Teng J, Xu J, Shen B, Wang Y, Fang Y, et al. Dynamic predictive
scores for cardiac surgery-associated acute kidney injury. J Am Heart Assoc.
2016;5:1–10.

9. Pablo Jorge-Monjas C, Bustamante-Munguira J, Lorenzo M, Heredia-
Rodríguez M, Fierro I, Gómez-Sánchez E, et al. Predicting cardiac surgery-
associated acute kidney injury: the CRATE score. J Crit Care. 2016;31:130–8.
https://doi.org/10.1016/j.jcrc.2015.11.004.

10. Palomba H, De Castro I, Neto ALC, Lage S, Yu L. Acute kidney injury
prediction following elective cardiac surgery: AKICS score. Kidney Int. 2007;
72:624–31.

11. Kane-Gill SL, Sileanu FE, Murugan R, Trietley GS, Handler SM, Kellum JA. Risk
factors for acute kidney injury in older adults with critical illness: a
retrospective cohort study. Am J Kidney Dis. 2015;65:860–9.

12. Leblanc M, Kellum JA, Gibney RTN, Lieberthal W, Tumlin J, Mehta R. Risk
factors for acute renal failure: inherent and modifiable risks. Curr Opin Crit
Care. 2005;11:533–6.

13. Chao C, Wu V, Lai C, Shiao C, Huang T, Wu P. Advanced age affects the
outcome-predictive power of RIFLE classification in geriatric patients with acute
kidney injury. Kidney Int. 2012;82:920–7. https://doi.org/10.1038/ki.2012.237.

14. Matheny ME, Miller RA, Ikizler TA, Waitman LR, Denny JC, Schildcrout JS,
et al. Development of inpatient risk stratification models of acute kidney
injury for use in electronic health records. Med Decis Mak. 2010;30:639–50.

15. Kashani K. Acute kidney injury risk prediction. In: Annual update in intensive
care and emergency medicine 2018. Cham: Springer; 2018. p. 321–32.

16. Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent
advances in deep learning techniques for electronic health record (EHR)
analysis. IEEE J Biomed Heal Inform. 2017;22:1589–604.

17. Sutherland SM, Chawla LS, Kane-Gill SL, Hsu RK, Kramer AA, Goldstein SL,
et al. Utilizing electronic health records to predict acute kidney injury risk
and outcomes: workgroup statements from the 15 th ADQI consensus
conference. Can J Kidney Heal Dis. 2016;3:99. https://doi.org/10.1186/
s40697-016-0099-4.

18. Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A
clinically applicable approach to continuous prediction of future acute
kidney injury. Nature. 2019;572:116.

19. Fliser D, Laville M, Covic A, Fouque D, Vanholder R, Juillard L, et al. A
European renal best practice (ERBP) position statement on the kidney
disease improving global outcomes (KDIGO) clinical practice guidelines on
acute kidney injury: part 1: definitions, conservative management and
contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27:4263–72.

20. Koyner JL, Adhikari R, Edelson DP, Churpek MM. Development of a
Multicenter Ward–Based AKI Prediction Model. Clin J Am Soc Nephrol. 2016;
11(11):1935–43.

21. Koyner JL, Carey KA, Edelson DP, Churpek MM. The development of a
machine learning inpatient acute kidney injury prediction model. Crit Care
Med. 2018;46:1070–7.

22. Zhang G, Fang B. LogitBoost classifier for discriminating thermophilic and
mesophilic proteins. J Biotechnol. 2007;127:417–24.

23. Zuo YC, Chen W, Fan GL, Li QZ. A similarity distance of diversity measure for
discriminating mesophilic and thermophilic proteins. Amino Acids. 2013;44:
573–80.

24. Flechet M, Güiza F, Schetz M, Wouters P, Vanhorebeek I, Derese I, et al.
AKIpredictor, an online prognostic calculator for acute kidney injury in adult
critically ill patients: development, validation and comparison to serum
neutrophil gelatinase-associated lipocalin. Intensive Care Med. 2017;43:764–73.

25. Bradley AP. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recogn. 1997;30:1145–59.

26. Ftouh S, Thomas M. Acute kidney injury: summary of NICE guidance. Bmj.
2013;347:f4930.

27. Chia-Ter C, Hung-Bin T, Chia-Yi W, Yu-Feng L, Nin-Chieh H, Jin-Shin C, et al.
Cumulative Cardiovascular Polypharmacy Is Associated With the Risk of
Acute Kidney Injury in Elderly Patients. Med (Baltimore). 2015;94:e1251.

28. Ter Chao C, Bin TH, Wu CY, Hsu NC, Lin YF, Chen JS, et al. Cross-sectional
study of the association between functional status and acute kidney injury
in geriatric patients. BMC Nephrol. 2015;16:186.

29. Grams ME, Sang Y, Ballew SH, Gansevoort RT, Kimm H, Kovesdy CP, et al. A
meta-analysis of the Association of Estimated GFR, albuminuria, age, race,
and sex with acute kidney injury. Am J Kidney Dis. 2015;66:591–601. https://
doi.org/10.1053/j.ajkd.2015.02.337.

30. Chao C-T, Wang J, Wu H-Y, Huang J-W, Chien K-L. Age modifies the risk
factor profiles for acute kidney injury among recently diagnosed type 2
diabetic patients: a population-based study. GeroScience. 2018;40:201–17.
https://doi.org/10.1007/s11357-018-0013-3.

31. Wu L, Hu Y, Liu X, Zhang X, Chen W, Yu ASL, et al. Feature ranking in
predictive models for hospital-acquired acute kidney injury. Sci Rep. 2018;8:
17298. https://doi.org/10.1038/s41598-018-35487-0.

32. Song X, Waitman LR, Hu Y, Yu ASL, Robbins D, Liu M. An exploration of
ontology-based EMR data abstraction for diabetic kidney disease prediction.
AMIA Summits Transl Sci Proc. 2019;2019:704.

33. Klepser DG, Collier DS, Cochran GL. Proton pump inhibitors and acute
kidney injury : a nested case – control study. BMC Nephrol. 2013;14:150.

34. Xie Y, Bowe B, Li T, Xian H, Yan Y, Al-aly Z. Long-term kidney outcomes
among users of proton pump inhibitors without intervening acute kidney
injury. Kidney Int. 2017;91:1482–94. https://doi.org/10.1016/j.kint.2016.12.021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Wu et al. BMC Nephrology          (2020) 21:321 Page 10 of 10

https://doi.org/10.1038/kisup.2012.2
https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf
https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf
https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf
https://doi.org/10.1053/j.ajkd.2010.08.026
https://doi.org/10.1053/j.ajkd.2010.08.026
https://doi.org/10.1016/j.jcrc.2015.11.004
https://doi.org/10.1038/ki.2012.237
https://doi.org/10.1186/s40697-016-0099-4
https://doi.org/10.1186/s40697-016-0099-4
https://doi.org/10.1053/j.ajkd.2015.02.337
https://doi.org/10.1053/j.ajkd.2015.02.337
https://doi.org/10.1007/s11357-018-0013-3
https://doi.org/10.1038/s41598-018-35487-0
https://doi.org/10.1016/j.kint.2016.12.021

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study population
	AKI definition
	Clinical variables
	Data processing and statistical analysis

	Results
	Discussion
	Conclusion
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

