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ABSTRACT
Background: To develop a sensitive and clinically applicable risk assessment tool identifying corona-
virus disease 2019 (COVID-19) patients with a high risk of mortality at hospital admission. This model
would assist frontline clinicians in optimizing medical treatment with limited resources.
Methods: 6415 patients from seven hospitals in Wuhan city were assigned to the training and testing
cohorts. A total of 6351 patients from another three hospitals in Wuhan, 2169 patients from outside of
Wuhan, and 553 patients from Milan, Italy were assigned to three independent validation cohorts. A
total of 64 candidate clinical variables at hospital admission were analyzed by random forest and least
absolute shrinkage and selection operator (LASSO) analyses.
Results: Eight factors, namely, Oxygen saturation, blood Urea nitrogen, Respiratory rate, admission
before the date the national Maximum number of daily new cases was reached, Age, Procalcitonin, C-
reactive protein (CRP), and absolute Neutrophil counts, were identified as having significant associa-
tions with mortality in COVID-19 patients. A composite score based on these eight risk factors, termed
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the OURMAPCN-score, predicted the risk of mortality among the COVID-19 patients, with a C-statistic
of 0.92 (95% confidence interval [CI] 0.90–0.93). The hazard ratio for all-cause mortality between
patients with OURMAPCN-score >11 compared with those with scores � 11 was 18.18 (95% CI
13.93–23.71; p< .0001). The predictive performance, specificity, and sensitivity of the score were vali-
dated in three independent cohorts.
Conclusions: The OURMAPCN score is a risk assessment tool to determine the mortality rate in
COVID-19 patients based on a limited number of baseline parameters. This tool can assist physicians
in optimizing the clinical management of COVID-19 patients with limited hospital resources.

Introduction

The coronavirus disease 2019 (COVID-19) pandemic has
imposed a significant burden on healthcare systems world-
wide, particularly in major hotspot cities1,2. While the spread
of infections appears to be abating in some countries, a
growing COVID-19 crisis is still emerging in the developing
world, where the medical resources and infrastructure are far
less advanced and can be easily overwhelmed3. There is an
urgent need to develop readily applicable triage criteria to
identify COVID-19 patients with a poor prognosis at admis-
sion to enable the allocation of the limited medical resources
to those who most need them2,4. Currently, the disease
severity and the risk of death in patients with COVID-19 are
often graded with the use of either a single clinical vari-
able5–7, such as lymphopenia or hypoxemia, or by doctors’
empirical evaluations8. Identifying COVID-19 patients at high
risk of mortality based on a sensitive and quantitative risk
assessment tool would be valuable for optimizing care and
reducing mortality8. Recently, ISARIC4C investigators have
developed a 4 C mortality score stratify patients admitted to
hospital with COVID-19 into the different risk of mortality
based on the European population9. However, COVID-19 is
still widely spreading in Asian countries.

Here, we report the development and validation of a risk
assessment tool using readily accessible clinical variables at
baseline based on an observational outcome study from a
large cohort of COVID-19 in-hospital patients in Hubei
Province, China. An integrated risk score (OURMAPCN score)
was derived from eight risk factors, namely, Oxygen saturation,
blood Urea nitrogen (BUN), Respiratory rate, admission before
the date the first national Maximum number of daily new
cases was reached, Age 60 and above, Procalcitonin, C-react-
ive protein (CRP) and absolute Neutrophil counts. We showed
that a higher OURMAPCN score predicted a higher mortality
rate in COVID-19 patients with adequate specificity and sensi-
tivity across the training, testing, and three different validation
cohorts, including two from China and one from Italy.
Therefore, the OURMAPCN score has satisfactory performance
with regard to predicting the risk of mortality across different
clinical cohorts. A website dedicated to the OURMAPCN score
(http://compute.covid-ourmap.cn:8888/comput-OURMAPCN)
will support frontline physicians performing risk stratification
among COVID-19 patients. We propose that the application of
the OURMAPCN score could assist physicians in accurately
assessing the mortality risk in COVID-19 patients at admission
to optimize management options, particularly in areas with
limited resources in Asian countries.

Methods

Inpatient cohorts and study procedure

We performed a retrospective observational study with a
total of 15,488 inpatients with confirmed COVID-19 in Hubei
Province, China and Milan, Italy. As COVID-19 cases in China
were concentrated in January to March in 2020, and the
number of daily new cases was very limited after March, we
included COVID-19 cases mainly admitted to hospitals from
January to March, 2020 in Hubei cohort.

For the training and testing cohorts, a total of 6415
patients with confirmed COVID-19 who were admitted
between 1 January 2020, and 20 March 2020, were consecu-
tively included in the study from seven COVID-19 designated
hospitals in Wuhan city. The final date of follow-up for out-
come determination was 8 April 2020. A total of 611 patients
remaining in the hospital at the end of follow-up were
treated as censor in Cox models. No exclusion criterion was
applied in this study. A total of 462 patients died out of the
6415 patients during hospitalization. Among these patients,
70% (4492) were randomly assigned to the training cohort,
and the remaining 30% (1923) patients were assigned to the
testing cohort (Figure 1 and Supplemental Table 1).

There were 6351 patients with COVID-19 who were admit-
ted between 1 January 2020 and 17 April 2020, in another
three designated hospitals in Wuhan city; these patients
were consecutively enrolled in the study and were assigned
to validation cohort 1 (Figure 1 and Supplemental Table 1).
The final date of the follow-up was 26 April 2020. A total of
257 patients remaining in the hospital at the end of follow-
up were treated as censor in Cox models. No exclusion criter-
ion was applied in this study. A total of 587 patients died
out of the 6351 patients during hospitalization.

A total of 2169 patients with COVID-19 from eleven hospi-
tals in Hubei Province outside of Wuhan city were desig-
nated as validation cohort 2 (Figure 1 and Supplemental
Table 1). The inclusion of this subset of patients started from
1 January 2020, and ended on 9 March 2020; patients were
enrolled consecutively. The last follow-up date was 27 March
2020. 18 patients remaining in the hospital at the end of fol-
low-up were treated as censor in Cox models. No exclusion
criterion was applied to the study. A total of 132 patients
died during hospitalization out of the 2169 patients.

The Italian cohort (validation cohort 3) initially enrolled
553 patients with confirmed COVID-19 admitted between 12
February 2020, and 12 April 2020, in Humanitas Research
Hospital in Milan, Italy (Figure 1). The patients were enrolled
consecutively. The last follow-up date was 30 April. At the
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end of the study, 24 patients remained in the hospital and
were treated as censor in Cox models. A total of 124 patients
died during hospitalization out of the 553 patients.

COVID-19 was diagnosed by clinical manifestations, chest
CT, or real-time RT-PCR according to the World Health
Organization (WHO) interim guidance and/or the New
Coronavirus Pneumonia Prevention and Control Program (5th
edition) published by the National Health Commission of
China10,11. The demographics, clinical characteristics, medical
history, laboratory tests, radiological reports, therapeutic
intervention, and outcome data were obtained from patients’
electronic medical records. All variables used for establishing
the predictive models were based on the measurements at
admission and not at another time point during hospitaliza-
tion in the training and test cohorts. Measurements at admis-
sion were also used in all validation cohorts. Patients
transferred between hospitals were not included in our
study. The ethics committee of each hospital approved the
study protocols. The need to obtain informed consent from
the patients was waived by each ethics committee.

Preparation of candidate variables

We followed the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) statement for reporting multivariable prediction
model development and validation. We identified candidate
variables for potential inclusion in our models from a review
of the literature and identified clinical variables available at
hospital admission in COVID-19 patients, including patients’
demographics, clinical presentation, medical history, labora-
tory tests and radiological examinations, outcomes, admis-
sion date and hospital sites. All major software and code

used to analyze these datasets are referenced in
Supplemental Table 2.

Initially, a total of 162 variables on admission were col-
lected from 6415 patients hospitalized with COVID-19 in
Wuhan. The variables with a large proportion of missing
(>50%) or with a correlation of 0.9 or higher were not
included for variable selection process. Categorical variables
with small categories (less than 5%) were either combined
categories or removed. Continuous variables from different
institutions were scaled by site and gender and categorical
variables were categorized with/without their intrinsic order-
ing. Therefore, the variables for the risk prediction model
were selected from a total of 64 candidate clinical parame-
ters through a two-round process (Figure 2). Before the vari-
able selection process, this Wuhan cohort was randomly split
at a ratio of 70%/30% into the training (4492) and testing
(1923) cohorts, respectively, and multiple imputations were
used to account for missing data in these two separate
data sets12.

Variable selection using random forest

In the first-round of variable selection, a random forest
model was applied in the training dataset. This machine
learning method works on both categorical and numerical
variables on any scale, obviating the need for the conversion
of features or the normalization13,14. The random forest
model is also robust with regard to controlling potential
overfitting and is adequately parsimonious in a large data-
set15–17. To avoid overfitting, a pre-pruning algorithm was
set for each node to stop the process if all variables
belonged to the same class or if all the variable values were
the same18,19. Additionally, the number of tree was set at

Test Set 
1,923

30%

Admitted Jan.1st to Mar.20th 2020

Randomization

Training Set
4,492

70%

OURMAPCN Score Development

6,415 from 7 hospitals in Wuhan 

(end FUD Apr.8th)

Validation Set 1

Admitted Jan.1st to April.17th 2020

Validation Cohort 1
6,351 from 3 hospitals in Wuhan 

(end FUD Apr.26th)

Admitted Jan.1st to Mar.9th 2020

Validation Set 2

Validation Cohort 2
2,169 from 11 hospitals out of Wuhan

(end FUD Mar.27th)

Admitted Feb.12th to Apr.12th 2020

Validation Set 3

Validation Cohort 3
553 from 1 hospital in Milan, Italy

(end FUD Apr.30th)

Figure 1. Flowchart for patient selection and distribution of the training, the test and the validation cohorts. FUD indicates the last of follow-up date.
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500, and the number of variables randomly sampled at each
split was optimized with respect to Out-of-Bag error esti-
mates (mtry ¼ 6)14. Then, variables were dropped one by
one with the least relevant variable until the mean decreased
accuracy larger than 0.00120. The selected variables were
ranked by variable importance measures (VIMs) to identify
those that would most significantly influence the
prediction21,22.

Variables dichotomization and candidate risk factors
selection using LASSO model

To improve the clinical utility, all variables selected in the
random forest model were dichotomized. The abnormal cut-
off for dichotomization was applied according to the refer-
ence range in each hospital (Supplemental Table 3). The
date of the first peak in the relevant country’s daily number
of new cases was obtained from the WHO and worldometer-
s.info (Supplemental Table 4). We referred to the dichotom-
ized variables as risk factors.

To further select candidate risk factors in the second step,
a Least Absolute Shrinkage and Selection Operator (LASSO)
regression was applied to minimize the potential collinearity
of variables and overfitting (Figure 2). The glmnet package in
R was applied to efficiently search for sparse solutions and
to optimize the solutions using a 10-fold cross-validation
schema over the training dataset23 and in the study, k
(¼0.013) is chosen as the largest lambda at which the mean
squared error (MSE) is within one standard error of the

minimal MSE by 10 times cross validation. A final LASSO
model was selected from the most regularized model which
had a within one standard error of the minimum (Figure 2).

The OURMAPCN score derivation

In the score building stage, a multivariate Cox hazard regres-
sion analysis was employed for the final list of risk factors
from the second round of selection. The assignment of
points to risk factors was based on a rounded number that
was approximately four times of the coefficient in the Cox
model with the maximal value set at five.

Model validation and calibration

The bootstrapped C-statistic was applied to validate the per-
formance of the Cox hazard model as well as calibration
plot. Separate C-statistics were analyzed for OURMAPCN risk
score in the training, test, and validation groups.
Additionally, datasets from all groups were split equally into
several groups. For a dataset with fewer events than the con-
trols, we created balanced splits of the data in all groups by
maintaining the outcome structure for the training and test-
ing datasets with a 70%/30% ratio in total of cases.

Missing data imputation and cross validation

Because multivariate analysis requires a complete set of vari-
ables for each patient, missing data from one or more nonin-
vasive tests were imputed in the study. Multiple imputations
were implemented to handle missing data by the random
forest package “missForest” algorithm, which is a highly
accurate method for lab data12,24,25. Mixed types of data
(continuous and categorical) were imputed in a parallel pro-
cess. All variables entering the random forest model were
included in the imputation models. Missing patterns were
compared across age and sex to ensure that missing data
were not correlated with basic personal characteristics. The
variables with a large proportion of missing (>50%) were
excluded from the random forest model variable selection
process. The MissForest algorithm was applied to the missing
parameters to estimate the imputation error as follows: 1.30
for the normalized root mean squared error and 5.00% for
false classification25. A bootstrapped cross validation process
was applied to the training data by artificially and randomly
introducing 10% more missing data, and after 10 iterations,
MissForest yielded 4.21% (IQR 3.60%-4.90%) differences in
the continuous parameters and 0.17% (IQR 0.15–0.18%)
differences in the categorical parameters when the two data-
sets with or without artificially introduced missing parame-
ters were compared. In brief, the levels of missing data for
the selected parameters in final score building were as fol-
lows: 0% for age, 0% for admission date, 5.48% for respira-
tory rate, 15.05% for absolute neutrophil count, 15.76% for
BUN, 18.14% for oxygen saturation, 31.97% for CRP, and
30.00% for procalcitonin.

21 Variables

Missing Imputation

64 Variables

Key model

Random Forest

pre-pruning algorithm 

Dichotomize

34 Risk Factors

Lasso
Regression

8 Risk Factors

Step1

Step2

Figure 2. Flowchart for variable selection. The random forest algorithm was
applied to identify variables that may influence prediction among 64 clinical
variables collected on admission. 21 variables were derived from the random
forest analysis. For better clinical applicability, the 21 variables were dichotom-
ized into another 34 risk factors for a Least Absolute Shrinkage and Selection
Operator (LASSO) regression analysis. A total of eight risk factors at admission
were extracted.
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Sensitivity analyses

A sensitivity analysis was performed for all the variable/factor
selection processes on the complete cases without imput-
ation. We also conducted a sensitivity analysis using univari-
ate general linear model (GLM) followed by pair-matching
comparison and random forest model in step 1, and GLM
stepwise backward model in step 2, to select candidate varia-
bles. A multivariate Cox proportional hazard model was used
to calculate the risk score in this sensitivity analysis.

Results

Patient characteristics in the training and
testing cohorts

To determine the risk factors significantly associated with in-
hospital mortality, a total of 6415 confirmed COVID-19 patients
from seven hospitals in the city of Wuhan, Hubei Province,
were included and assigned to the training and test cohorts at
a 70%/30% ratio (see details in Section “Methods” and Figure
1). Their baseline characteristics are listed in Table 1. The
median age of the participants was 59 years (interquartile
range [IQR], 46–68), the median respiratory rate was 20 (IQR,
18–21), the median oxygen saturation (SpO2) was 98% (IQR,
96–98) and the median follow-up duration was 15 days (IQR,
10–23). A total of 1208 (25.5%) patients had elevated procalci-
tonin levels, and 2329 (49.5%) patients had increased CRP lev-
els. A total of 535 (9.6%) patients showed a higher level of
BUN, and 819 (14.5%) patients had an elevated neutrophil
count. A total of 3836 (59.8%) patients were admitted to the
hospital before 12 February (the date of the peak number of
daily new cases in China). A total of 462 patients died in the
study period. The differences in baseline parameters between
the patients who survived and the patients who died in the
training and testing cohort are shown in Table 1.

OURMAPCN score and Cox analysis

After the random forest model selection, 21 clinical variables
were selected among 64 clinical parameters recorded at
admission based on the patient’s data from training cohort
(Supplemental Table 5). To increase clinical applicability, the
21 variables were dichotomized into another 34 risk factors
and further evaluated by a LASSO algorithm, leading to the
extraction of eight risk factors at admission that were closely
associated with mortality in COVID-19 patients
(Supplemental Table 6). The final eight risk factors, namely,
Oxygen saturation < 90%, blood Urea nitrogen> upper limit
of normal (ULN), Respiratory rate> 30, admission before the
date of the first national Maximum number of daily new
cases was reached, Age � 60, Procalcitonin>ULN, C-reactive
protein (CRP) >ULN and absolute Neutrophil counts>ULN,
were incorporated into the risk score model for the predic-
tion of mortality in COVID-19 patients. Sensitivity analysis
with the complete cases without imputation obtained seven
of the eight variables except procalcitonin>ULN.

To calculate the risk score, we assigned each of the eight
prognostic factors a numeric point value that was

proportional to its specific regression coefficient in a multi-
variate Cox proportional hazard model. Calibration curves for
predicting probabilities of survival at 14 days, 21 days, and
28 days were computed from the Cox models on which the
risk score based26. We observed a high degree of similarity
between the observed and the estimated rate at 14 days,
21 days, and 28 days (Supplemental Figure 1). Patients who
remained in the hospital at the end of follow-up time were
treated as right censor. Scores were calculated by summing
the points for each of the eight factors; the points for each
factor were obtained by multiplying the coefficient in the
Cox model by four and then rounding, with a maximum
value set at five (Table 2).

We also conducted a sensitivity analysis using univariate
GLM followed by pair-matching comparison and random for-
est model in step 1, and GLM stepwise backward model in
step 2, to select candidate variables. A multivariate Cox pro-
portional hazard model was used to calculate the risk score.
As shown in Supplemental Table 7, the variables in the final
risk score in sensitivity analysis were the same as the
OURMAPCN score.

Prediction of mortality in the training and test cohorts

The OURMAPCN score had a high prognostic significance in
the training cohort, with an AUROC of 0.92 (95% CI,
0.90–0.93) (Table 3 and Supplemental Figure 2). A density
plot was generated to determine a cutoff value for the
OURMAPCN score to discriminate the patients with low and
high risks of mortality: the low-risk group had an
OURMAPCN score from 0 to 11 points, and a high-risk group
had an OURMAPCN score from 12 to 23 points
(Supplemental Figure 3). The Kaplan–Meier analysis showed
that the patients with scores above 11 points had a signifi-
cantly decreased survival rate in the training cohort, with an
HR of 18.18 (95% CI, 13.93–23.71; p< .0001) (Supplemental
Figure 4(A)). In the test cohort, the OURMAPCN score also
had high C statistic indexes, with AUROCs of 0.90 (95% CI,
0.87–0.92) (Table 3 and Supplemental Figure 2). The HR for
mortality was 12.36 (95% CI, 8.79–17.38; p< .0001) in
patients with scores of more than 11 points in the test
cohort (Supplemental Figure 4(A)). A webpage dedicated to
OURMAPCN score calculation (http://compute.covid-ourmap.
cn:8888/comput-OURMAPCN) has been developed to support
doctors at the point-of-care.

OURMAPCN score performance in the external
validation cohorts

The patients’ characteristics in validation cohort 1, which
consisted of 6351 patients from three independent hospitals
in Wuhan city, are detailed in Supplemental Table 8. The
OURMAPCN score had an AUROC of 0.89 (95%CI, 0.88–0.91)
in the validation cohort 1 (Supplemental Figure 2) (Table 4).
Based on the OURMAPCN score, patients with scores greater
than 11 points had a higher risk of mortality than those with
lower scores, with an HR of 14.35 (95% CI, 11.00–18.73;
p< .0001) (Supplemental Figure 4(B)).
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Another cohort of 2169 patients with COVID-19 from eleven
hospitals outside of Wuhan city was designated validation cohort
2. The baseline characteristics of the patients in the validation
cohort 2 are described in Supplemental Table 9. The OURMAPCN
score had an AUROC of 0.90 (95%CI, 0.88–0.93) (Supplemental
Figure 2) (Table 4) in the validation cohort 2. Again, patients with
an OURMAPCN score greater than 11 points had a higher risk of
mortality than those with lower scores, with an HR of 32.14 (95%
CI, 7.95–129.9; p< .0001) (Supplemental Figure 4(C)).

The OURMAPCN score (AUROC 0.89 [95%CI, 0.88–0.91] in
validation cohort 1 and AUROC 0.90 [95%CI, 0.88–0.93] in
validation cohort 2) significantly outperformed the existing
scoring systems, including the MuLBSTA (AUROC 0.58
[95%CI, 0.56–0.60] in validation cohort 1 and AUROC 0.79
[95%CI, 0.75–0.83] in validation cohort 2) and CURB-65
(AUROC 0.81 [95% CI, 0.79–0.83] for validation cohort 1 and
AUROC 0.80 [95% CI, 0.76–0.84] in validation cohort 2) scores
for the prediction of mortality in COVID-19 patients (Table 5).

Table 1. Patients’ characteristics of the training and test cohorts.

Variables All (6415) Survived (5342) Died (462) p Valued

Clinical characteristics on admission
Median age (IQR)—yr 59 (46–68) 57 (45–66) 71 (63–80) <.001
Male sex—no./total no. (%) 3028/6415 (47.2) 2442/5342 (45.7) 291/462 (63.0) <.001
Median heart rate (IQR)—bmpa 84 (78–96) 84 (78–96) 89 (79–104) <.001
Median respiratory rate (IQR)—bmpa 20 (18–21) 20 (18–21) 21 (20–26) <.001
Median SBP (IQR)—mmHg 129 (120–140) 128 (120–140) 128 (118–142) .91
Median DBP (IQR)—mmHg 79 (72–86) 79 (72–86) 76 (69–85) <.001
Fever—no./total no. (%) 4466/6139 (72.7) 3728/5160 (72.2) 343/421 (81.5) <.001
Median follow-up time (IQR)—days 15 (10–23) 16 (10–23) 8 (4–15) <.001

Comorbidities on admission
Chronic obstructive pulmonary disease—no./total no. (%) 75/6414 (1.2) 60/5342 (1.1) 9/461 (2.0) .12
Diabetes—no./total no. (%) 806/6414 (12.6) 613/5342 (11.5) 97/461 (21.0) <.001
Coronary heart disease—no./total no. (%) 460/6414 (7.2) 328/5342 (6.1) 85/461 (18.4) <.001
Cerebrovascular diseases—no./total no. (%) 204/6414 (3.2) 138/5342 (2.6) 40/461 (8.7) <.001
Hypertension—no./total no. (%) 1935/6414 (30.2) 1496/5342 (28.0) 234/461 (50.8) <.001

Laboratory examination on admission
Neutrophil count > 6.3� 10�9/L—no./total no. (%) 819/5630 (14.5) 493/4656 (10.6) 227/423 (53.7) <.001
Lymphocyte count < 1.1� 10�9/L—no./total no (%) 2193/5631 (38.9) 1579/4656 (33.9) 351/423 (83.0) <.001
Platelet count < 125� 10�9/L—no./total no. (%) 539/5637 (9.6) 347/4662 (7.4) 131/423 (31.0) <.001
C-reactive protein>ULN—no./total no. (%)b 2329/4706 (49.5) 1773/3978 (44.6) 334/341 (97.9) <.001
Procalcitonin>ULN—no./total no. (%)b 1208/4740 (25.5) 783/3875 (20.2) 268/378 (70.9) <.001
BUN>ULN—no./total no. (%)b 535/5593 (9.6) 280/4630 (6.0) 186/421 (44.2) <.001
Total cholesterol > 5.17mmol/L—no./total no. (%) 609/4899 (12.5) 537/4022 (13.4) 13/374 (3.5) <.001
D-dimer>ULN—no./total no. (%)b 2106/4760 (44.2) 1516/3897 (38.9) 316/380 (83.2) <.001
Low density lipoprotein > 3.37mmol/L—no./total no. (%) 608/4899 (12.4) 509/4022 (12.7) 23/374 (6.1) <.001
Median SpO2 (IQR)—% 98 (96–98) 98 (96–98) 91 (81–96) <.001

Other risk factors
Teaching hospital—no./total no. (%) 3359/6415 (52.4) 2532/5342 (47.4) 309/462 (66.9) <.001
Admission before Feb 12th—no./total no. (%)c 3836/6415 (59.8) 2004/5342 (37.5) 356/462 (77.1) <.001

Abbreviations. SBP, systolic blood pressure; DBP, diastolic blood pressure; BUN, blood urea nitrogen; SpO2, oxygen saturation; ULN, upper limit of normal.
aThe bpm in heart rate and respiratory rate denotes beat per minute and breath per minute, respectively.
bULN indicates the upper limit of the normal range of each biochemical test. The reference ranges of the test in each hospital were provided in Supplemental
Table 3.

cThe patients who admitted to hospital before 12 February 2020 when the daily newly diagnosed cases start to decline in China.
dp Values for the comparison of survivors with patients who died and were calculated by the Mann-Whitney U test for non-normally distributed continuous
variables and by the chi-square test or Fisher’s exact test for categorical variables.

Table 2. Cox model for the scores of selected risk factors.

Risk factor Incidence of death %c Cox model

HR (95% CI)d Coefficient Pointse

C-reactive protein>ULNa 11.02 6.50(3.68–11.48) 1.87(1.30–2.44) 5
SpO2 < 90% 54.98 3.17 (2.37–4.23) 1.15(0.86–1.44) 4
Admission before Feb 12thb 13.38 1.85 (1.41–2.43) 0.61(0.34–0.89) 3
Age � 60 20.41 1.99 (1.42–2.78) 0.69(0.35–1.02) 3
BUN>ULNa 35.62 2.29 (1.79–2.94) 0.83(0.58–1.08) 2
Respiratory rate � 30 43.00 2.57(1.64–4.04) 0.94(0.49–1.40) 2
Procalcitonin level>ULNa 14.62 2.10 (1.61–2.72) 0.74(0.48–1.00) 2
Neutrophil count > 6.3� 10�9/L 29.47 2.11 (1.65–2.70) 0.75(0.50–0.99) 2

Abbreviations. BUN, blood urea nitrogen; SpO2, oxygen saturation; ULN, upper limit of normal; HR, hazard ratios.
aThe ULN denotes the upper limit of the normal range of each biochemical test. The reference ranges of tests in each hospital were
provided in Supplemental Table 3.
bThe proportion of patients who admitted to hospital before 12 February 2020 when the daily newly diagnosed cases start to decline
in China.

cThe incidences of death in each risk factor were calculated by the number of deaths to the total number of patients with each
increased risk.
dHazard ratios with corresponding 95% confidence intervals (CIs) were calculated by multivariate Cox regression analysis and were for
the comparison of survivors with patients who died.

eThe assignment of points to risk factors was based on a multivariable Cox regression coefficient.
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When compared with a recently published COVID-19 risk
score COVID-GRAM27, the OURMAPCN score has a similar
performance in the Wuhan population and a superior per-
formance in patients outside of Wuhan city (Table 5).

Importantly, in addition to the evaluation of the scoring
system in the training and the test cohorts, the predictive
performance of the OURMAPCN score was evaluated in the
subgroup of patients with different age ranges, sexes, and
medical histories of chronic obstructive pulmonary disease
(COPD), coronary artery disease (CAD), type 2 diabetes melli-
tus (T2DM) and hypertension (Table 6). The performance of
the OURMAPCN score was robust and stable across different
subsets of patients, with AUROCs ranging from 0.79 to 0.92.

OURMAPCN score performance in the Italian cohort

To further explore the performance of the OURMAPCN score
in patients outside of China, we calculated the C-statistic in a
cohort of COVID-19 patients from Milan, Italy. The baseline
characteristics of this cohort are described in Supplemental

Table 10. In this Italian cohort, serum urea levels were not
commonly measured in patients with COVID-19. We used
serum creatinine as a substitute risk factor for BUN. The
modified OURMAPCN score had an AUROC of 0.81 (95%CI,
0.76–0.86), and the other C-statistic metrics are listed in
Supplemental Figure 2 and Table 4. Therefore, the
OURMAPCN score yielded a satisfactory accuracy in the
Italian cohort.

Discussion

We have developed the OURMAPCN score using eight base-
line risk factors at admission, namely, age, respiratory rate,
oxygen saturation, absolute neutrophil counts, CRP, BUN,
procalcitonin, and admission before the date of the first max-
imum number of daily new cases in the country. The
OURMAPCN score is a robust and reliable tool for predicting
mortality in patients with COVID-19. These eight factors are
based on common clinical parameters routinely obtained in
the emergency room or at hospital admission. Therefore, the

Table 3. Performance of OURMAPCN score in training and test dataset.

OURMAPCN score in training dataset OURMAPCN score in test dataset

N 4063 1741
AUROC (95% CI) 0.92 (0.90–0.93) 0.90 (0.87–0.92)
Cutoff value �11 �11
Total accuracy, % (95% CI) 77.48 (76.00–89.54) 80.59 (78.58–82.83)
Sensitivity, % (95% CI) 92.36 (77.39–95.54) 87.16(81.08–91.89)
Specificity, % (95% CI) 76.18 (74.58–90.34) 79.97 (77.84–82.49)
PPV, % (95% CI) 24.66 (23.31–41.03) 28.81 (26.36–31.77)
NPV, % (95% CI) 99.16 (97.96–99.51) 98.54 (97.85–99.08)
PLR, (95% CI) 3.86 (3.61–4.12) 4.47 (3.97–5.03)
NLR, (95% CI) 0.10 (0.07–0.14) 0.16 (0.10–0.23)

Abbreviations. AUROC, area under the receiver operating characteristics; PPV, positive predictive value; NPV, negative predictive
value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; 95% CI, 95% confidence interval.

Table 4. OURMAPCN score performance in validation cohorts in Wuhan, other cities in Hubei, China, and Milan, Italy.

Wuhan validation cohort 1 Other cities in Hubei validation cohort 2 Milan, Italy validation cohort 3

AUROC (95% CI) 0.89 (0.88–0.91)a 0.90 (0.88–0.93)a 0.81 (0.76–0.86)a

Total accuracy, % (95% CI) 89.07 (72.74–89.92) 83.45 (80.80–90.10) 77.10 (62.81–84.35)
Sensitivity, % (95% CI) 72.57 (68.82–91.31) 86.36 (76.52–92.42) 67.82 (51.72–88.51)
Specificity, % (95% CI) 90.92 (70.93–91.81) 83.06 (80.39–90.74) 79.38 (57.63–90.11)
PPV, % (95% CI) 45.70 (24.68–48.50) 25.65 (22.29–36.31) 44.70 (32.58–60.00)
NPV, % (95% CI) 96.89 (96.49–98.73) 98.92 (98.32–99.41) 91.12 (88.14–95.58)
PLR, (95% CI) 7.99 (7.25–8.82) 5.14 (4.56–5.79) 3.29 (2.57–4.27)
NLR, (95% CI) 0.30 (0.27–0.35) 0.16 (0.10–0.24) 0.40 (0.28–0.54)

Abbreviations. AUROC, area under the receiver operating characteristics; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood
ratio; NLR, negative likelihood ratio; 95% CI, 95% confidence interval.
aThe C statistic metrics for OURMAPCN score were reported in validation cohorts in Wuhan, other cities in Hubei, China and Milan, Italy.

Table 5. Comparison of OURMAPCN score with the MuLBSTA, CURB-65, and COVID-GRAM scores for the identification of high risk of mortality.

Validation 1: Wuhan Validation 2: Other cities in Hubei

Scores N AUROC (95% CI) N AUROC (95% CI)
OURMAPCN score 6094 0.89 (0.88–0.91) 2151 0.90 (0.88–0.93)
MuLBSTA scorea 6094 0.58 (0.56–0.60) 2151 0.79 (0.75–0.83)
CURB-65 scoreb 6094 0.81 (0.79–0.83) 2151 0.80 (0.76–0.84)
COVID-GRAMc 6094 0.87 (0.86–0.89) 2151 0.85 (0.82–0.89)

Abbreviations. AUROC, area under the receiver operating characteristics;.
aMuLBSTA, a score used in patients with viral pneumonia, to predict clinical characteristics that affect mortality. It comprises factors: multilobe infiltrate (5),
absolute lymphocyte counts �0.8� 10�9/L (4), bacterial infection (4), acute smoker (3), quit smoking (2), hypertension (2), and age �60 years (2).
bCURB-65, a score used in the emergency department setting to risk stratify a patient’s community-acquired pneumonia. It comprises factors: confusion (1),
BUN above 7mmol/L (1), respiratory rate � 30 (1), systolic BP < 90mmHg or diastolic BP � 60mmHg (1), and Age � 65 (1).

cCOVID-GRAM, a score used in patients with COVID-19, to predict the risk of developing critical illness. It comprises factors: X-ray abnormality, age, hemoptysis,
dyspnea, unconsciousness, no. of comorbidities, cancer history, neutrophil to lymphocyte ratio, lactate dehydrogenase, and direct bilirubin.
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OURMAPCN score can be readily determined and imple-
mented as a very practical tool for patient risk stratification,
not only by intensive care specialists but also by physicians
with diverse backgrounds and specialties. This robust yet
easy-to-implement clinical risk score will be valuable in the
dedicated COVID-19 clinics, particularly when medical resour-
ces are limited in Asian population during the COVID-
19 pandemic.

At the functional level, the OURMAPCN score integrates
multidimensional information. One domain represented by
the model is the degree of pulmonary impairment (respira-
tory rate and oxygen saturation)28; one may reflect the status
of the patient’s systemic response to infection and the ensu-
ing inflammation (absolute neutrophil counts29, CRP30 and
procalcitonin31), and another domain (BUN32,33) may indicate
the level of tissue damage and breakdown and renal func-
tion. Age is recognized as a major risk factor that is positively
associated with the risk of mortality due to COVID-1934.
Finally, this cohort comprises a large proportion of patients
at the start of the pandemic when the experience of treating
patients with SARS-CoV-2 infection and medical resources
were limited (before the date of the first maximum number
of daily new cases). It is intuitive that limited medical resour-
ces and lack of experiences can lead to a lack of life-saving
intervention for critically ill COVID-19 patients. Fortunately,
the majority of countries have reached the first peak and
with accumulated knowledge in dealing with COVID-19
patients (Supplemental Table 4). Thus, these parameters,
which were selected through an unbiased approach in a
large COVID-19 cohort may offer some valuable insights into
the potential pathogenic mechanisms underlying the poor
outcome in the subset of COVID-19 patients.

There are several other baseline clinical variables that
have been reported to be associated with COVID-19 severity
and mortality, including BMI, COVID-19 symptoms (e.g. fever,
short of breath), D-Dimer, and troponin35–37. Indeed, we
have included BMI, fever, and D-Dimer in our original set of
variables. However, these variables were ruled out in the
first-round of variable selection using a random forest model.

The potential explanation for BMI has not been selected by
the model might be associated with the lower BMI and nar-
row BMI distribution in the Chinese population. The narrow
distribution of a predictor limited its ability to capture its
impact on an outcome. Because short of breath had a high
correlation with respiratory rate, to avoid overfitting, we only
applied respiratory rate in our variable selection process. As
for troponin, this test was chosen only when the patients
were suspected of having a severe cardiac injury or cardiac
ischemia. The proportion of available values only counted up
5% for cardiac troponin I and 10% for cardiac troponin T in
our cohort, thus, troponin was not included in our variable
selection process.

The OURMAPCN score was specifically developed and
optimized with the goal of identifying COVID-19 patients at
a high risk of mortality at hospital admission. The score was
sufficiently validated in multiple independent cohorts from
China and Italy. The score shows robust performance with
regard to predicting mortality across different populations,
ethnicities and clinical practices. However, further studies
with larger cohorts in different populations will be needed
to establish whether the performance of the score is influ-
enced by sample sizes or population heterogeneity.

Our data show that this score significantly outperformed
two existing pneumonia scores, the MuLBSTA38 and CURB-65
scores39, which were initially developed to estimate the mor-
tality due to pneumonia. Indeed, neither of these scores
showed adequate predictive accuracy when applied to the
same COVID-19 validation cohorts in this study. In addition,
certain parameters required for the MuLBSTA score and
CURB-65 score, such as bacterial infection, were not com-
monly available at hospital admission in COVID-19 patients,
which hinders their application as a stratification and triage
tool at admission. When compared to the COVID-GRAM score
by Liang et al.27, the two models had similar predictive abil-
ity in the population in Wuhan. However, the OURMAPCN
score has better performance in patient populations outside
of Wuhan city. Since five out of the ten risk factors in the
COVID-GRAM score were patient-reported variables,

Table 6. Performance of OURMAPCN score for subgroups in validation cohorts from Wuhan and other cities in Hubei.

Subgroupsa Mortality rate % AUROC (95% CI) Sensitivity% (95% CI) Specificity% (95% CI) PPV% (95% CI) NPV% (95% CI)

Age
<65 4.28 0.90 (0.88–0.92) 83.26 (77.68–87.98) 85.32 (84.33–88.38) 20.30 (18.87–23.84) 99.13 (98.84–99.38)
�65 17.36 0.84 (0.82–0.86) 72.63 (68.72–76.54) 83.10 (81.59–84.66) 47.42 (44.83–50.13) 93.52 (92.69–94.42)

Gender
Female 5.60 0.90 (0.89–0.92) 88.09 (83.40–94.04) 78.03 (71.78–79.60) 18.96 (16.01–20.39) 99.11 (98.76–99.52)
Male 11.97 0.89 (0.88–0.91) 87.60 (69.21–91.53) 73.41 (71.22–91.35) 31.48 (29.50–53.26) 97.73 (95.60–98.45)

COPD
No 7.83 0.92 (0.90–0.93) 87.98 (84.14–91.56) 82.14 (78.18–83.44) 29.40 (25.87–31.21) 98.77 (98.40–99.11)
Yes 35.16 0.87 (0.79–0.94) 84.38 (56.25–96.88) 77.97 (59.32–96.61) 67.44 (54.54–91.30) 89.36 (79.71–97.78)

CAD
No 7.74 0.91 (0.90–0.92) 89.39 (72.84–92.02) 76.91 (75.77–93.13) 24.55 (23.51–47.56) 98.85 (97.60–99.13)
Yes 20.41 0.79 (0.74–0.83) 80.00 (50.77–88.46) 62.92 (55.23–88.17) 36.03 (32.04–55.78) 92.09 (87.35–95.23)

Diabetes
No 7.64 0.91 (0.90–0.92) 89.31 (86.49–91.74) 77.67 (76.66–78.66) 24.87 (23.87–25.87) 98.88 (98.59–99.13)
Yes 14.67 0.85 (0.81–0.88) 69.35 (62.90–84.95) 85.49 (67.74–87.71) 45.08 (30.49–49.62) 94.19 (93.02–96.31)

Hypertension
No 5.97 0.91 (0.90–0.93) 87.31 (83.38–91.84) 81.81 (77.59–83.06) 23.12 (20.08–24.77) 99.02 (98.72–99.35)
Yes 14.36 0.86 (0.84–0.88) 71.91 (67.27–76.29) 86.17 (84.70–87.55) 46.52 (43.53–49.57) 94.82 (93.98–95.59)

Abbreviations. AUROC, area under the receiver operating characteristics; PPV, positive predictive value; NPV, negative predictive value; COPD, chronic obstructive
pulmonary disease; CAD, coronary artery disease.
aThe C statistic for OURMAPCN score is reported in age, gender, COPD, CAD, diabetes, and hypertension subgroup population among all study population.
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inadequate collection of these variables may lead to the
underestimation of disease severity. This probably explained
the decrease in the AUROC in the population outside of
Wuhan city. Recently, a 4 C Mortality Score was established
for estimating the in-hospital mortality in patients from
European countries9. Due to the Glasgow coma scale score
was not routinely carried out for patients who admitted to
hospitals in China, 4 C Mortality Score was not able to be
estimated in the population involved in this study.

A critical aspect of the OURMAPCN score is that its cap-
ability for predicting the risk of mortality is not significantly
impacted by age, sex, or several commonly observed comor-
bidities that have been associated with COVID-19 sever-
ity1,40–44. We recommended an OURMAPCN score of 11 as a
cut-off threshold to maximize sensitivity while allowing some
false positives.

The overall validity of the OURMAPCN score for the pre-
diction of mortality was strengthened by the large cohort
size, including in the training and testing cohorts; validation
in multiple independent validation cohorts in China and
Europe, and the well-balanced distribution in terms of age,
sex and prevalence of comorbidities. Retrospective analyses
indicated that only approximately 10–20% of patients with
COVID-19 developed severe complications and need hospi-
talization or admission to the ICU, while the remaining
patients are at lower risk of severe disease and mortality. If
most patients at lower risk can recover from COVID-19 in
community hospitals or isolation facilities, more medical
resources can be allocated to patients at higher risk who
need advanced therapy. Therefore, our scoring system pro-
vides a method of identifying patients with COVID-19 who
are at high risk for severe complications and mortality. When
medical resources are limited, prioritizing patients who are at
high risk by allocating them more advanced medical resour-
ces is an effective means of reducing the mortality rate.

Limitation

Our study also has some limitations. First, our study was only
based on baseline parameters at admission and focused on
prediction. Hence no causal conclusions can be drawn from
our algorithm45,46. Second, the OURMAPCN score may sim-
plify model utility and implementation with the resultant
potential loss of information; however, the score performed
well compared to the logistic model with eight-variables.
Third, during the COVID-19 pandemic, several possible varia-
bles, including prehospital medication, personal habits, and
socioeconomic factors, were not collected or were insuffi-
ciently documented. Even though rigorous validation of the
data imputation process was conducted, the impacts of
these unmeasured parameters and missing values on patient
outcomes may reduce the power and accuracy of our model,
especially when it is applied in more heterogeneous popula-
tions. Fourth, the variable selection process started form 64
candidate variables; however, the random forest model and
LASSO model were set up to robustly limit the overfitting.
Importantly, the developed score demonstrated good dis-
crimination and calibration in all three validation cohorts.

Fifth, fewer patients in the study cohort were recruited in the
very early period of the pandemic outbreak, which may cre-
ate unknown bias in the temporal pattern of mortality fol-
lowing infection, such as delayed therapy, or the lack of
knowledge and therapeutic experiences with COVID-19.
Sixth, the patient cohort included COVID-19 in-hospital
patients mainly from China, only one city in Italy. The gener-
alizability of this model to patients of different genetic back-
grounds and from different geographic environments was
not examined. Extrapolation of the model to general or com-
munity patients with COVID-19 requires further examination.
Seventh, the cutoff value used for dichotomization was
derived according to the reference ranges of individual hos-
pitals. Due to the stable performance of the score across the
22 hospitals involved in our study, we propose that other
hospitals may use their own reference threshold for the cut-
off value. Accumulating data from different institutions will
provide us with increasing confidence in this conclusion in
the future.

Conclusion

We have developed and validated a risk assessment tool, the
OURMAPCN score, to evaluate the mortality risk in patients
with COVID-19 using limited clinical parameters obtained at
hospital admission. Previous data revealed that only approxi-
mately 10–20% of COVID-19 patients develop severe compli-
cations and mortality and therefore need hospitalization or
admission to the ICU2,47. Therefore, the OURMAPCN score
may assist frontline clinicians in optimizing medical treat-
ment in the context of limited resources by prioritizing
patients who are at higher risk of mortality. While this risk
score was derived from a patient population in China, it was
validated in an independent European cohort. Satisfactory
performance of the OURMAPCN score suggested that it
could be a candidate tool to predict the mortality risk in
COVID-19 patients elsewhere6,48–50. However, before its clin-
ical application, additional modification and validation of the
OURMAPCN score to fit each country’s specific situation are
still needed.
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