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ABSTRACT

It remains uncertain whether HIV-exposed uninfected (HEU) infants have impaired responses to oral
vaccines. We performed a cross-sectional study of 6-month-old infants recruited at birth to the ZVITAMBO
trial in Zimbabwe between 1997-2001, before introduction of prevention of mother-to-child transmission
interventions. We measured poliovirus-specific IgA to type 1-3 polio strains by semi-quantitative capture
ELISA in cryopreserved serum samples collected from 85 HEU and 101 HIV-unexposed infants at 6 months
of age, one month after their last immunisation with trivalent OPV. Almost all infants were breastfed, with
the majority in both groups mixed breastfed (70.6% HEU versus 71.3% HIV-unexposed). Median (IQR)
vaccine titers for HEU and HIV-unexposed infants were 1592 (618-4896) vs. 1774 (711-5431) for Sabin 1
(P = 0.46); 1895 (810-4398) vs. 2308 (1081-4283) for Sabin 2 (P = 0.52); and 1798 (774-4192) vs. 2260
(996-5723) for Sabin 3 (P = 0.18). There were no significant differences in vaccine titers between HEU and
HIV-unexposed infants, suggesting that vertical HIV exposure does not impact oral poliovirus vaccine
immunogenicity.
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Introduction HIV exposure contributes to poor oral vaccine immunogenic-
ity. The purpose of this study was therefore to evaluate immune
responses to OPV in a well-characterized cohort of HEU and

HIV-unexposed infants in Zimbabwe.

As coverage of prevention of mother-to-child transmission
(PMTCT) increases, the number of HIV-infected infants is
declining and there is a growing population of infants in sub-
Saharan Africa who are HIV-exposed but uninfected (HEU)."
HEU infants appear to have higher morbidity and mortality
and worse growth than HIV-unexposed infants,” with evidence
of altered immunity including diminished antibody responses
to specific antigens.> It is therefore plausible that inadequate
vaccine responses might contribute to the increased infectious

Results

A total of 85 HEU and 101 HIV-unexposed infants fulfilled inclu-
sion criteria. Baseline characteristics of infants and their mothers
are shown in Table 1. Mothers of HEU infants were older than

morbidity and mortality reported in HEU infants, although the
evidence to date is limited and heterogeneous.”

Oral poliovirus vaccine (OPV) is a live attenuated vaccine,
which is inexpensive and easy to administer. By acting in the
gastrointestinal tract, OPV can interrupt transmission of the
virus and therefore remains a key component of the Polio Eradi-
cation and Endgame Strategic Plan.® However, seroconversion to
OPV is lower in developing compared with developed countries,”
which has contributed to the challenges in fully eradicating
polio.® The reasons for this gap in performance are uncertain
but may include environmental enteric dysfunction, malnutri-
tion, interference from breast milk antibodies, co-administration
with other oral vaccines and concurrent infections.” '

HIV infection has been associated with significantly lower
seroconversion rates to OPV'% however, it is unclear whether

mothers of HIV-unexposed infants (26.4 vs. 24.6 years, respec-
tively; P = 0.02) and had higher parity (3 vs. 2; P = 0.01); there
were no other significant differences between groups. Almost all
infants were breastfed, with the majority in both groups mixed
breastfed (70.6% HEU vs. 71.3% HIV-unexposed); exclusive
breastfeeding was low overall (7.1% vs. 5.0%, respectively).

At 6 months of age (1 month post-immunisation), median
(IQR) vaccine titers for HEU and HIV-unexposed infants were
1592 (618-4896) vs. 1774 (711-5431) for Sabin 1 (P = 0.46);
1895 (810-4398) wvs. 2308 (1081-4283) for Sabin 2
(P =0.52); and 1798 (774-4192) vs. 2260 (996-5723) for Sabin
3 (P = 0.18) (Fig. 1). Differences in log mean titers between
HEU and HIV-unexposed groups were similar after adjusting
for breastfeeding, birth weight and sex in a linear regression
model (P = 0.36, Sabin 1; P = 0.33, Sabin 2; P = 0.19, Sabin 3).

CONTACT Dr. James A. Church @jlchurch@qmullac.uk @ Centre for Genomics and Child Health, Blizard Institute, Newark Street, London E1 2AT, UK.
© 2017 James A. Church, Sandra Rukobo, Margaret Govha, Marya P. Carmolli, Sean A. Diehl, Bernard Chasekwa, Robert Ntozini, Kuda Mutasa, Jean H. Humphrey, Beth D. Kirkpatrick, and

Andrew J. Prendergast. Published with license by Taylor & Francis.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.


https://crossmark.crossref.org/dialog/?doi=10.1080/21645515.2017.1359454&domain=pdf&date_stamp=2017-11-22
mailto:j.church@qmul.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/21645515.2017.1359454

2544 J.A. CHURCH ET AL.

Table 1. Baseline characteristics of infants and their mothers.

HIV exposed
uninfected (HEU)  HIV-unexposed P
N =85 N =101 value
Infant Characteristics
Male sex, % (n) 56.5 (48) 52.5(53) 0.66
Gestational age, weeks; mean (SD) 39.4(1.6) 39.2 (2.1) 0.48
Birth weight, kg; mean (SD) 2.99 (0.47) 3.01 (0.44) 0.77
Birth length, cm; mean (SD) 484 (2.7) 47.8 (2.4) 0.11
Birth head circumference, cm; 34.2(2.2) 34.1(2.1) 0.75
mean (SD)

Normal vaginal delivery, % (n) 87.0 (74) 86.7 (85) [98] 0.68
Exclusive breast feeding’, % (n) 7.1 (6) 5.0 (5) 0.55
Predominant breast feeding, % (n) 224 (19) 23.8 (24) 0.86
Mixed feeding, % (n) 70.6 (60) 713 (72) 1.00
Maternal characteristics
Age, years; mean (SD) 26.4 (4.9) 246 (5.7) 0.02
Married or stable union, % (n) 91.8 (78) 95.0 (96) 0.39
Education, years; median (IQR) 10 (7,11) 11(9,11) 0.14
Parity, median (IQR) 3(2,3) 2(1,3) 0.01
Maternal MUAC, cm; mean (SD) 26.4 (2.8) 26.4 (3.1) 1.00
Employed, % (n) 77.6 (66) 86.1 (87) 0.18
Monthly household income, USD; 7.83 (6.24) 7.31 (5.56) 0.56

mean (SD)

[x] refers to total number if data missing
'Breastfeeding status assessed at 6-months postpartum

Discussion

Although immunological abnormalities have been described in
HIV-exposed uninfected infants,” our results suggest that
immune responses to OPV were similar among HEU and HIV-
unexposed Zimbabwean infants at 6 months of age, adding to the
growing body of literature on vaccine responses in HEU infants.'

Most prior studies have evaluated responses to parenteral
vaccines, generally finding similar (or even better) responses
among HEU compared with HIV-unexposed infants."”'® Few
studies to date have evaluated responses to oral vaccines, and
only 3 to our knowledge have compared OPV responses.'”*' A
study of HEU infants in Zambia showed lower mean OPV 2
neutralising antibody titers at 18 months of age compared with
HIV-unexposed infants, although this was not significant after
adjusting for differences in breastfeeding.”® HEU infants in
Cameroon and Central African Republic aged 18-35 months
showed high rates of seroconversion to trivalent OPV (96—
100%).>" A study from Malawi found no difference in median
anti-polio immunoglobulin G (IgG) titers between HEU and
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HIV-unexposed infants at 10 weeks of age, but only included
34 infants."” Our study of HEU infants from Zimbabwe is con-
sistent with these prior studies, showing that OPV was equally
immunogenic in HEU and HIV-unexposed infants.

A major strength of this study is the well-characterized cohort
of HEU infants born in the pre-PMTCT era together with a
demographically similar HIV-unexposed population. However,
there are a few important limitations. Firstly, immunisation data
were not collected as part of the original ZVITAMBO trial, so we
were unable to confirm the number of OPV doses received by
infants. However, we have no reason to believe that HEU infants
would be less likely to complete the EPI schedule than HIV-unex-
posed infants, and in fact clinic attendance for intercurrent
illnesses was higher among HEU infants.** Secondly, our sample
size was limited by the number of cryopreserved specimens with
sufficient volume still remaining from the original trial. We may
have therefore been underpowered to pick up differences between
groups. Thirdly, while the ELISA we used to detect polio-specific
IgA enables a comparison of immunogenicity between groups,
we did not have access to the gold-standard OPV neutralization
assay, which provides a measure of vaccine protection. Fourth,
without available samples to measure baseline IgA titers, we can-
not rule out a difference between groups in antibody rise between
pre- and post-vaccination. Finally, we only measured antibody
responses shortly after immunisation. There is some evidence
that the quality and quantity of vaccine-specific antibody declines
faster in HEU compared with HIV-unexposed infants** so we
cannot comment on durability of protection.

In summary, in a well-characterized cohort of HEU and
HIV-unexposed infants, recruited before PMTCT introduction,
we found that HIV exposure does not appear to affect serum
IgA responses to OPV. In an era when new oral vaccines, such
as rotavirus, are being introduced in areas of high antenatal
HIV prevalence, this is reassuring, although further studies are
required to ascertain the reasons for the recognized underper-
formance of oral vaccines in developing countries.

Materials and methods
Study design and population

This study utilised archived samples from the Zimbabwe Vita-
min A for Mothers and Babies (ZVITAMBO) trial, which has
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Figure 1. Serum polio-specific IgA end point titers (Sabin 1,2 and 3) at 6 months of age in HIV-exposed uninfected (HEU) and HIV-unexposed infants.



been described previously.”* Briefly, 14110 mother-infant
pairs were enrolled within 96 hours of delivery in Harare,
Zimbabwe between 1997 and 2001. Mother-infant pairs
were eligible if neither had an acutely life-threatening con-
dition and the infant was a singleton with birth weight
>1500 g. Written informed consent was obtained. Socioeco-
nomic and demographic information was collected by
maternal interview. Follow-up was conducted at 6 weeks, 3
months and then 3 monthly to 12-24 months of age. The
trial was conducted in a peri-urban setting and preceded
availability of antiretroviral therapy in Zimbabwe or use of
cotrimoxazole prophylaxis for HIV-exposed infants.
Anthropometry was conducted at each visit, using methods
and WHO reference standards as described previously.*’

Biological specimen collection

Blood was collected by venipuncture from all mothers and
infants at baseline (<96 hours after delivery) and at all follow-
up visits. Samples were centrifuged and plasma removed within
2 hours of collection. Samples were stored in —80°C freezers
with automatic generator backup

Ascertainment of HIV exposure status

Mothers underwent HIV testing at baseline using 2 parallel
ELISA assays. Women testing HIV-negative were re-tested at
every visit to detect HIV seroconversion. The last available
sample from each child was tested for HIV by GeneScreen
ELISA on plasma if aged > 18 months, or by DNA polymerase
chain reaction (Roche Amplicor version 1.5; Roche Diagnostic
Systems, Alameda, CA) in cell pellets if aged <18 months. If
the last available sample was negative, the child was classified
as HIV-negative. Children were classified as HIV-unexposed if
the mother tested HIV-negative at baseline and did not sero-
convert during follow-up; children were classified as HIV-
exposed uninfected (HEU) if the mother tested HIV-positive at
baseline and the last available infant sample was HIV-negative.
Infants of mothers who seroconverted during follow up were
not included.

Selection of infants

For the current cross-sectional study, we retrieved samples for
all HEU and HIV-unexposed infants fulfilling the following cri-
teria: 1) Mother and infant both received placebo in the original
trial; 2) infants were followed to 6 months with available feed-
ing and anthropometry data; and 3) a sufficient sample of cryo-
preserved serum was available at 6 months of age.

Infant feeding counselling

All mothers, irrespective of HIV status, were encouraged to
exclusively breastfeed their infants for 6 months. Data on feed-
ing practices at 6 weeks and 3 months were used to categorise
infants as exclusively, predominantly or mixed breastfed, as
previously defined.*®
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Oral poliovirus vaccination

Infants followed the routine Expanded Programme of
Immunisation schedule in Zimbabwe at the time, which
included trivalent OPV at 3, 4 and 5 months of age. Specific
vaccination data were not collected as part of the trial, but
OPV3 immunisation coverage (collated by WHO using data
from routine reporting systems) at that time in Zimbabwe
was 70-81%.>

Antigen-capture ELISA for detection of poliovirus IgA

Although neutralising antibody titer is the best correlate of
protection for OPV,**** measurements of mucosal (salivary/
stool secretory IgA) and circulating (serum) IgA responses
to poliovirus are useful in the detection and control of polio-
virus infection,”*>> particularly in settings without access to
a WHO-accredited polio reference laboratory capable of per-
forming neutralization assays.

In all 6-month serum samples (i.e. one month after receipt
of final OPV), we measured poliovirus-specific IgA to type 1-3
polio strains in a capture ELISA developed by collaborators at
the Centers for Disease Control and Prevention (CDC) as
described previously.’® First, 96-well microplates were coated
with goat anti-human IgA (SeraCare, Massachusetts) for 60
minutes at 37°C. Next plates were washed with buffer contain-
ing phosphate buffered saline (PBS) and 0.05% Tween 20 and
incubated for a further 60 minutes with dilution buffer contain-
ing bovine serum albumin dissolved in PBS (all purchased from
Sigma, St Louis). We then made 3-fold serial dilutions of serum
samples beginning at a dilution of 1 in 100 and added 50 uL of
diluted sample to each well (one patient sample per column).
After a further wash step, the plates were incubated overnight
in a moist chamber at room temperature with Sabin antigen,
cultured from Hep2C cells at the University of Vermont. The
next day, the plates were washed followed by addition of mono-
clonal Sabin antibody (Merck Millipore, Massachusetts) to the
corresponding Sabin antigen and incubated at 37°C for 60
minutes. After another wash step, goat anti-mouse IgG conju-
gated to enzyme (SeraCare) was added to the plates for a fur-
ther 60 minutes at 37°C. We then developed the reactions by
addition of substrate for 15 minutes at room temperature, with
the output being optical densitiy (O.D.) at 450 nm. Pooled
serum from poliovirus-vaccinated healthy donor volunteers
was used as a positive control; each plate also included a blank
column with no test sample as a negative control.

Using 3-fold serial dilutions of patient samples run out in a
single column allowed for a semi-quantitative measure of polio-
virus-specific IgA, an adaptation of the original method. End-
point titers were calculated by subtracting the plate background
(i.e., the average O.D. of the negative control wells), then identi-
fying the dilution of the final well in each sample column with an
O.D. >0.07 (a 95% confidence value cut-off used to distinguish
“negative” from “positive” absorbance values and calculated
according to the original method®®). The intra- and inter-plate
coefficients of variation for Sabin 1, 2 and 3 strains, derived from
the mean O.D.s and standard deviations from 7 successive pre-
liminary experiments run before including study samples, were
8.2%, 4.0% and 4.8% and 20.1%, 17.7% and 16.8%, respectively.
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As a means of continued quality assurance, the end point titer of
the positive control sample in all subsequent assays had to fall
within an acceptable range for the experiment to be deemed
valid. The range was pre-determined based on the upper and
lower limit O.D.s in the 7 preliminary experiments. Laboratory
scientists were blinded to infant HIV exposure status when con-
ducting the assays.

If an end point titer could not be derived at the first attempt
(e.g. bottom well O.D. >0.08), the assay was repeated using a
10-fold higher or lower concentration of patient sample where
sufficient serum volume was available. If an end point titer
could not be derived using the new sample concentration, the
lowest or highest dilution factor was taken as the final end
point. Extreme low and high end point titers were subsequently
truncated and assigned a value equivalent to the 5th and 95th
centile within the data set respectively.

Statistical analysis

Baseline characteristics were compared between groups using
Fisher’s exact tests for categorical variables, and Mann-Whit-
ney or 2-sample t-tests for continuous variables, depending on
data distribution. A regression model was used to calculate
adjusted differences between median vaccine titers between
groups, using breastfeeding, birth weight and infant sex as
covariates. Statistical analyses were performed using STATA 13
(Stata-Corp, College Station, TX, USA) and Prism version 6
(GraphPad Software Inc., La Jolla, CA, USA).
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