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The prevalence of non-alcoholic fatty liver disease (NAFLD) has been increasing rapidly 
and at the forefront of worldwide concern. Characterized by excessive fat accumulation 
in the liver, NAFLD regularly coexists with metabolic disorders, including type 2 diabetes, 
obesity, and cardiovascular disease. It has been well established that the presence of 
NAFLD increases the incidence of type 2 diabetes, while diabetes aggravates NAFLD to 
more severe forms of steatohepatitis, cirrhosis, and hepatocellular carcinoma. However, 
recent progress on the genotype/phenotype relationships in NAFLD patients indicates the 
development of NAFLD with a relative conservation of glucose metabolism in individuals 
with specific gene variants, such as the patatin-like phospholipase domain-containing 
3 (PNPLA3) and transmembrane 6 superfamily member 2 protein (TM6SF2) variants. 
This review will focus on the clinical and pathophysiological connections between NAFLD 
and type 2 diabetes and will also discuss a disproportionate progression of NAFLD and 
diabetes, and the different responses to lifestyle and drug intervention in NAFLD patients 
with specific gene variants that may give insight into personalized treatment for NAFLD.
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INTRODUCTION

Over the last century, dramatic changes moving toward a sedentary lifestyle, and a high-fat and 
high-sugar diet, have radically affected human metabolic health status. Chronic metabolic diseases, 
such as obesity, type 2 diabetes (T2D), and non-alcoholic fatty liver disease (NAFLD), have 
been increasing at an alarming rate globally in both developed and developing countries (GBD, 
2016). The global prevalence of NAFLD is estimated to be 24% at present, with the highest rates 
in South America (31%) and the Middle East (32%), followed by Asia (27%), the USA (24%), 
and Europe (23%) (Younossi et al., 2019). According to a global report on diabetes by the World 
Health Organization (WHO) (WHO, 2016), the prevalence of diabetes is estimated to be 8.5% of 
the global population or 422 million individuals in 2014. Among diabetic patients, 70−80% have 
NAFLD (Targher et al., 2007; Williamson et al., 2011). Usually, NAFLD and T2D coexist and act 
synergistically to drive adverse outcomes in clinical practice. The presence of NAFLD increases 
the incidence of T2D and accelerates the development of complications in the latter (Shibata et al., 
2007; Targher et al., 2007; Targher et al., 2008; Adams et al., 2009; Park et al., 2013). Meanwhile, 
the presence of T2D increases the likelihood of progression of NAFLD to the more severe forms 
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of liver disorders, such as non-alcoholic steatohepatitis (NASH), 
cirrhosis, and hepatocellular carcinoma (Adams et al., 2005; 
Wang et al., 2012).

However, NAFLD is a heterogeneous disease that is influenced 
by multiple factors, including age, gender, ethnicity, genetic 
predisposition, and metabolic status (Younossi, 2019). A 
proportion of individuals develops NAFLD in the absence of 
obesity and insulin resistance (Younes and Bugianesi, 2019). 
Recent studies have found that several gene variants in the patatin-
like phospholipase domain-containing 3 (PNPLA3) (Romeo 
et al., 2008), transmembrane 6 superfamily member 2 protein 
(TM6SF2) (Lallukka and Yki-Järvinen, 2016), glucokinase 
regulatory protein (GCKR), protein phosphatase 1 regulatory 
subunit 3B (PPP1R3B), neurocan (NCAN), lysophospholipase-
like 1 (LYPLAL1) (Speliotes et al., 2011), and membrane-bound 
O-acyltransferase domain-containing 7 (MBOAT7) (Mancina 
et al., 2016) significantly increase the risk of NAFLD. Among 
them, several gene variants are associated with disproportionate 
increase in the risks of NAFLD and diabetes. For example, 
PNPLA3 rs738409 GG gene variant carriers have 73% more liver 
fat than non-carriers (Sookoian and Pirola, 2011), but are not 
more likely to have T2D according to the NASH CRN database 
(Speliotes et al., 2010) and Shanghai Changfeng Study (Xia et al., 
2016); only a small increase in the risk of T2D was observed 
in 100,323 people from a publicly available T2D genome-wide 
association studies (GWAS) database (OR 1.04 [1.01−1.07], 
P = 0.0045) (Dongiovanni et al., 2018). Moreover, the PNPLA3 
gene variant was even associated with a decreased risk of T2D 
in the NAFLD patients selected from the NASH CRN study 
(Speliotes et al., 2010) and a Chinese prospective cohort after 
adjusting for liver fat content and its changes over time (Xia et al., 
2019). Another NAFLD-related TM6SF2 rs58542926 C > T gene 
variant is associated with an average of a 2.1-fold higher risk of 
NAFLD than non-carriers according to a recent meta-analysis 
(Pirola and Sookoian, 2015). However, the TM6SF2 gene variant 
is reported to be accompanied by conserved insulin sensitivity 
and lower serum triglyceride levels in two Finnish cohorts 
(Zhou et al., 2015; Sliz et al., 2018), a 20−40% increase in the 
incidence of T2D in the METSIM and FINRISK studies (Kim 
et al., 2017), and a small increase in the risk of diabetes in 452,244 
individuals from 54 studies (OR 1.07 [1.05−1.10], P = 4.8 × 10−12) 
(Mahajan et al., 2018). Other NAFLD-related gene variants, such 
as LYPLAL1 and MBOAT7, showed no increase in the risk of 
diabetes (Dongiovanni et al., 2018; Sliz et al., 2018).

This review attempts to demonstrate the clinical and 
pathophysiological connections between NAFLD and T2D, as 
well as to explore the disproportionate development of NAFLD 
and diabetes in individuals with specific genetic variations. We 
will also review the available evidence regarding the influence 
of the gene variants on the individual response to lifestyle 
intervention and drug treatment in patients with NAFLD.

NAFLD INCREASES RISKS OF T2D

The prevalence of diabetes among the NAFLD and NASH 
patients is estimated to be 22.51% and 43.63%, respectively, 

which is much higher than the prevalence of diabetes in the 
general population (8.5%) (WHO, 2016; Younossi et al., 2016). 
The causal relationship between NAFLD and T2D was initially 
recognized when high alanine aminotransferase (ALT) was 
found to predict the development of T2D in Pima Indians 
(Vozarova et al., 2002). So far, a large number of prospective, 
population-based cohort studies have demonstrated that the 
elevation of serum liver enzymes could increase the risk of T2D, 
independent of other common risk factors (such as diet and 
lifestyle) in populations from different ethnicities (Goessling 
et al., 2008; Kunutsor et al., 2013; Ballestri et al., 2016). However, 
these studies are still limited because most NAFLD patients 
have normal transaminase levels and complex reasons for liver 
enzyme elevation. Later, several cohort studies further showed 
that NAFLD diagnosed by ultrasonography is associated with a 
33% to a five-fold increased risk of T2D in different populations 
with various follow-up periods and severity of NAFLD (Bae 
et al., 2011; Armstrong et al., 2014). In the last decade, advances 
in non-invasive methods for measuring liver fat content have 
enabled studies on the quantitative relationship between 
NAFLD and T2D. Based on the liver fat content measured by 
proton magnetic resonance spectroscopy (1H-MRS), Cusi et al. 
found a clear threshold of the liver fat content of ~6 ± 2%, after 
which metabolic disorders such as muscle insulin resistance, 
hypertriglyceridemia, and hypo-high-density lipoprotein 
cholesterolemia become fully established (Bril et al., 2017). The 
Shanghai Changfeng Community Study also found that liver 
fat content > 10% by a quantitative ultrasound method was 
associated with increased systemic insulin resistance and diabetes 
(Xia et al., 2015). Taken together, these findings highlight the 
importance of NAFLD in the occurrence of diabetes. Indeed, 
prior to the onset of diabetes, the presence of NAFLD is already 
associated with insulin resistance and elevated nocturnal blood 
glucose (Bian et al., 2011). Histological liver steatosis grades are 
inversely associated with hepatic and skeletal muscle insulin 
sensitivity measured by a euglycemic hyperinsulinemic clamp 
with 3-[3H]-glucose in non-diabetic individuals (Lomonaco 
et al., 2012).

Concomitant NAFLD in diabetic patients makes it difficult 
to achieve good blood glucose control (Afolabi et al., 2018) and 
can aggravate a series of extra-hepatic complications. It has been 
reported that NAFLD increases the risk of cardiovascular disease 
by 1.96 (95% CI 1.4−2.7)-fold9, chronic kidney disease by 1.87 
(95% CI 1.3−4.1)-fold, and proliferative/laser-treated retinopathy 
by 1.75 (95% CI 1.1−3.7)-fold10 in diabetic patients and the distal 
symmetric polyneuropathy by 5.32 (95% CI 3.1−9.3)-fold in 
diabetic patients with type 1 diabetes (Mantovani et al., 2017). In 
a large-scale prospective study based on the US National Health 
and Nutrition Examination Survey in 1988−1994, advanced 
fibrosis defined by a high NAFLD fibrosis score was also highly 
associated with increased cardiovascular disease mortality (HR 
3.46 [1.91−6.25]) (Kim et al., 2013).

The complex interactions between NAFLD, visceral adiposity, 
and insulin resistance make it difficult to distinguish the precise 
mechanisms underlying the increased risk of diabetes in patients 
with NAFLD. It is likely that expanded and inflamed visceral 
adipose tissue initiates multiple factors that are potentially involved 
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in the development of insulin resistance and NAFLD, such as free 
fatty acids and inflammatory adipocytokines (Shoelson et al., 2007). 
The liver is the main target organ for ectopic fat accumulation, and 
excessive free fatty acid (FFA) flux into the liver will substantiate 
insulin resistance by causing lysosomal instability, induction of 
NF-κB, and activation of TNFα (Feldstein et al., 2004) and cAMP/
PKA pathway (Ke et al., 2015), or by activating NLRP3-mediated 
IL-1β and IL-18 production (Ralston et al., 2017). Diacylglycerol 
(DAG), an intermediate of liver fat synthesis, also inhibits the liver 
insulin signaling through activation of protein kinase Cε (PKCε) 
and c-Jun N-terminal kinase (JNK) (Jornayvaz and Shulman, 
2012). As a compensatory mechanism, hepatocytes increase 
mitochondrial β-oxidation to limit FFA, and the lipid overload 
will further impair mitochondria antioxidant capacity, cause 
oxidative stress and mitochondrial leakage, and finally aggravate 
insulin resistance (Koliaki et al., 2015). Under conditions of hepatic 
insulin resistance, the de novo lipogenesis can be stimulated 
both by insulin, via sterol regulatory element-binding-protein 1c 
(SREBP-1c) (Tian et al., 2016), and by glucose, via carbohydrate 
response element-binding protein (ChREBP) (Linden et al., 2018). 
Thus, the interaction between liver steatosis and insulin resistance 
sets up a vicious cycle to promote the development of both NAFLD 
and T2D. Several recent studies also demonstrate that liver steatosis 
alters the secretion of a series of hepatokines with diabetogenic 
properties, such as fetuin A (Pal et al., 2012), fetuin B (Meex et al., 
2015), RBP4 (Norseen et al., 2012), selenoprotein P (Misu et al., 
2010), DPP4 (Baumeier et al., 2017), and HFREP1 (Wu et al., 2016). 
These hepatokines can alter metabolism in liver, muscle, adipose 
tissue, and pancreas to induce insulin resistance (Figure 1).

Liver steatosis promotes atherogenic dyslipidemia [increased 
small, dense low-density lipoprotein (LDL) particles, triglycerides, 
and decreased high-density lipoprotein (HDL) cholesterol] (Amor 
et al., 2017), activates intrahepatic and systemic inflammation 
[increased C-reactive protein (CRP), interleukin 6 (IL-6), tumor 
necrosis factor (TNF), intercellular adhesion molecule 1, and 
P-selectin] (Feldstein et al., 2004; Fricker et al., 2019) and the 
renin-angiotensin-aldosterone system (RAS) (Oikonomou et 
al., 2018), and disturbs the coagulation mechanism (increased 
fibrinogen, factor VII, and PAI-1) (Verrijken et al., 2014). All the 
NAFLD-related pathogenic mechanisms mentioned above may 
contribute to the increased risks of diabetic macrovascular and 
microvascular complications (Figure 1).

T2D INCREASES THE RISK OF NAFLD 
PROGRESSION TO NASH, CIRRHOSIS, 
AND HEPATOCELLULAR CARCINOMA

T2D is one of the strongest clinical predictors of the progression 
of NAFLD to NASH and cirrhosis (Adams et al., 2005).Current 
estimates indicate that about 10−20% of NAFLD patients 
will develop into nonalcoholic steatohepatitis (NASH), thus 
increasing the risk of liver advanced fibrosis or cirrhosis (Lazo 
and Clark, 2008). The presence of T2D increases the risk of 
NASH by two- to three-fold (Portillo-Sanchez et al., 2015). It has 
been reported that T2D is associated with up to 17.7% advanced 
liver fibrosis measured by transient elastography (Koehler et al., 
2016; Kwok et al., 2016), and 7.1% advanced fibrosis defined by 

FIGURE 1 | The pathophysiological connections between non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). NAFLD contributes to the development 
of T2D by increasing glucose production in the liver and exacerbating hepatic insulin resistance through the activation of hepatic protein kinase Cε and some liver-
secreted proteins with diabetogenic properties, such as fetuin A, fetuin B, RBP4, selenoprotein P, DPP4, and HFREP1. Intrahepatic fat accumulation activates liver 
inflammation. It further promotes the development of atherogenic dyslipidemia [increased small, dense low-density lipoprotein (LDL) particles, triglycerides, and 
decreased high-density lipoprotein (HDL) cholesterol] and hypertension (activation of the renin-angiotensin-aldosterone system). It also induces systemic inflammatory 
status (increased CRP, IL-6, TNF, and reactive oxygen species) and a coagulation mechanism (increased fibrinogen, factor VII, and PAI-1). All the procedures play 
important roles in the development of diabetic macrovascular and microvascular complications. On the other hand, T2D and systemic insulin resistance promote an 
increase of free fatty acid flux from peripheral tissues to the liver, leading to the development and progression of NAFLD. Furthermore, T2D drives the progression 
of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma through multiple mechanisms, including direct 
hepatocyte lipotoxicity, hepatocellular oxidative stress due to increased oxidation of free fatty acids, endoplasmic reticulum stress, release of inflammatory cytokines 
by hepatic Kupffer cells and peripheral adipocytes, hepatocellular apoptosis and necrosis, and hepatocellular regenerative response.
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magnetic resonance elastography (MRE) ≥ 3.6 kPa (Doycheva et al., 
2016). Studies based on liver histology find that a proportion 
of patients with T2D exhibits NASH up to 80% and advanced 
fibrosis to 30−40% (Bazick et al., 2015). There is a great difference 
in clinical outcomes between NAFLD and NASH patients, and 
the progression of NAFLD to NASH tremendously increases 
the annual incidences of liver-specific mortality and hepatic 
carcinoma from 0.77 and 0.44 per 1,000 person-year, respectively, 
to 11.77 and 5.29 per 1,000 person-year, respectively, in NAFLD 
patients (Younossi et al., 2019). A US-based population study in 
2010 reported that NAFLD and T2D were the first two common 
factors present in patients with hepatocellular carcinoma (HCC) 
(Sanyal et al., 2010), and the presence of diabetes alone can 
increase the risk of developing HCC two-to-three−-fold (El-Serag 
et al., 2004). Therefore, the presence of diabetes tremendously 
drives the progression of NAFLD to NASH, cirrhosis, and even 
HCC at the final stage. Many patients with NASH developing into 
HCC exhibit T2D and higher rates of metabolic disorders (such 
as obesity and hypertension) (Yasui et al., 2011; Aleksandrova et 
al., 2014). Given the fact that T2D is one of the main conditions 
closely associated with the progression of NAFLD to NASH, 
cirrhosis, and HCC, some researchers claim that NAFLD is an 
overlooked complication of diabetes (Arrese, 2010).

In patients with T2D, liver lipogenesis is elevated (Tian et al., 
2016; Linden et al., 2018), and fatty acid oxidation (Schmid et al., 
2011) and triglyceride secretion via very low-density lipoprotein 
(VLDL) are decreased (Kamagate and Dong, 2008). Moreover, 
peripheral insulin resistance increases fatty acid release from 
adipose tissue (Kim et al., 2017), and the hepatic uptake of fatty 
acids is also upregulated under the insulin resistance status 
(Miquilena-Colina et al., 2011). Thus, NAFLD often coexists 
with T2D. Initially, the mild liver fat accumulation is an adaptive 
response to metabolic stress against the lipotoxicity of free fatty 
acids (Donnelly et al., 2005). However, on the background of 
continuous hepatic free fatty acid influx, various inflammatory 
pathways are activated with the increasing hepatic intracellular 
triglycerides (Sharma et al., 2015). In NAFLD patients with 
T2DM, the progression of NAFLD to NASH, cirrhosis, and 
even HCC is then driven by multiple insults involving several 
mechanisms (Buzzetti et al., 2016) (Figure 1). The excessive 
hepatic FFA influx in T2D patients, such as palmitic acid, 
cholesterol, lysophosphatidylcholine, and ceramides, directly 
causes lipotoxicity and induces liver inflammation and fibrosis 
(Tomita et al., 2014; Marra and Svegliati-Baroni, 2018). The 
oxidation and metabolism of excessive FFAs in the liver further 
cause oxidative stress (Paradies et al., 2014) and endoplasmic 
reticulum (ER) stress (Muraki et al., 2017) that trigger 
hepatocellular damage and apoptosis. In addition, excessive 
FFAs in the liver, the release of inflammatory mediators from 
dysfunctional adipose tissue (such as MCP-1, IL-6, and TNFα) 
(DI Maira et al., 2018), and endotoxins derived from gut 
(Carnevale et al., 2017) in diabetic patients with NAFLD also 
activate hepatic Kupffer cells (Kazankov et al., 2019) and release 
liver inflammatory mediators (IL-1β,  TNFα, IL-6) to promote 
liver injury and inflammation (Yu et al., 2019). Hepatocellular 
injury further activates the apoptotic and necrotic hepatocyte 
death pathways (Luedde et al., 2014), and the persistence of this 

procedure ultimately leads to the activation of hepatic stellate 
cells, collagen deposition, and hepatic fibrosis (Wree et al., 2014). 
Recently, it has also been reported that insulin resistance can 
promote liver fibrosis through induction of lysyl oxidase-like 2 
(Loxl2), independent of hepatic stellate cell activity (Dongiovanni 
et al., 2017). At the same time, the insulin resistance, oxidative 
stress, ER stress, liver inflammation, and hepatocyte death can 
also initiate the hepatocellular regenerative mechanism through a 
series of growth factors and activate multiple oncogenic signaling 
pathways, such as PI3K/PTEN/Akt, JAK/STAT, NF-kB, mTOR, 
4HNE, and NRF-1, which further promote the development of 
HCC (Noureddin and Rinella, 2015) (Figure 1).

DISPROPORTIONATE DEVELOPMENT 
OF NAFLD AND T2D IN SPECIFIC GENE 
VARIANT CARRIERS

The first evidence for the development of NAFLD in the absence 
of glucose metabolism disorders was found in a mouse model 
with overexpression of diacylglycerol acyltransferase 2 (DGAT2), 
an enzyme catalyzing the final step of hepatic triglyceride 
biosynthesis from DAG (Monetti et al., 2007). These mice present 
obvious hepatic steatosis in the absence of any abnormalities in 
the plasma glucose and insulin resistance levels (Shen et al., 2015). 
Further, human studies have found that DGAT2 rs1944438 C > 
T variant carriers have a smaller reduction in liver fat than non-
carriers after a lifestyle intervention program, but their changes in 
insulin sensitivity are not different (Kantartzis et al., 2009). Later, 
it was recognized that NAFLD-related hepatic insulin resistance 
is caused by an increase in hepatic DAG content (Jornayvaz and 
Shulman, 2012). Therefore, individuals carrying the DGAT2 
gain-of-function gene variants are associated with an increased 
risk of NAFLD with disproportionately conserved insulin 
sensitivity. Moreover, animal studies showed that inhibiting 
secretion of VLDL from the liver by genetic modification resulted 
in liver steatosis with conserved insulin sensitivity (Jacobs et al., 
2010). Recent advances in GWAS have identified several gene 
variants that might contribute to the development of NAFLD in 
a proportion of patients with normal body mass index and a few 
features of metabolic syndromes, which include the gene variants 
in PNPLA3, TM6SF2, and MBOAT7 (Romeo et al., 2008; Anstee 
et al., 2011; Mancina et al., 2016).

The PNPLA3 gene variant is the first and strongest common 
variant that is associated with NAFLD (Romeo et al., 2008). The 
percentage of PNPLA3 gene variant carriers in the population 
varies from 25 to 70% in different ethnic groups (Romeo et al., 
2008; Wagenknecht et al., 2011). PNPLA3 rs738409 GG gene 
variant carriers have 73% more liver fat, a 3.2-fold higher risk 
of liver necro-inflammation (Sookoian and Pirola, 2011), and 
a 1.9-fold higher risk of cirrhosis than PNPLA3 wild-type CC 
genotype carriers (Shen et al., 2015). PNPLA3 rs738409 CG 
heterozygous genotype carriers show only a small increase 
in liver fat content, which is between that of PNPLA3 CC and 
GG genotype carriers (Romeo et al., 2008; Speliotes et al., 2010; 
Wagenknecht et al., 2011; Xia et al., 2016). PNPLA3 G allele is 
also associated with a 1.77-fold risk of HCC (Trépo et al., 2014). 
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However, the fasting or postload glucose and insulin levels do 
not differ between PNPLA3 gene variant carriers and non-
carriers (Petäjä and Yki-Järvinen, 2016), even when insulin 
resistance level was measured by a hyperinsulinemic euglycemic 
clamp (Kantartzis et al., 2009), although data from publicly 
available T2D GWAS database show a small increase in the risk 
of T2D in PNPLA3 gene variant carriers (Dongiovanni et al., 
2018). The PNPLA3 rs738409 C > G variant is also associated 
with reduced risk of cardiovascular disease and coronary heart 
disease-associated mortality (Meffert et al., 2017). Therefore, 
the PNPLA3 rs738409 C > G variant provides an example of 
a disproportionate progression of NAFLD and diabetes. It is 
now clear that PNPLA3 is located in lipid droplets (Chamoun 
et al., 2013), and it may interact with CGI-58 to interfere with 
adipose triglyceride lipase activity in the liver (Wang et al., 2019), 
as shown in Figure 2. In the PNPLA3 rs738409 C > G variant 
carriers, mutant PNPLA3 sequesters CGI-58, thus restricting its 
access to adipose triglyceride lipase and inhibiting the hydrolysis 
of stored lipids (Wang et al., 2019), which traps both triglyceride 
and DAG into cellular lipid droplets. It has also been reported 
that the profile of DAG species in PNPLA3I148M hepatocytes is 
different from that of PNPLA3wt hepatocytes (Ruhanen et al., 
2014), and an unaltered proportion of DAG (FA18:1) in PNPLA3 
rs738409 C > G variant carriers with fatty liver may correlate with 
their conserved insulin sensitivity (Huang et al., 2011; Franko 
et al., 2018). The subcellular localization and composition of DAG 
are important for its ability to mediate hepatic insulin resistance 
(Cantley et al., 2013; Jelenik et al., 2017). Therefore, PNPLA3 
rs738409 C > G variant carriers, with a shift of DAG distribution 
and composition, would present seemingly paradoxical severe 
liver steatosis and conserved insulin sensitivity. This mechanism 

is supported by the phenotype of CGI-58 knockdown mice 
(Cantley et al., 2013). The shift of liver lipid composition from 
saturated triglycerides to polyunsaturated triglycerides and a 
marked reduction in ceramides have been reported to contribute 
to preserved glucose metabolic status in PNPLA3 gene variant 
carriers (Luukkonen et al., 2016; Mitsche et al., 2018). Although 
the PNPLA3 gene variant is associated with a disproportionate 
development of NAFLD and diabetes, the presence of diabetes 
in the PNPLA3 gene variant carriers still can amplify the 
genetic effect to drive the progression of NAFLD (Mitsche et al., 
2018). Recent studies on the interaction between genetic 
and environmental factors on NAFLD show that adiposity or 
metabolic disorders can significantly amplify the effects of gene 
variants on NAFLD, from steatosis to hepatic inflammation and 
cirrhosis (Stender et al., 2017). In fact, the expression of PNPLA3 
is directly regulated by the insulin-regulated transcription 
factor sterol regulatory element-binding protein-1c (SREBP-1c), 
and pathogenic PNPLA3 mutant products accumulate under 
conditions of obesity and insulin resistance, thus exacerbating 
liver steatosis, inflammation, and cirrhosis (Huang et al., 2010).

The association between NAFLD and insulin resistance has 
been observed to be weakened in individuals with TM6SF2 
gene variants (Zhou et al., 2015). The frequency of the TM6SF2 
rs58542926 C > T gene variants has been reported to be 6.7% 
in Asians (Wang et al., 2015) and 7% in European populations 
(Kozlitina et al., 2014). The TM6SF2 gene variant is associated 
with increased risks of NAFLD, NASH, and advanced fibrosis 
independent of age, body mass index (BMI), presence of 
diabetes, and PNPLA3 genotype status (Liu et al., 2014; Sookoian 
et al., 2015). Insulin sensitivity, as determined by the homeostasis 
model assessment for insulin resistance (HOMA-IR) or an oral 

FIGURE 2 | Hepatic lipid metabolism under the condition of insulin resistance and the role of PNPLA3 and TM6SF2. Liver fat is derived from peripheral adipose 
tissue, de novo lipogenesis, and diet intake. In the state of insulin resistance, adipose triglyceride lipase (ATGL) is not fully inhibited by insulin, and free fatty acids are 
released continuously from the adipose to the liver. Hyperinsulinemia also induces the activity of sterol regulatory element-binding protein 1c (SREBP1c) and de novo 
liver lipid synthesis. The β-oxidation of fatty acid is reduced due to the inhibition of carnitine palmitoyl transferase-1 (CPT-1) by malonyl-coenzyme A generated from 
de novo lipogenesis. PNPLA3 interacts with CGI-58 to regulate the activity of ATGL and the hydrolysis of stored lipids. TM6SF2 functions to facilitate the assembly 
of very low-density lipoprotein (VLDL). However, mutant PNPLA3 constantly binds with CGI-58, inhibits liver ATGL, and causes liver steatosis and reduced release of 
insulin-resistance-inducing diacylglycerol (DAG) from lipid droplets. In addition, mutant TM6SF2 can inhibit the mobilization of neutral lipids and assembly of VLDL.
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glucose tolerance test, is not reduced in TM6SF2 gene variant 
carriers (Zhou et al., 2015), and serum triglyceride and LDL 
cholesterol concentrations are lower compared with non-carriers 
(Sliz et al., 2018). Although recent GWAS studies show that the 
TM6SF2 gene variant is associated with a small increase in the 
risk of diabetes in 452,244 individuals from 54 studies (OR 1.07 
[1.05−1.10], p = 4.8 × 10−12) (Mahajan et al., 2018), the TM6SF2 
gene variant has a much larger effect size on NAFLD (OR 2.13 
[1.36−3.30], p = 0.0009) than T2D (Pirola and Sookoian, 2015). 
The TM6SF2 gene variant is also associated with lower LDL 
cholesterol concentrations and a protection from cardiovascular 
disease (Liu et al., 2017). TM6SF2 is found to be located in the 
ER and Golgi complex and functions to mobilize neutral lipids 
for VLDL assembly, and the lipids accumulate in lipid droplets in 
its absence (Smagris et al., 2016) (Figure 2). Consistent with the 
animal models with inhibition of VLDL secretion, the TM6SF2 
gene variant carriers present liver steatosis with no disorders of 
glucose metabolism (Jacobs et al., 2010), which may be related 
to the deficiency of polyunsaturated phosphatidylcholines and 
excess polyunsaturated FFA in the liver of TM6SF2 gene variant 
carriers (Luukkonen et al., 2017).

Further evidence for NAFLD with a relative conservation 
of glucose metabolism can also be found in a small number 
of families with inherited gene mutations, such as familial 
hypobetalipoproteinemia (Amaro et al., 2010), lysosomal acid lipase 
deficiency (Reiner et al., 2014), adipose triglyceride lipase (ATGL) 
(Stefan et al., 2011), and gene mutations related to fatty acid oxidation 
(such as medium-chain acyl-CoA dehydrogenase deficiency and 
carnitine palmitoyl transferase-1) (Sun and Lazar, 2013).

FUTURE OF THE NAFLD TREATMENT: 
GENE-BASED PERSONALIZATION

For the majority of NAFLD patients, NAFLD and T2D/insulin 
resistance share common pathophysiological factors and coexist 
with each other, so several current therapies targeted at insulin 
resistance also demonstrate efficacy in treating NAFLD (Musso et 
al., 2012; Gao and Fan, 2013). Insulin sensitizers (such as metformin 
and thiazolidinediones) are one group of effective antidiabetic 
medication and have been proven to be effective in treating 
NAFLD in diabetic patients. Metformin is a first-line antidiabetic 
drug that improves both hepatic and peripheral insulin resistances. 
Although mounting evidence shows that metformin treatment 
does not consistently reduce fat content or inflammatory grades 
in NASH (Said and Akhter, 2017), its use in patients with T2D 
results in a 50% reduction in HCC incidence (Singh et al., 2013). 
Thiazolidinediones are peroxisome proliferator-activated receptor 
gamma (PPARγ) agonists and improve insulin resistance mainly 
by stimulating adipocyte differentiation (Phielix et al., 2011). 
Studies on the effect of pioglitazone show a reduction of liver 
aminotransferase level and an improvement on liver histological 
steatosis and inflammation in NAFLD patients with T2D (Cusi et 
al., 2016). Other novel treatments, such as glucagon-like peptide 1 
(GLP-1) receptor agonists (Armstrong et al., 2016) and bariatric 
surgery (Lassailly et al., 2015), also show promising results in 
decreasing body weight and insulin resistance and improving 

NAFLD histological changes, but their effects on NAFLD still 
need to be further demonstrated in more populations with longer 
treatment periods. In patients with concomitant NAFLD and T2D, 
reduction in liver fat content can also help them achieve better 
blood glucose control and improve the long-term response to 
lifestyle intervention (Schmid et al., 2017).

NAFLD patients with several specific gene variants feature 
NAFLD with a relative conservation of glucose metabolism, but 
there are still no formal recommendations for this type of NAFLD. 
Several preliminary clinical trials have indicated that NAFLD 
patients with specific gene variants respond differently to lifestyle and 
drug intervention. To take the PNPLA3 gene variant carriers as an 
example, a 6-day short-term hypocaloric low-carbohydrate diet led 
to a greater decrease in liver fat content in Finnish individuals with 
the PNPLA3 GG genotype than those with the PNPLA3 CC genotype 
(45% vs. 18%) (Sevastianova et  al., 2011). In a 12-month lifestyle 
intervention program with >10% body weight reduction, PNPLA3 
GG homozygotes showed a significantly greater reduction in liver 
fat content than PNPLA3 CG heterozygotes and CC homozygotes 
(Shen et al., 2015). In severely obese patients with NAFLD, the 
PNPLA3 G carriers had significantly greater improvement in hepatic 
steatosis 1 year after bariatric surgery with an average weight loss of 
40 kg (Krawczyk et al., 2016). However, the Wessex Evaluation of 
fatty Liver and Cardiovascular markers in NAFLD with OMacor 
thErapy (WELCOME) trial showed the opposite result that liver fat 
content was decreased due to DHA+EPA treatment only in PNPLA3 
CC and CG, but not GG genotype carriers (Scorletti et al., 2015). A 
recent EFFECT-II study investigated the effects of dapagliflozin and 
omega-3 carboxylic acid on liver steatosis and, interestingly, found 
that compared with PNPLA3 wild-type genotype carriers, PNPLA3 
gene variant carriers shower a smaller reduction in liver fat content 
in the dapagliflozin treatment group, similar liver fat reduction in 
the omega-3 carboxylic acid treatment group, and larger reduction 
in liver fat content in the combination treatment group (Eriksson 
et al., 2018). Many clinical trials are still ongoing to evaluate the 
difference among the NAFLD patients with different gene variants 
in their response to different NAFLD interventions. Although it 
is still an emerging new frontier to study gene variation and the 
efficacy of NAFLD treatment, all the current evidence indicates that 
a personalized treatment based on genetic classification is necessary.

CONCLUSION

It is clear that there is a complex bidirectional relationship between 
the progression of NAFLD and the development of T2D, and their 
interaction could result in an increase in both hepatic and diabetic 
mortalities in patients with concomitant NAFLD and T2D. For 
NAFLD patients with T2D, some currently available therapies 
targeting insulin resistance might be the best choice to improve 
both hepatic and metabolic outcomes. For NAFLD patients with 
specific gene variant and a disproportionate conservation of 
glucose metabolism, preliminary data indicate a different response 
to current NAFLD interventions. Therefore, more studies on the 
treatment of NAFLD in specific gene variant carriers are urgently 
needed, and a testing of NAFLD-related gene variants may be 
helpful to guide personalized treatment in the near future.
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