
Research Article
Jellyfish Search-Optimized Deep Learning for Compressive
Strength Prediction in Images of Ready-Mixed Concrete

Jui-Sheng Chou , Stela Tjandrakusuma, and Chi-Yun Liu

National Taiwan University of Science and Technology, Taipei, Taiwan

Correspondence should be addressed to Jui-Sheng Chou; jschou@mail.ntust.edu.tw

Received 9 April 2022; Accepted 7 June 2022; Published 1 August 2022

Academic Editor: Ripon Chakrabortty

Copyright © 2022 Jui-Sheng Chou et al. 'is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Most building structures that are built today are built from concrete, owing to its various favorable properties. Compressive
strength is one of the mechanical properties of concrete that is directly related to the safety of the structures. 'erefore, predicting
the compressive strength can facilitate the early planning of material quality management. A series of deep learning (DL) models
that suit computer vision tasks, namely the convolutional neural networks (CNNs), are used to predict the compressive strength of
ready-mixed concrete. To demonstrate the efficacy of computer vision-based prediction, its effectiveness using imaging numerical
data was compared with that of the deep neural networks (DNNs) technique that uses conventional numerical data. Various DL
prediction models were compared and the best ones were identified with the relevant concrete datasets. 'e best DL models were
then optimized by fine-tuning their hyperparameters using a newly developed bio-inspired metaheuristic algorithm, called
jellyfish search optimizer, to enhance the accuracy and reliability. Analytical experiments indicate that the computer vision-based
CNNs outperform the numerical data-based DNNs in all evaluation metrics except the training time. 'us, the bio-inspired
optimization of computer vision-based convolutional neural networks is potentially a promising approach to predict the
compressive strength of ready-mixed concrete.

1. Introduction

Structures like buildings, bridges, highways, and dams are
currently built using concrete as their construction material,
owing to its numerous advantages, such as strength, dura-
bility, and versatility. Its compression capacity, adaptability,
and resistance to climate-induced erosion and corrosion
make concrete one of the best construction materials.
Compressive strength is one of the principal mechanical
properties of concrete that is directly related to the safety of
the structures that are built from it. 'e compressive
strength of concrete must comply with relevant standard
codes, which vary among countries.

To determine the compressive strength of concrete, a
cubic or cylindrical sample is typically tested using a
compressive testing machine after the required curing time.
'ese tests are labor-intensive and time-consuming.
Methods such as regression methods and numerical simu-
lation have been proposed to solve this problem and to
predict the compressive strength of concrete. However, the

complex nonlinear correlation between relevant variables
makes the obtaining of accurate values of compressive
strength very difficult.

With the advances of artificial intelligence (AI) and
increases in computing power [1, 2], deep learning (DL) is
being applied in an increasing number of fields. DL, which is
a form of AI, has been shown to be effective in making more
accurate predictions than conventional methods in many
situations. One DL technique, computer vision, is often used
to extract information from visual media, such as images and
videos. Used in various fields, computer vision-based
technique is effective for image classification, object detec-
tion, and semantic segmentation.

Several studies of the prediction of concrete compressive
strength have involved the use of DL techniques [3] to
improve model performance, but few have involved image
recognition. 'e latest study of the use of image recognition
to determine compressive strength had good results, but it
used only 74 sets of concrete data and a single-layer con-
volutional neural network [4]. To examine and improve the

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 9541115, 26 pages
https://doi.org/10.1155/2022/9541115

mailto:jschou@mail.ntust.edu.tw
https://orcid.org/0000-0002-8372-9934
https://orcid.org/0000-0002-4168-4643
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9541115

effectiveness of image recognition, in this study, a large
dataset of ready-mixed concrete is used with convolutional
neural networks (CNNs) that involve a prediction model
with deep layers to extract high-level features from inputs.

Model accuracy is often evaluated with the use of a cross-
fold validation or random split method to partition the
source data for the testing of the training model [5]. Such
methods are often called into question as overfitting occurs
owing to the information leakage within the original dataset
in the training process. 'erefore, when putting the model
into practice, it often shows a relatively poor forecast per-
formance. Because the concrete data are accumulated over
time in ready-mixed plants, the built model should be tested
via a latest dataset to reflect its reasonable prediction ac-
curacy in future use.

In this investigation, the effectiveness of the computer
vision-based approach in predicting the compressive
strength of ready-mixed concrete by converting numerical
data to images is tested. In much research, the prediction of
the compressive strength of concrete uses numerical data as
inputs. 'e results thus obtained using those computer
vision-based techniques are compared with those obtained
using numerical data. With this logic, a collection of nu-
merical values that are represented as images are the inputs
to a DL technique that uses CNN-based models, which have
been shown to provide accurate image classification in the
domain of computer vision.

'e effectiveness of the computer vision-based technique
was tested by comparing the results with those of another DL
technique that uses deep neural networks (DNNs) with
numerical data for model construction. To maximize the
accuracy, a metaheuristic optimization algorithm was used
to finetune the hyperparameters of the best DL models.
Instead of using the cross-fold validation or random split
method within the original dataset, a newly collected dataset
in the upcoming year was used for the testing of the training
model. 'is approach meets the practical needs and oper-
ations in estimating compressive strength at ready-mixed
concrete plants.

'is paper is organized as follows. Section 2 reviews the
relevant literature. Section 3 describes the methodology and
performance metrics that are used herein. Section 4 presents
the collection and preprocessing of data, implementation of
the DL models, the experimental results obtained using the
optimized DL models, and sensitivity analysis of modeling
performance. 'e final section summarizes the findings and
limitations of the method and makes recommendations for
future studies.

2. Literature Review

2.1. Conventional Compressive Strength Prediction of Ready-
Mixed Concrete. Ready-mixed concrete is typically manu-
factured in a concrete plant before being transported to a
construction site. In a concrete plant, ready-mixed concrete
is manufactured by combining several raw materials with a
specific design mix ratio to create concrete with certain
desirable properties. Figure 1 presents the manufacturing
process of ready-mixed concrete.

'e compressive strength of concrete is commonly
tested using a compression test machine, which performs a
mechanical test to measure the maximum compressive load
that can be borne by a concrete sample [6]. Before testing,
the sample must be cured for a specified curing period. Non-
destructive tests (such as ultrasonic or pulse velocity tests [7]
and conductivity tests [8]) have also been proposed to de-
termine the compressive strength due to the lack of cor-
relation between the standard compression test value with
the real strength of concrete in a structure. 'ese tests,
however, have disadvantages with respect to time, cost, and
labor.

Owing to the disadvantages of mechanical tests, em-
pirical models [9, 10] for calculating the compressive
strength of concrete have been developed. Empirical
methods (e.g., multiple linear regression), however, have
been shown to be somewhat ineffective for calculating the
compressive strength of concrete because of the nonlinear
behavior in relevant concrete variables. 'e compressive
strength of concrete is influenced by numerous factors, as it
is formed by complex reactions among concrete materials
(such as cement and aggregates) and the environment (as in
curing) [11].

2.2. Deep Learning to Determine Concrete Compressive
Strength. In recent years, the field of artificial intelligence
(AI) has grown very rapidly. AI methods are used in a wide
variety of fields, including seismology [12], energy systems
[13], and civil engineering [14]. In several studies, AI has
been used to determine the concrete compressive strength,
using real data for concrete to build a prediction model.
During the training of the prediction model, various
composite materials of concrete, such as cement, water,
sand, and gravel, are used as predictors to yield a model that
best fits the given training data. After validation, the model is
then used to predict the compressive strength.

An advanced branch of AI, deep learning (DL), has
performed excellently in fields such as computer vision [15].
Many studies [16–18] have shown that DL exhibits out-
standing prediction performance, especially in image and
video recognition. In this field, the commonly used DL
techniques include those based on convolutional neural
networks (CNNs) [19]. A recent study confirmed that the
CNN model (Visual Geometry Group, VGG) achieved a
98% accuracy in concrete compressive strength prediction,
which was 2% and 12% greater than the machine learning
models, random forest (RF) and support vector regression
(SVR), respectively [20].

2.3. Hyperparameter Optimization with Metaheuristic
Algorithm. In the training of the DL models, additional
optimizers are often required, as the models have several
hyperparameters (such as the epsilon of batch normaliza-
tion, batch size, epoch, learning rate, and dropout rate) that
influence their predictive performance [21, 22]. To find the
values of hyperparameters that yield the best prediction
model, optimization algorithms (such as the greedy algo-
rithm [23]) that are based on iterative methods (such as

2 Computational Intelligence and Neuroscience

gradient descent [24]) or heuristic methods [25] are often
used. However, such methods may not always lead to the
optimal solution and consume a significant computational
time compared to modern metaheuristic algorithms.

'e metaheuristic algorithm, with its ease of imple-
mentation and effectiveness in various fields, is becoming
increasingly popular for use in solving optimization prob-
lems. Recently, several newly developed metaheuristic op-
timizers have outperformed the well-known metaheuristic
algorithms [26, 27]. 'e Jellyfish Search (JS) algorithm [27],
in particular, has great efficacy because it requires little
tuning of algorithm-specific parameters. Consequently, the
JS algorithm was used in this study to optimize the DL
models.

3. Methodology

3.1. Deep Learning and Computer Vision-Based Techniques

3.1.1. Deep Neural Networks. Artificial neural networks
(ANNs) consist of information processing units that are
arranged in layers similar to neurons in the human brain. An
ANN typically comprises layers of three types: an input

layer, hidden layers, and an output layer. 'e architecture
that is used in a deep learning model typically consists of
more than four hidden layers. Figure 2 displays a simple
ANN model architecture.

1. In a concrete plant, aggregates are
unloaded into aggregate feed bins.

Dump truck Aggregate feed bins

3. All raw materials,
such as cements,
water, aggregates,

and admixture, are
transported into the

mixing station.

4. In the control room,
an operator controls and
monitors the formulation

of concrete mixtures.

5. �e mixtures are then
discharged and loaded into a

concrete mixer truck.

Concrete mixer truckCement silo

6. Before leaving the concrete plant, samples are taken
for tests, such as compressive strength test, slump test,

and chloride ion detection test.
Compressive
strength test Slump test Chloride ion test

Mixing station

2. The aggregates are screened to specific
gradations and transported to the towers.

Figure 1: Ready-mixed concrete manufacturing process.

Input layer

Input

Input

Input

…

…

Hidden layer Output layer

Output

Figure 2: Simple ANN model architecture.

Computational Intelligence and Neuroscience 3

An input layer receives data and an output layer gen-
erates a prediction. In the hidden layers, inputs are processed
and the information that is obtained from the processes is
passed to the next layer. Values from the input layer are
transformed bymultiplying them by weights and adding bias
values.

Several types of ANN vary in implementation. A fully
connected neural network is an ANN that consists of
connected neurons. In such an ANN, all neurons in a layer
are connected to the neurons in the next layer. Likewise,
standard feedforward neural networks (FNNs) consist of
numerous connected neurons, and each connection trans-
mits information to other neurons in one forward direction
[28].

Notably, internal hyperparameters affect the learning of
an ANN model. A hyperparameter is a constant parameter
that is set before the training begins. Some examples of
hyperparameters in ANNs are the number of hidden layers,
learning rate, batch size, and epoch. In contrast, parameters
such as weights and bias values change throughout the
learning process.

A deep neural network (DNN) is a neural network that
differs from a typical ANN with respect to architecture.
DNNs havemultiple hidden layers (Figure 3) that are used to
extract high-level features from the input data. Additional
layers typically correspond to additional parameters (such as
weights and biases) in a model. Accordingly, DNNs can
capture complex nonlinear relationships [28].

3.1.2. Convolutional Neural Network-Based Models. A
convolutional neural network (CNN or ConvNet) is a
connected neural network that is generally effective for
solving computer vision problems, such as image feature
extraction, classification, object detection, and semantic
segmentation. A CNN commonly learns patterns by pro-
cessing image or video data. It can detect objects, identify the
locations of the objects, and differentiate or segment them
inside an image.

A generic CNN usually comprises an input layer,
multiple hidden layers, which include convolutional layers,
pooling layers, fully connected layers, and dropout layers,
and an output layer (Figure 4). In the input layer, the model

receives images as inputs and creates input tensors that
contain the pixel values of the images. Input matrixes of
dimensions w × h× c are then fed to the hidden layer, where
w represents the width of the image, h represents the height
of the image, and c represents the number of channels. A
standard colored image typically has three channels for red,
green, and blue.

'e convolutional layer in the CNNmodel processes the
previous matrixes into smaller forms without losing any

Input layer Output layer

Output

Input

Input

Input
…

… … … …

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Hidden
layer n

…

Figure 3: Deep neural network (DNN) model architecture.

Image data
Input

Convolution +
Activation

Convolution +
Activation

Fully
connected
+ dropout

…

…

…

Output

Pooling

Flatten

Figure 4: Generic convolutional neural network (CNN) model
architecture.

4 Computational Intelligence and Neuroscience

feature by generating weight values of a filter or kernel of a
certain size (m×m) and then multiplying the filter (n× n) by
the input matrixes. Convolution operation is defined as
follows [29]:

C � I⊗F. (1)

Here, I is the input image data; F is the filter; ⊗ denotes the
convolution operation; C is the convolution map of size
(o× o), in which o� m − n + 2zp/s+ 1; s is the stride and
denotes the number of pixels by which F is sliding over I; and
zp is the zero padding. Usually, it is necessary to add a
bounding of zeros around I to preserve complete image
information. 'e values thus obtained are summed (Fig-
ure 5). Sliding over all parts of input matrixes, the con-
volutional layer generates, as an output, a new featuremap of
certain features in the image.

After the multiplication processes, a CNN model typi-
cally applies an activation function that introduces non-
linearity to the model to help it learn complex patterns in the
data. A general form of activation function is defined as
follows:

Cm � f(C). (2)

Cm is the convolution map after applying the nonlinear
activation function f. Of the many available activation
functions, the rectified linear unit (ReLU) is commonly used,
as it provides better training results than other activation
functions [30]. A ReLU function is a simple calculation that
returns the original input values or sets the value to zero if
the input is less than or equal to zero (Figure 5).

'e pooling layer in the model reduces the size of the
input matrixes by reducing the number of parameters and

the amount of computation in the network, preventing
overfitting. Similar to a convolutional layer, a pooling layer
takes several input values inside a filter from the previous
layer and the filter is shifted over some pixels at a time until
all parts of the input matrix are processed. Common pooling
layer types are average pooling or max pooling (Figure 6).
'e pooling operation also called downsampling operation
is expressed as follows:

Pm � Po Cm(􏼁, (3)

where Pm is the poolingmap and Po is the pooling operation.
After the operation of several convolutional layers and

pooling layers, a CNN model typically flattens the output
matrix of the previous layer into a single vector of values.'e
single vector of values is input to a fully connected layer to
extract the features that were learned in the previous layers
and to classify the input images. In this layer, the proba-
bilities that an object in the input image is a member of the
possible classes are calculated. 'e model output of the ith
fully connected hidden layer is expressed as follows [29]:

Y
i

� f H
i

􏼐 􏼑, (4)

where the weight sum vector Hi is

H
i

� w
i
Y

i−1
+ B

i
. (5)

w is the connected weight of the artificial neurons. f is a
nonlinear activation function (e.g., sigmoid, Tanh, ReLU,
etc.). 'e bias value Bi defines the activation level of the
artificial neurons.

In neural networks, when the parameters of a layer
change, so do the distribution of inputs to subsequent layers.

0.1

0.4
0

0.7 0.9

0.8 0.6 0.9

0.1×0.0+0.2×0.1+0.8×0.3+
0.2×0.1+0.4×0.5+0.7×0.4+
0.1×0.3+0.5×0.1+0.6×0.1 = 0.9

0.5 0.5 0.8

0.2 0.1 0.2
×0 ×0.1 ×0.3

×0.1 ×0.5 ×0.4

×0.3 ×0.1 ×0.1

0.8

0.5 0.1 0.2 0.4 0.7

0.2 1.0 0.1 0.5 0.6

0.4 0.2 0.3 0.2 0.4

0.1 0.0 0.8

Input Output

=

0
yf(y) = 0

f(y) = yf(y)

Filter

Convolution Activation function (ReLU)

0.1 0.3

0.1 0.3

0.1 0.5 0.4

0.3 0.1 0.1

Figure 5: Convolutional layer multiplication process and plot of ReLU.

Max pooling

0.1 0.4 0.3 0.9

0.1 0.2 0.1 0.7

0.1 0.0 0.5 0.6

0.1 0.2 0.6 0.7

0.4 0.9

0.2 0.7

Average pooling

0.1 0.4 0.3 0.9

0.1 0.2 0.1 0.7

0.1 0.0 0.5 0.6

0.1 0.2 0.6 0.7

0.2 0.5

0.1 0.6

Figure 6: Example of max pooling and average pooling.

Computational Intelligence and Neuroscience 5

'ese shifts in input distributions can be problematic for
neural networks. To alleviate this concern, many normali-
zation operations, such as Batch Normalization (BN), Layer
Normalization (LN), and Instance Normalization (IN), have
been proposed. For example, given an input batch of height
h and width w with n samples and c channels x ∈Rn×c×h×w ,
BN normalizes the mean and standard deviation for each
individual feature channel during training [31].

BN(x) � c
x − μB

σB

􏼠 􏼡 + β, (6)

where c, β ∈ Rc are referred to as the scale and the shift
parameters for the channel; μB, σB ∈ Rc are the mean and
standard deviation, respectively, computed across batch size
and spatial dimensions independently for each feature
channel.

Adding a dropout layer is an effective regularization
technique to improve the generalization capability and
mitigate overfitting of models. Dropout function can be
formulated as follows [32]:

􏽥f
l

xi(􏼁 � f
l

xi(􏼁 − m
l
i ∗f

l
xi(􏼁, (7)

where ∗ denotes the element-wise product and fl(xi) and
􏽥f

l
(xi) are the original feature and distorted features, re-

spectively. In addition, ∈ ml
i 0, 1{ }dl

is the binary mask ap-
plied on feature map fl(xi) in which dl is the dimension of
the feature map of l-th layer, and each element inml

i is drawn
from Bernoulli distribution and set to 1 with the dropping
probability. Undoubtedly, implementing dropout on the
features in the training phase will force the given network
paying more attention on those non-zero regions, and
partially solve the overfitting.

In this decade, various CNN models and their advanced
variants have been developed. Some common and popular
CNN models are VGG [33], residual neural networks
(ResNets) [34, 35], Inception [36, 37], extreme inception
(Xception) [38], MobileNet [39, 40], DenseNet [41], NASNet
[42], and EfficientNet [43]. 'ese CNN-oriented models
have different architectures, which are briefly introduced as
follows:

(1) VGG. VGG [33] uses a very small kernel (3× 3) rather
than one of a previously common size, 5× 5 or 7× 7, which
would have a wider scanning area. 'e small kernel is used
uniformly throughout all layers. Although the overall ar-
chitecture is simple, the VGG has an enormous number of
parameters. Figure 7 displays the architectures of two
common VGG models, VGG16 and VGG19, which com-
prise 16 and 19 deep layers, respectively. In the figure, the
convolutional layer is denoted as “<kernel size> Conv,
<filter>.”

(2) ResNet. Increasing the depth of a CNN by adding layers
to its architecture up to a certain limit should help the
corresponding CNN model to learn more complex features,
but a vanishing gradient problem typically prevents the
effective training of a CNN model in many-layered

networks. A vanishing gradient problem can prevent the
weights in the network from being updated, potentially
stopping the training of the CNN model. To solve this
problem in residual neural networks (ResNets), the network
implements “residual connections” or “skip connections.”

Max pooling

Max pooling

Max pooling

Max pooling

Max pooling

Input

3×3 conv, 64

3×3 conv, 64

1

2

3×3 conv, 128

3×3 conv, 128

3

4

3×3 conv, 256

3×3 conv, 256

5

6

7 3×3 conv, 256

3×3 conv, 512

3×3 conv, 512

8

9

10 3×3 conv, 512

3×3 conv, 512

3×3 conv, 512

11

12

13 3×3 conv, 512

Fully connected,
4096

Fully connected,
4096

14

15

16 Fully connected,
1000

Output

VGG16

Fully connected,
4096

Fully connected,
4096

17

18

19 Fully connected,
1000

Output

VGG19

Max pooling

Max pooling

Max pooling

Input

3×3 conv, 64

3×3 conv, 64

1

2

3×3 conv, 128

3×3 conv, 128

3

4

3×3 conv, 256

3×3 conv, 256

5

6

7

8

3×3 conv, 256

3×3 conv, 256

Max pooling

3×3 conv, 512

3×3 conv, 512

9

10

11

12

3×3 conv, 512

3×3 conv, 512

Max pooling

3×3 conv, 512

3×3 conv, 512

13

14

15

16

3×3 conv, 512

3×3 conv, 512

Figure 7: VGG16 and VGG19 models’ architectures.

6 Computational Intelligence and Neuroscience

Input, x1

Output, x1+1

Original ResNet

Convolutional
Block

Residual
connection

Convolutional layer
+ ReLU

ReLU

Convolutional layer

Input, x1

ResNet v2

Convolutional
Block

Residual
connection

ReLU +
Convolutional layer

Output, x1+1

ReLU +
Convolutional layer

Figure 8: Residual connection.

Input

7×7 conv, 64

1×1 conv, 64
3×3 conv, 64

1×1 conv, 256

Max pooling

Average pooling

Fully connected
1000

Output

ResNet50

×3

1×1 conv, 128
3×3 conv, 128
1×1 conv, 512

×4

1×1 conv, 256
3×3 conv, 256

1×1 conv, 1024
×6

1×1 conv, 512
3×3 conv, 512

1×1 conv, 2048
×3

Input

7×7 conv, 64

1×1 conv, 64
3×3 conv, 64

1×1 conv, 256

Max pooling

Average pooling

Fully connected
1000

Output

ResNet101

×3

1×1 conv, 128
3×3 conv, 128
1×1 conv, 512

×4

1×1 conv, 256
3×3 conv, 256

1×1 conv, 1024
×23

1×1 conv, 512
3×3 conv, 512

1×1 conv, 2048
×3

Input

7×7 conv, 64

1×1 conv, 64
3×3 conv, 64

1×1 conv, 256

Max pooling

Average pooling

Fully connected
1000

Output

ResNet152

×3

1×1 conv, 128
3×3 conv, 128
1×1 conv, 512

×4

1×1 conv, 256
3×3 conv, 256

1×1 conv, 1024
×36

1×1 conv, 512
3×3 conv, 512

1×1 conv, 2048
×3

Figure 9: ResNet model architecture.

Computational Intelligence and Neuroscience 7

A residual connection refers to a shortcut connection
that is added inside a CNN architecture to allow information
to be passed or added through layers of the convolutional

block (Figure 8). In the original ResNet, a shortcut con-
nection is added before the activation function is imple-
mented, while in ResNet v2 [34], activation functions are

3×3 conv

Input

3×3 conv

3×3 conv

Max pooling

1×1 conv

1×1 conv

×3

×10

×20

×10

×5

×2

Average
pooling

1×1 conv

Concat

1×1 conv

3×3 conv

1×1 conv

3×3 conv

3×3 conv

3×3 conv

Max poolingInception 1

Max
pooling

Concat

1×1 conv3×3 conv

3×3 conv

3×3 conv

Redction 1

Redction 2

3×3 conv

Input

3×3 conv

3×3 conv

Max pooling

1×1 conv

1×1 conv Average
pooling

1×1 conv

1×1 conv 1×1 conv

1×1 conv

3×3 convMax
pooling

Concat

Concat

3×3 conv

1×1 conv

3×3 conv

3×3 conv

1×1 conv

3×3 conv

3×3 conv

Concat

1×1 conv

5×5 conv

1×1 conv

3×3 conv

3×3 conv

3×3 conv

Max pooling
Inception A

Inception -ResNet A

Inception -ResNet B

Inception -ResNet C

Reduction A

Reduction B

Max
pooling

Max
pooling

Concat

1×1 conv3×3 conv

3×3 conv 1×7 conv

7×1 conv

3×3 conv

1×1 conv

1×3 conv 3×1 conv 1×3 conv 3×1 conv

1×1 conv 1×1 conv

3×3 conv

Average
pooling

1×1 conv

Inception 3

Concat

Average pooling

Fully connected

Output

Inception-v3

1×1 conv 1×1 conv

1×7 conv

Average
pooling

1×1 conv

7×1 conv

Concat

1×1 conv

1×7 conv

7×1 conv

1×7 conv

7×1 conv

Inception 2

Average pooling

Fully connected

Output

Inception-ResNet-v2

1×1 conv

1×1 conv

1×1 conv

3×3 conv

1×1 conv

3×3 conv

1×1 conv

1×1 conv

1×1 conv

3×3 conv

3×3 conv

1×1 conv

1×3 conv

3×1 conv

Concat

Concat

Concat

1×1 conv

1×7 conv

7×1 conv

Figure 10: Inception-v3 and Inception-ResNet-v2 models’ architectures.

8 Computational Intelligence and Neuroscience

implemented before the convolutional layer and the shortcut
connection is added after. Figure 9 presents the architectures
of ResNet50, ResNet101, and ResNet152, which comprise 50,
101, and 152 deep layers, respectively.

(3) Inception. Inception architecture [36] is the first CNN
model architecture that exhibits the advantages of branching
a convolutional path into multiple paths. In Inception, the
CNN model uses filters of various sizes in various paths. At
the end of the block, the model concatenates the outputs of

the paths. In Inception-v3 [36], the Inception model is
improved by changing the original 5× 5 and 7× 7 convo-
lution kernels to two 3× 3 and three 3× 3 convolutional
kernels, respectively. 'ese changes in the architecture help
the model reduce the amount of computation that is re-
quired during the training process.

Input

3×3 conv

1×1 conv

Add

3×3 convConvolution Block 1

Convolution Block 2

Convolution Block 3

3×3 conv sep

×3

×8

3×3 conv sep

Max pooling

3×3 conv sep

3×3 conv sep

3×3 conv sep

Add

1×1 conv

Add

3×3 conv sep

3×3 conv sep

Average pooling

Fully connected

Output

3×3 conv sep

3×3 conv sep

Max pooling

Figure 11: Xception model architecture.

Input

3×3 conv, 32

Input

3×3 conv, 32

1×1 conv, 1×32
3×3 conv sep, 1×32

1×1 conv, 16

1×1 conv, 6×16
3×3 conv sep, 6×16

1×1 conv, 24

1×1 conv, 6×24
3×3 conv sep, 6×24

1×1 conv, 24

1×1 conv, 6×24
3×3 conv sep, 6×24

1×1 conv, 32

1×1 conv, 6×32
3×3 conv sep, 6×32

1×1 conv, 32

1×1 conv, 6×32
3×3 conv sep, 6×32

1×1 conv, 64

1×1 conv, 6×64
3×3 conv sep, 6×64

1×1 conv, 64

3×3 conv sep, 32

1×1 conv, 64

3×3 conv sep, 64

1×1 conv, 128

3×3 conv sep, 128

1×1 conv, 128

3×3 conv sep, 128

1×1 conv, 256

3×3 conv sep, 256

1×1 conv, 256

3×3 conv sep, 256

1×1 conv, 512

3×3 conv sep, 512

1×1 conv, 512

3×3 conv sep, 512

1×1 conv, 512

3×3 conv sep, 512

1×1 conv, 512

3×3 conv sep, 512

1×1 conv, 512

3×3 conv sep, 512

1×1 conv, 512

3×3 conv sep, 512

1×1 conv, 1024

3×3 conv sep, 1024

1×1 conv, 1024

Average pooling

Fully connected, 1000

Output

MobileNet

1×1 conv, 1280

Average pooling

Fully connected, 1000

Output

MobileNetV2

1×1 conv, 6×64
3×3 conv sep, 6×64

1×1 conv, 96

1×1 conv, 6×160
3×3 conv sep, 6×160

1×1 conv, 320

1×1 conv, 6×96
3×3 conv sep, 6×96

1×1 conv, 96

1×1 conv, 6×96
3×3 conv sep, 6×96

1×1 conv, 160

1×1 conv, 6×160
3×3 conv sep, 6×160

1×1 conv, 160

Figure 12: MobileNet and MobileNetV2 models’ architectures.

Computational Intelligence and Neuroscience 9

In Inception-ResNet-v1 [37] and Inception-ResNet-v2
[37], the original inception blocks are converted into re-
sidual inception blocks. 'e Inception-ResNet-v2 model
differs from the Inception-ResNet-v1 model in that it is
more computationally burdensome. However, it outper-
forms the original Inception and ResNet models. Figure 10
displays the Inception-v3 and Inception-ResNet-v2 models’
architectures.

(4) Xception. 'e Xception (or Extreme Inception) [38]
architecture (Figure 11) is inspired by the Inception model.
In Xception, the original inception blocks are replaced by

depthwise separable convolutions. A depthwise separable
convolution consists of a depthwise convolution and a 1× 1
convolution. A depthwise convolution is a spatial convo-
lution that performs convolutional multiplications inde-
pendently over each channel. In depthwise convolution, a
convolutional kernel only iterates one channel of the input,
not all channels.

(5) MobileNets. MobileNets [39] refer to a type of CNN
model whose objectives are to reduce the number of pa-
rameters and the number of computations while main-
taining accuracy. Accordingly, MobileNets use depthwise

Input

7×7 Conv, 64

Max Pooling

Dense Block 1

Dense
Block

Convolutional
Block

Transition
Block

Transition
Block

Transition
Block

1×1 Conv,
1×1 Conv,

×R

Average Pooling

input channel
× reduction 4×growth rate

1×1 Conv, input channel
× reduction

1×1 Conv, input channel
× reduction

Dense Block 2

Average Pooling

Dense Block 3

Average Pooling

Dense Block 4

Average Pooling

Fully Connected, 1000

Output

3×3 Conv,

Concat

growth rate

Figure 13: DenseNet model architecture.

10 Computational Intelligence and Neuroscience

separable convolutions. 'ey are typically used in mobile
devices or embedded applications, and so have a small ar-
chitecture. In MobileNets, width multiplier and resolution
multiplier hyperparameters are implemented to thin the
network and to rescale the input image, respectively.

Similar to the original MobileNet, MobileNetV2 [40] is
built for mobile devices. In MobileNetV2, an inverted re-
sidual structure, which consists of linear bottleneck layers, is
used. An inverted residual structure expands a low-di-
mensional feature map to a high-dimensional one, uses

Search space Search strategy:
RNN controller

Performance
estimation

Return performance measures of A
to update the controller

Pick architecture A from search space

Figure 14: Neural architecture search method.

3×3 conv

1×1 conv
×2

×4

×4

×4

Reduction cell

Reduction cell

Reduction cell

Normal cell

Normal cell

Normal cell

Average pooling

Fully connected, 1000

Output

NASNet mobile

Input Reduction cell

Normal cell

Max pooling Max pooling Average
pooling

Average
pooling

7×7 conv sep

7×7 conv sep

3×3 conv sep

3×3 conv sep

7×7 conv sep

7×7 conv sep

5×5 conv sep

5×5 conv sep

5×5 conv sep

5×5 conv sep

Add

Add Add

Concat

1×1 conv

3×3 conv sep

Add

Add Add

3×3 conv sep

3×3 conv sep

3×3 conv sep

3×3 conv sep

3×3 conv sep

5×5 conv sep

5×5 conv sep

5×5 conv sep Average
pooling

Average
pooling

Average
pooling

5×5 conv sep

Add

Concat

Add Add Add

Figure 15: NASNet-A mobile model architecture.

Computational Intelligence and Neuroscience 11

depthwise convolutions, and projects back features to a low-
dimensional representation using a linear convolution.
MobileNetV2 has fewer parameters than the original
MobileNet. Figure 12 displays the original MobileNet and
MobileNetV2 architectures.

(6) DenseNet. 'e main intent of a dense convolutional
network (DenseNet) [41] is to use short connections be-
tween layers by connecting the network layers to every other
layer in the forward direction. 'erefore, the inputs of each
network layer include the feature maps of all preceding
layers. 'is approach has been shown to improve the ac-
curacy of a CNN. Figure 13 displays the DenseNet
architecture.

(7) NASNet. 'e neural architecture search network
(NASNet) [42] is used to solve the problem of finding a good
CNN architecture by finding a neural network architecture
or the best combination of parameters in a CNN with a
recurrent neural network (RNN) acting as a controller.
Figure 14 presents the neural architecture search method
that is used in a NASNet model. Figure 15 displays one of the
model architectures, NASNet-A, for the mobile version,
which is found using the neural architecture search method.

(8) EfficientNet. EfficientNet is a type of CNN model that
uniformly scales all depth, width, and resolution dimensions
using a compound scaling coefficient. A total of eight CNN
models are developed based on this idea. 'e models are
named EfficientNets followed by B0, B1, B2, B3, B4, B5, B6,
and B7. 'e EfficientNet architecture includes a total of
seven network blocks (Figure 16). 'e number of subblocks
inside varies with the EfficientNet models that are used [43].

3.2. Metaheuristic Optimization Algorithm: Jellyfish Search
Optimizer. One of the challenges that is associated with the
deep learning models is the finding of optimal hyper-
parameters. To solve this hyperparameter optimization
problem, a metaheuristic optimization algorithm is fre-
quently used. Considerable research has been done on the
development of metaheuristic algorithms, and some of them
have become well known for their effectiveness in solving
optimization problems [44–46]. 'e metaheuristic algo-
rithms primarily vary in the balance between their two main
phases—exploration and exploitation [47].

A newly developed metaheuristic optimization algo-
rithm, the Jellyfish Search (JS) optimizer [27], has consid-
erably outperformed many other well-known metaheuristic
optimization algorithms and it requires less algorithm-
specific parameter tuning than some well-known meta-
heuristic algorithms. 'e optimizer requires the setting of
only two controlling parameters, which are the number of
iterations and population size. In a JS optimizer, the pop-
ulation of jellyfish is initialized using a logistic map, which
generates varying initial populations.

Since the optimization algorithm is inspired by the
behavior of jellyfish as they search for food in the ocean, the

objective function of the JS optimizer is the location of
jellyfish where it has the most food. In a JS optimizer, the
exploration phase involves the movement of jellyfish as they
follow ocean currents in search of food, while the exploi-
tation phase involves the passive and active motions of the
jellyfish inside a jellyfish swarm. Figure 17 presents the six
phases of jellyfish in the ocean [27], including phase 1:
jellyfish in the ocean; phase 2: following the ocean current;
phases 3–5: passive and active motions inside the jellyfish
swarm that are switched to each other according to a time
control mechanism; and phase 6: reach the jellyfish bloom.

Input

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Pooling

Fully connected

Output

EfficientNet
Block of

EfficientNetB0

3×3 conv

3×3 MBConv1

Block 1

Width
scaling

1×1 conv Width
scaling

3×3 MBConv6

Block 7

3×3 MBConv6

Block 2

3×3 MBConv6

5×5 MBConv6

Block 3

5×5 MBConv6

3×3 MBConv6

Block 4

3×3 MBConv6

3×3 MBConv6

5×5 MBConv6

Block 5

5×5 MBConv6

5×5 MBConv6

5×5 MBConv6

Block 6

5×5 MBConv6

5×5 MBConv6

5×5 MBConv6

Figure 16: Efficientnet model architecture.

12 Computational Intelligence and Neuroscience

3.2.1. Movement Following Ocean Current. Ocean currents
carry a large amount of food, attracting jellyfish to them, and
thus jellyfish follow them.'e following equation represents
the direction of the ocean current, (trend

�����→
), and the new

location of a jellyfish after it moves, Xi(t + 1) [27].

trend
�����→

� X
∗

− 3 × rand(0, 1) × μ,

Xi(t + 1) � Xi(t) + rand(0, 1) × trend
�����→

.

(8)

Here, X∗ is the jellyfish at the best location, μ is the average
location of all jellyfish, Xi(t) are the current locations of the
jellyfish at time t, and Xi(t + 1) are the updated locations of
the jellyfish at time (t+1).

3.2.2. Motions Inside Jellyfish Swarm. 'e motions of jel-
lyfish in a swarm can be grouped into passive motion (type
A) and active motion (type B). Passive motion signifies a
movement of a jellyfish around its original position, and
active motion signifies its movement to another position.
Initially, most jellyfish exhibit type A motion, but after some
time, more jellyfish exhibit type B motion [27]. 'e new
location of a jellyfish that exhibits A motion is formulated as
follows:

Xi(t + 1) � Xi(t) + 0.1 × rand(0, 1) ×(Ub − Lb), (9)

where rand(0, 1) is a random number between 0 and 1, Ub is
the upper bound on the search space, and Lb is the lower
bound on the search space.

For type B motion, one other jellyfish, Xj, is randomly
selected for use in determining the new location of the
jellyfish of interest, Xi. If the amount of food at the location
of Xj exceeds that at the location of Xi, then Xi will move
toward Xj. Otherwise, Xi will move away from Xj. 'e
direction of type B motion (Direction

����������→
) and the updated

jellyfish location are given by the following equations for
minimization problems:

Direction
����������→

�
Xj(t) − Xi(t), if f Xi(􏼁≥f Xj􏼐 􏼑,

Xi(t) − Xj(t), if f Xi(􏼁<f Xj􏼐 􏼑,

⎧⎪⎨

⎪⎩

Xi(t + 1) � Xi(t) + rand(0, 1) × Direction
����������→

,

(10)

where f(Xi) and f(Xj) denote the objective functions at
locations Xi and Xj, respectively.

3.2.3. Time Control Mechanism. A time control mechanism
in a JS optimizer determines the type of jellyfish motion and
controls the switching between the phases of the JS optimizer
(following an ocean current and moving inside a jellyfish
swarm). 'e equation below provides the time control
function, c(t).

Jellyfish bloom Jellyfish in ocean

Ocean currentActive motions

Passive motions Swarm

34

5 2

6 1

Figure 17: Phases of the jellyfish search algorithm.

Computational Intelligence and Neuroscience 13

c(t) � 1 −
t

Maxiter

􏼠 􏼡 ×(2 × rand(0, 1) − 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (11)

Here, t is the time specified as the iteration number and
Maxiter is the maximum number of iterations.

If the value of c(t) exceeds 0.5, then the jellyfish will
follow the ocean current; if it is less than or equal to 0.5, the
jellyfish will move in a jellyfish swarm [27]. To determine the
type of jellyfish motion inside a jellyfish swarm (passive
motion and active motion), the function 1 − c(t) is used.

Start

End

i = 1

c (t) ≥ 0.5

i > npop

Output the best result

Motions inside jellyfish swarm
Y

N

Y

Y

Y

N
Y

N

N

N

Define the objective function (f(X) | X = x1, x2, …, xn), bounds of search spaces,
the maximum number of iterations (Maxiter), and population size (npop)

Initialize population of jellyfish (Xn | n = 1, 2, …, npop) using a logistic map
calculate the quantity of food at each location of Xn (f(Xn))

Record jellyfish with the best location (X⁎)
Set iteration number (t) as 1

Calculate control time (c(t)) using Eq. (11)

Movement following
ocean current:

Calculate the new location
of a jellyfish after it moves
(Xi(t + 1)) using Eq. (8)

Type A motion:
Calculate the new location
of a jellyfish after it moves
(Xi(t + 1)) using Eq. (9)

Type B motion:
Calculate the new location
of a jellyfish after it moves
(Xi(t + 1)) using Eq. (10)

Rand(0,1) > 1-c(t)

Check boundary location
calculate the quantity of food at the new location of Xi(t+1)

f(Xi(t + 1)) > f(Xi(t))

Update the position of jellyfish
Record jellyfish with the best location (X⁎)

i = i + 1

t = t + 1

t > maxiter

Figure 18: Algorithmic flowchart of the jellyfish search algorithm.

14 Computational Intelligence and Neuroscience

When rand(0, 1) exceeds (1 − c(t)), the jellyfish will exhibit
passive motion (type A). When rand(0, 1) is less than
(1 − c(t)), the jellyfish will exhibit active motion (type B). As
t increases, the value of 1 − c(t) also increases [27].

3.2.4. Algorithmic Flowchart and Pseudocode. 'e algo-
rithmic flowchart and the pseudocode of the JS algorithm,
starting from problem definition, controlling parameters’
definition, initialization, to the loop of phases, are presented
in Figures 18 and 19, respectively.

3.3. Validation and Performance Evaluation. Validating the
capability of the DL model that classifies data or analyzes
datasets to predict a new dataset is essential. In neural
network models, a loss function usually refers to the min-
imization of the prediction error.'e training error, which is
the average loss of the training sample, is not useful for
evaluating the performance of the model because a low
training error may indicate that the model is overfitting the
training data, and so will generally perform poorly given new
data [48]. 'e validation, therefore, should be conducted
using a separate sample error.

During the development of a DL model, a dataset is
typically split into three sets–the training set, the validation
set, and the test set. 'e training set is used to learn the
pattern of the inputs that correspond to a certain output; the
validation set is used to evaluate the prediction error of the

trainingmodel and to tune its hyperparameters; the test set is
used to assess the error of the final model. No exact rule for
splitting the dataset exists, as the split depends on the
number and complexity of the available data.

3.3.1. Validation Method. A validation set is used as the
input of a previously trained prediction model to evaluate
the performance of the model when used with new, never-
seen-before data. 'e validation process is repeated multiple
times with various hyperparameter combinations, and thus
the purpose of using a validation set is to assess the per-
formance of the training model and to find the optimal
hyperparameters.

Two of the most popular methods for evaluating the
generalization ability of the prediction model are holdout
method and cross-validation.'e holdout method randomly
splits the data into a training set, a validation set, and a test
set. 'e cross-validation method partitions a dataset into
several subsets, implements the learning process on all but
one of those subsets, and evaluates the performance using
the left-out subset in turn. 'e cross-validation method is
particularly suitable for a small dataset to enhance model
validity.

For practical use in the ready-mixed concrete plant, the
model is built based on the accumulated historical data, and
subsequently will be used for a new concrete dataset in the
prediction of compressive strength. To fairly reflect the

Figure 19: Pseudocode of the jellyfish search algorithm.

Computational Intelligence and Neuroscience 15

prediction accuracy on-site, this study adapted the holdout
method by training/validating the model with the whole
historical dataset and testing it with newly collected concrete
data in the upcoming year. By doing so, one would not
overestimate the model performance in practice and could
prevent information leakage from model training.

3.3.2. Performance Metrics. 'e performance metrics that
are used in this study are the mean absolute error (MAE),
root mean square error (RMSE), mean absolute percentage
error (MAPE), training time, and synthesis index (SI). 'e
MAE is the average of the absolute differences between the
actual and predicted values. Taking the absolute difference
makes all error values positive, avoiding the false determi-
nation of an accurate prediction when negative and positive
differences are summed.

Mean squared error (MSE) is the average of the squared
differences between the actual and predicted values. 'e
square root of the MSE, called the RMSE, is taken to the
lower order of the MSE. MAPE is the average of the absolute
errors divided by the actual values. 'e training time of
various modeling techniques is compared to examine the
implementation practicability.

A low value of MAE, RMSE, or MAPE indicates good
performance; a short training time is desirable. SI is the
mean of the sum of normalized values and indicates the
overall model performance; it ranges from zero to one and
zero indicates the best performance among all models.
Table 1 provides the formulas for the performance measures.

4. Analytical Results and Discussion

4.1. Experimental Settings

4.1.1. Software and Hardware. Model building and testing
were implemented in Anaconda software with the Python
programming language on a machine (computer) with an
NVIDIA GeForce RTX 2080 Ti graphics card. 'e Jupyter
Notebook application in Anaconda [49] was used to display
the inputs and outputs of the prediction models. Python
packages support specific programming tasks and protect
against their incompatibility. Numerous Python packages,
which are available for use with Anaconda, are used (such as
NumPy, pandas, and matplotlib). For building and testing
the DNN models, the TensorFlow package [50] is used. For
building and testing the CNN-based models, the Keras
Application package [51] is used.

In particular, the Keras Application package supports the
implementation of CNN models for prediction, fine-tuning,
and feature extraction. It provides CNN models with pre-
trained weights from “ImageNet.”'e package also provides
a transfer learning feature that helps solve the practical
problem of a lack of data resources and improves the ac-
curacy of prediction using pretrained weights. Table 2
presents information about the models, with accuracies
that were obtained using the 2012 ILSVRC ImageNet vali-
dation set [51]. 'e depth refers to the number of layers in

the Keras Applications’ CNN model, including the activa-
tion layer, batch normalization layer, and other layers.

4.1.2. Collection and Preprocessing of Data. A total of 8,310
data samples about ready-mixed concrete, relating to 32
variables, were collected from 2001 to 2019 by the Taiwan
Construction Research Institute (TCRI). 'e data were split
at the time of data sample collection to enable a prediction
model to be built using historical data and tested using new
data.

Accordingly, 339 data samples that covered one year
(2019) were used in the testing process and the remaining
7,971 data samples were used in the training process. Of the
339 data samples for testing, 15 were removed because the
value of compressive strength was missing, creating a test set
of 324 data samples.'e 7,971 data samples for training were
further preprocessed according to the practical recom-
mendations by a panel of domain experts in TCRI.

Among the 32 variables, the manufacturer’s name,
category of data, and date of collection were removed be-
cause the corresponding data were apparently irrelevant to
the variability of concrete compressive strength. Ten other
variables were removed because data were incomplete; these
were the amount of admixture, the surface moisture content
of sand (from a computer report and sieve analysis, re-
spectively), silt charge, fineness modulus of sand, the
strength of cement, specific surface area of cement, per-
centage of active blast furnace slag, fineness of blast furnace
slag, and the ratio of water-reducing admixtures.

Totally, there are 19 concrete variables to be used for the
prediction of the concrete compressive strength. One output
variable is the test value of ready-mixed concrete com-
pressive strength, and the other 18 input variables are the
design strength of concrete, target strength of concrete,
slump test, chloride ion content, temperature (temperature
of the concrete taken on site), water-binder ratio, the water
content of concrete, cementitious material consumption,
cement ratio, amount of cement, amount of slag powder,
amount of fly ash, amount of fine aggregate, amount of
coarse aggregate, sand ratio, location (north), location
(middle), and location (south).

'e preprocessed data were processed again to yield
three sets of data with different variables for use in numerical

Table 1: Performance metrics.

Performance metric Formula

Mean absolute error (MAE) 1/n􏽐
n
i�1|y − y′|

Mean squared error (MSE) 1/n􏽐
n
i�1(y′ − y)2

Root mean squared error
(RMSE) (1/n􏽐

n
i�1(y′ − y)2)1/2

Mean absolute percentage
error (MAPE) 1/n􏽐

n
i�1|(y − y′)/y|

Synthesis index (SI) 1/m􏽐
m
i�1|(P − Pmin)/(Pmax − Pmin)|

Note. n, number of predictions; y, actual value; y′, predicted value; m,
number of performance metrics; P, value of the performance metric; Pmin,
minimum value of performance metric; Pmax, maximum value of perfor-
mance metric.

16 Computational Intelligence and Neuroscience

experiments for various purposes. Dataset 1 included 13
variables that are recommended by the TCRI; dataset 2
included 7 variables that are frequently used in prior studies
[52–55] on the prediction of compressive strength; and
dataset 3 included the resulting 18 variables after pre-
processing. Tables 3–5 display the variables in the dataset,

the number of data points in the datasets, and the descriptive
statistics of variables in the datasets, respectively.

4.1.3. Converting Numerical Data into Images. 'e original
numerical data were converted to images to be used as inputs
to the CNN-based models. Each collection of values in a data
sample for concrete was represented as an image. To create
the image, the numerical data were first normalized to values
between 0 and 1. 'ese normalized data were then multi-
plied by 255 to encode them as grayscale values between 0
and 255 (Figure 20). Black represents 0 and white represents
255.

For each of datasets 1 and 2, a total of 6705 images were
created. For dataset 3, a total of 5856 images were created.
Figure 21 presents the example (dataset 3) of the labeling of
the image data. Each image is labeled with the corresponding
continuous output value, the compressive strength value of
the ready-mixed concrete.

4.2. Implementation and Comparison. Prediction models
and sensitivity experiments with various purposes were
carried out (Table 6). Baseline models were used with the

Table 2: Convolutional neural network-based models in the Keras Application.

Model Top 1 accuracy Top 5 accuracy Depth Size (MB) Parameters Reference
VGG16 0.713 0.901 23 528 138,357,544 [33]VGG19 0.713 0.900 26 549 143,667,240
ResNet50 0.749 0.921 — 98 25,636,712

[34]ResNet101 0.764 0.928 — 171 44,707,176
ResNet152 0.766 0.931 — 232 60,419,944
ResNet50V2 0.760 0.930 — 98 25,613,800

[35]ResNet101V2 0.772 0.938 — 171 44,675,560
ResNet152V2 0.780 0.942 — 232 60,380,648
InceptionV3 0.779 0.937 159 92 23,851,784 [36]
InceptionResNetV2 0.803 0.953 572 215 55,873,736 [37]
Xception 0.790 0.945 126 88 22,910,480 [38]
MobileNet 0.704 0.895 88 16 4,253,864 [39]
MobileNetV2 0.713 0.901 88 14 3,538,984 [40]
DenseNet121 0.750 0.923 121 33 8,062,504

[41]DenseNet169 0.762 0.932 169 57 14,307,880
DenseNet201 0.773 0.936 201 80 20,242,984
NASNetMobile 0.744 0.919 — 23 5,326,716 [42]NASNetLarge 0.825 0.960 — 343 88,949,818
EfficientNetB0 — — — 29 5,330,571

[43]

EfficientNetB1 — — — 31 7,856,239
EfficientNetB2 — — — 36 9,177,569
EfficientNetB3 — — — 48 12,320,535
EfficientNetB4 — — — 75 19,466,823
EfficientNetB5 — — — 118 30,562,527
EfficientNetB6 — — — 166 43,265,143
EfficientNetB7 — — — 256 66,658,687

Table 3: Variables in the datasets.
Dataset variable Dataset 1 Dataset 2 Dataset 3
Design strength of concrete — — ✓
Target strength of concrete — — ✓
Slump test — — ✓
Chloride ion content — — ✓
Temperature — — ✓
Water-binder ratio ✓ ✓ ✓
Water content of concrete ✓ ✓ ✓
Cementitious material
consumption ✓ — ✓

Cement ratio ✓ — ✓
Amount of cement ✓ ✓ ✓
Amount of slag powder ✓ ✓ ✓
Amount of fly ash ✓ ✓ ✓
Amount of fine aggregate ✓ ✓ ✓
Amount of coarse aggregate ✓ ✓ ✓
Sand ratio ✓ — ✓
Location (north) ✓ — ✓
Location (middle) ✓ — ✓
Location (south) ✓ — ✓
Compressive strength test ✓ ✓ ✓
Note. Dataset 1� industry recommendation; dataset 2� suggested by re-
search community; dataset 3� all features considered. Variables in dataset 2
are frequently used to determine the compressive strength of concrete in the
literature.

Table 4: Number of data points in the datasets.

Number of data points Dataset 1 Dataset 2 Dataset 3
Number of total samples 6705 6705 5856
Number of training samples 6381 6381 5532
Number of testing samples 324 324 324
Number of input variables 13 7 18
Number of output variables 1 1 1

Computational Intelligence and Neuroscience 17

hyperparameters set to default values in the TensorFlow and
Keras Applications. In the DNN, numerical data are input,
while for the CNN-based models, the input numerical data
are converted to image data. In this study, the size of the
image input to each CNN-based model was the minimum
possible size to meet the practical needs.

4.2.1. Deep Learning Models and Performance. Since the
same model and hyperparameters yielded different model
performance values in different runs, each model was tested
five times and the average model performance value was
taken as the actual. For both the CNN and DNNmodels, the
loss function was set to be the MSE. In the DNN model, 50
hidden layers with selected numbers of hidden nodes (Ta-
ble 7) had the best prediction accuracy in comparison with

other numbers of hidden layers and other numbers of
hidden nodes. 'e architecture was thus used to build the
baseline DNN prediction model.

Tables 8–10 compare the performances of the DLmodels
in predicting the compressive strength of ready-mixed
concrete when they are trained and tested using the given
data. 'e results indicate that the CNN models,
ResNet50V2, MobileNet, and DenseNet121, with their de-
fault parameters, all performed best on the three datasets,
respectively. 'e CNN models, ResNet50V2, MobileNet,
and DenseNet121, with image data, outperformed the
baseline DNN model with numerical data. 'e results also
indicate that the best CNN models on each dataset out-
performed the DNN in terms of each performance metric,
except for the training time.

Table 5: Descriptive statistics of variables from the datasets.
Variables Unit Minimum Maximum Average

Dataset 1—industry recommendation
X6 Water-binder ratio — 0.25 0.87 0.52
X7 Water content of concrete (kg/m3) 121.00 250.25 184.98
X8 Cementitious material consumption (kg/m3) 209.00 690.00 361.15
X9 Cement ratio (%) 30.67 100.00 70.33
X10 Amount of cement (kg/m3) 99.20 507.00 255.43
X11 Amount of slag powder (kg/m3) 0.00 209.35 68.90
X12 Amount of fly ash (kg/m3) 0.00 180.00 36.82
X13 Amount of coarse aggregate (kg/m3) 344.24 1281.00 919.30
X14 Amount of fine aggregate (kg/m3) 468.00 1376.96 860.22
X15 Sand ratio (%) 0.00 80.00 48.32
X16 Location (north) — 0.00 1.00 0.44
X17 Location (middle) — 0.00 1.00 0.12
X18 Location (south) — 0.00 1.00 0.44
Y Compressive strength test (kgf/cm2) 125.00 724.00 343.49

Dataset 2—suggested by the research community
X6 Water-binder ratio — 0.25 0.87 0.52
X7 Water content of concrete (kg/m3) 121.00 250.25 184.98
X10 Amount of cement (kg/m3) 99.20 507.00 255.43
X11 Amount of slag powder (kg/m3) 0.00 209.35 68.90
X12 Amount of fly ash (kg/m3) 0.00 180.00 36.82
X13 Amount of fine aggregate (kg/m3) 468.00 1376.96 860.22
X14 Amount of coarse aggregate (kg/m3) 344.24 1281.00 919.30
Y Compressive strength test (kgf/cm2) 125.00 724.00 343.49

Dataset 3—all features considered
X1 Design strength of concrete (kgf/cm2) 140.00 420.00 254.40
X2 Target strength of concrete (kgf/cm2) 160.00 660.00 320.27
X3 Slump test (cm) 8.50 69.00 19.48
X4 Chloride ion content (%) 0.00 0.14 0.04
X5 Temperature (°C) 14.00 35.00 26.19
X6 Water-binder ratio — 0.25 0.83 0.52
X7 Water content of concrete (kg/m3) 121.00 250.25 184.87
X8 Cementitious material consumption (kg/m3) 209.00 690.00 363.42
X9 Cement ratio (%) 30.67 100.00 70.10
X10 Amount of cement (kg/m3) 99.20 507.00 256.17
X11 Amount of slag powder (kg/m3) 0.00 209.35 68.85
X12 Amount of fly ash (kg/m3) 0.00 180.00 38.40
X13 Amount of fine aggregate (kg/m3) 468.00 1376.96 860.88
X14 Amount of coarse aggregate (kg/m3) 344.24 1281.00 916.43
X15 Sand ratio (%) 0.00 80.00 48.41
X16 Location (north) — 0.00 1.00 0.48
X17 Location (middle) — 0.00 1.00 0.13
X18 Location (south) - 0.00 1.00 0.39
Y Compressive strength (kgf/cm2) 162.00 724.00 344.82

18 Computational Intelligence and Neuroscience

4.2.2. Optimized Convolutional Neural Network-Based
Models. As CNN models, ResNet50V2, MobileNet, and
DenseNet121, performed best in the corresponding datasets,
a metaheuristic optimization algorithm, the jellyfish search
(JS) optimizer, was used to optimize them.'e CNNmodels

were optimized to minimize the errors of prediction of the
compressive strength of ready-mixed concrete using the best
values of the hyperparameters.

'e JS optimizer was used to find the best hyper-
parameter values in a set of ranges. Several hyperparameters

Numerical data
X1

…

Normalized Normalized data value to [0,1].

Convert to grayscale value [0,255] by multiplying value by 255.
0 represents black
255 represents white
Other values represent shades of gray

Image data

X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18

… … … … … … … … … … … … … … … … …

X1

…

X2 X3 X4 X5 X6 X7 X8 X9 X10

(i)
(ii)

(iii)

X11 X12 X13 X14 X15 X16 X17 X18

… … … … … … … … … … … … … … … … …

Figure 20: Conversion example of numerical data to image data.

0.jpg

3.jpg

6.jpg

9.jpg

12.jpg

15.jpg

18.jpg

21.jpg

1.jpg

4.jpg

7.jpg

10.jpg

13.jpg

16.jpg

19.jpg

22.jpg

2.jpg
0.jpg

1.jpg

2.jpg

3.jpg

4.jpg

5.jpg

6.jpg

374

X Y
Concrete
compressive
strength

377

388

472

488

473

272

….jpg …

5.jpg

8.jpg

11.jpg

14.jpg

17.jpg

20.jpg

23.jpg

Figure 21: Input images and corresponding output labels.

Table 6: Experimental settings.

Research task Data type Purpose Method

Comparison of deep
learning models

Numerical data
and image data

Search for the best CNN model (using image
data) and compare the best CNN model with

a DNN model (using numerical data)

CNNs and DNN: VGG, ResNet, ResNetV2,
InceptionV3, InceptionResNetV2, MobileNets,

MobileNetV2, NASNet, EfficientNets,
DenseNet

Construction of
optimized deep
learning models

Image data Enhance the best-performing models with
optimized hyperparameters

Optimizing deep learning models by jellyfish
search algorithm

Table 7: Number of hidden nodes in each hidden layer of the deep neural network (DNN).

Hidden layer 1st 2nd 3rd 4th 5th 6th 7th 8th–10th 11th–20th 21st–30th 31st–40th 41st–50th

Number of hidden nodes 4096 2048 1024 512 256 128 64 32 16 8 4 2

Computational Intelligence and Neuroscience 19

Table 8: Deep learning model performance on dataset 1.

Model Training time (h:m:s) MAPE (%) RMSE (kgf/cm2) MAE (kgf/cm2) SI
Xception 2:31:01 14.0264 76.4217 57.7471 0.285
VGG16 0:17:58 15.9598 85.6755 65.6588 0.249
VGG19 0:21:16 14.8719 79.9609 61.1835 0.147
ResNet50 0:18:28 15.0252 80.8499 62.5910 0.164
ResNet101 0:32:30 14.3817 75.4145 57.5325 0.091 (3)
ResNet152 0:44:12 14.3462 78.5345 59.2920 0.144
ResNet50V2 0:16:56 13.8000 73.7818 56.4419 0.027 (1)
ResNet101V2 0:29:17 14.7393 74.4318 58.7149 0.100
ResNet152V2 0:43:11 16.2188 85.7025 67.9747 0.318
InceptionV3 0:45:14 14.2727 75.2054 58.0613 0.111
InceptionResNetV2 1:43:38 14.7849 77.9702 60.6185 0.264
MobileNet 0:10:35 15.1504 79.4783 62.0158 0.141
MobileNetV2 0:12:09 17.2442 82.0049 63.9462 0.244
DenseNet121 0:18:49 15.6411 82.3700 64.8698 0.213
DenseNet169 0:24:41 15.3712 80.3540 63.4890 0.190
DenseNet201 0:31:28 15.4292 80.7504 63.7175 0.207
NASNetMobile 0:35:50 15.8436 82.1353 64.5839 0.244
EfficientnetB0 0:18:10 14.2585 75.3426 58.3330 0.069 (2)
EfficientnetB1 0:27:30 14.9977 80.3189 61.8780 0.169
EfficientnetB2 0:28:38 15.4503 80.6015 63.4244 0.200
EfficientnetB3 0:35:30 14.9118 80.7490 61.6706 0.181
EfficientnetB4 0:45:16 14.6289 79.1150 61.1313 0.173
EfficientnetB5 0:59:30 14.5750 76.2138 59.6796 0.164
EfficientnetB6 1:13:08 15.0979 81.5700 62.4580 0.261
EfficientnetB7 1:42:25 14.4783 74.6023 59.1117 0.218
DNN 0:00:46 21.4910 112.2759 87.9198 0.750

Table 9: Deep learning model performance on dataset 2.

Model Training time (h:m:s) MAPE (%) RMSE (kgf/cm2) MAE (kgf/cm2) SI
Xception 1:12:19 17.2430 89.4229 70.1275 0.493
VGG16 0:10:26 18.3202 100.0902 73.6012 0.387
VGG19 0:12:32 17.7289 98.4250 74.1325 0.373
ResNet50 0:12:24 15.0208 78.1490 61.1607 0.105
ResNet101 0:21:34 14.5379 74.5514 58.2454 0.086 (2)
ResNet152 0:30:17 16.5355 90.8698 67.9069 0.321
ResNet50V2 0:11:28 15.7710 80.7428 63.8803 0.154
ResNet101V2 0:20:19 15.1000 76.9871 60.4406 0.124
ResNet152V2 0:28:43 14.4184 73.6713 57.4732 0.098
InceptionV3 0:27:04 16.4996 87.7770 69.3648 0.302
InceptionResNetV2 1:02:49 15.8074 84.5667 66.3267 0.371
MobileNet 0:06:18 15.0699 77.6579 61.3514 0.084 (1)
MobileNetV2 0:07:26 18.6955 83.8692 68.5122 0.264
DenseNet121 0:12:41 15.3784 83.6683 64.4323 0.167
DenseNet169 0:17:17 15.5968 85.7416 65.6683 0.209
DenseNet201 0:22:02 14.9204 83.5047 62.5952 0.175
NASNetMobile 0:20:32 22.3714 115.6740 93.5611 0.745
EfficientnetB0 0:12:27 15.0674 80.2897 61.9535 0.124
EfficientnetB1 0:17:52 15.5417 81.8874 63.5534 0.174
EfficientnetB2 0:18:12 14.5659 77.0040 59.4023 0.096 (3)
EfficientnetB3 0:21:51 15.4034 81.4909 63.2014 0.180
EfficientnetB4 0:27:17 15.7882 83.7080 64.3034 0.228
EfficientnetB5 0:36:30 14.9359 78.5506 60.4780 0.185
EfficientnetB6 0:45:47 15.0286 78.3096 61.4788 0.225
EfficientnetB7 1:01:55 15.3541 80.7350 62.9946 0.313
DNN 0:00:40 23.9215 119.4923 95.5619 0.750

20 Computational Intelligence and Neuroscience

Table 10: Deep learning model performance on dataset 3.

Model Training time (h:m:s) MAPE (%) RMSE (kgf/cm2) MAE (kgf/cm2) SI
Xception 2:59:21 13.0524 64.3952 51.9907 0.326
VGG16 0:20:24 13.8902 69.6804 56.1444 0.165
VGG19 0:23:28 14.1965 69.1497 55.3852 0.169
ResNet50 0:20:26 13.9585 70.9084 57.2012 0.178
ResNet101 0:34:28 11.6479 59.5678 47.1273 0.049 (2)
ResNet152 0:48:51 11.7348 60.4651 47.2528 0.076
ResNet50V2 0:18:31 12.3769 64.2470 51.1966 0.083
ResNet101V2 0:31:55 12.1501 63.4072 49.7640 0.086
ResNet152V2 0:46:54 12.0281 61.4381 48.0813 0.087
InceptionV3 0:51:37 13.3665 64.9479 52.1857 0.157
InceptionResNetV2 1:57:42 13.5490 64.0620 51.9634 0.248
MobileNet 0:12:27 13.1265 65.2462 52.4753 0.100
MobileNetV2 0:14:00 13.0155 60.0301 47.8787 0.053
DenseNet121 0:20:09 11.7167 59.3511 47.1034 0.029 (1)
DenseNet169 0:25:51 11.7929 61.0411 47.9452 0.051 (3)
DenseNet201 0:32:50 11.6047 60.6139 47.7109 0.054
NASNetMobile 0:41:08 24.6483 109.9440 93.7760 0.780
EfficientnetB0 0:20:37 12.9179 64.7033 52.1055 0.103
EfficientnetB1 0:30:28 13.3862 68.6528 55.0783 0.159
EfficientnetB2 0:31:25 13.4363 68.1339 54.9089 0.159
EfficientnetB3 0:38:59 13.2016 67.0390 53.1422 0.150
EfficientnetB4 0:49:39 13.1075 65.5639 52.3979 0.153
EfficientnetB5 1:09:29 13.2787 67.5948 54.1713 0.203
EfficientnetB6 1:26:14 12.4606 63.7319 50.5952 0.174
EfficientnetB7 1:55:15 12.8867 63.4471 51.0061 0.224
DNN 0:00:44 22.8024 116.0370 90.6988 0.698

Table 11: Hyperparameter settings for deep learning models.

Hyperparameter Literature value Search range in this study
ResNet50V2 [34]

Batch normalization-epsilon 1.001e− 5 [1.001e− 5, 0.00005, 0.0001, 0.0005, 0.001]
Batch size 64, 256 [8, 16, 32, 64]
Epochs 40, 90, 300 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
ADAM-learning rate 0.1 [0.001, 0.005, 0.01, 0.05, 0.1]
Dropout rate 0.5 0.00–0.99

MobileNet [39]
Batch size 64, 256 [8, 16, 32, 64]
Epochs 40, 90, 300 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
ADAM-learning rate 0.1 [0.001, 0.005, 0.01, 0.05, 0.1]
Dropout rate 0.5 0.00–0.99

DenseNet121 [41]
Growth rate 32 12–48
Batch normalization-epsilon 1.001e− 5 [1.001e− 5, 0.00005, 0.0001, 0.0005, 0.001]
Batch size 64, 256 [8, 16, 32, 64]
Epochs 40, 90, 300 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
Reduction 0.5 0.1–1.0
ADAM-learning rate 0.1 [0.001, 0.005, 0.01, 0.05, 0.1]
Dropout rate 0.2 0.00–0.99

Table 12: Performance of the best and optimized CNN models.

Dataset Model MAPE (%) RMSE (kgf/cm2) MAE (kgf/cm2)

1 ResNet50V2 13.8000 73.7818 56.4419
JS-ResNet50V2 13.1327 68.5794 52.4591

2 MobileNet 17.0406 91.6945 71.1198
JS-MobileNet 17.0671 90.4711 70.0870

3 DenseNet121 11.7167 59.3511 47.1034
JS-DenseNet121 11.5443 58.4346 45.8917

Computational Intelligence and Neuroscience 21

of a CNN, such as the epsilon of batch normalization, batch
size, epoch, learning rate, and dropout rate, were selected to
be adjusted during the search herein. For DenseNet121, two
additional hyperparameters were optimized—the growth
rate and the reduction value. Table 11 presents the default
values of hyperparameters in the reference papers [34, 41]
and the range of hyperparameters to be finetuned in this
study.

Table 12 compares the performances of best CNN
models using default hyperparameters and optimized by JS
in predicting the compressive strength of ready-mixed
concrete. 'e results indicate that using the JS optimizer on

the hyperparameters improved the accuracy of the predic-
tion models. Table 13 shows the best hyperparameter set-
tings for each optimized CNN model.

4.3. Influence of Feature and Image Pixel Orientation on
Modeling Accuracy. To examine the sensitivity of the gen-
eralization ability of a prediction model, the resulting 18
variables (features) were experimented using the best CNN
model (DenseNet121) by removing one of the variables and
using the remaining variables for model training. For the
location variables, three variables were removed

Table 13: Optimal hyperparameters of the best CNN models.

Hyperparameter Optimal value
JS-ResNet50V2

Batch normalization-epsilon 0.0005
Batch size 64
Epochs 100
ADAM-learning rate 0.001
Dropout rate 0.26

JS-MobileNet
Batch size 16
Epochs 70
ADAM-learning rate 0.001
Dropout rate 0.65

JS-DenseNet121
Growth rate 38
Batch normalization-epsilon 0.00005
Batch size 64
Epochs 90
Reduction 0.7
ADAM-learning rate 0.001
Dropout rate 0.33

Table 14: Sensitivity analysis of input features.

No. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 MAPE (%)
1 — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.94
2 ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.91
3 ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.95
4 ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.66
5 ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.99
6 ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.01
7 ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.32
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.05
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.57
10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.17
11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.63
12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ 11.69
13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ 11.29
14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ 11.59
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ 11.26
16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — — — 11.98
17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.72
Note. X1� design strength of concrete, X2� target strength of concrete,X3� slump test, X4� chloride ion content,X5� temperature, X6�water-binder ratio,
X7�water content of concrete, X8� cementitious material consumption, X9� cement ratio, X10� amount of cement, X11� amount of slag powder,
X12� amount of fly ash, X13� amount of fine aggregate, X14� amount of coarse aggregate, X15� sand ratio, X16� location (north), X17� location (middle),
and X18� location (south).

22 Computational Intelligence and Neuroscience

simultaneously and the remaining variables were used for
sensitivity analysis.'ese tests were conducted to investigate
the effect of each feature (attribute) on the generalization
ability of model prediction. Table 14 displays the perfor-
mance results with MAPEs, in which the lower value of the
MAPE stands for the better model performance without the
specified attribute. 'e experiment demonstrated that the
MAPEs do not differ much from one another. However, the
slight increase of MAPE in each numerical experiment
comparing to the baseline MAPE (11.72%) implies the in-
clusion of those variables (X1–X3, X5, and X16–X18) has a
positive impact on the prediction accuracy of ready-mixed
concrete compressive strength.

Another numerical experiment was conducted to ex-
amine the influence of image pixel orientation (pixel row
order) on the computer vision-based modeling perfor-
mance. Two types of image pixel orientation (IPO) formed
by the input attributes (pixels) were tested, namely, the
original pixel array and the correlated pixel array, according
to the correlation values between the input attributes and the
compressive strength. Specifically, the input image data were
shaped by arranging the input attributes (pixels) in random
order and descending the pixels order by their correlation
coefficients, respectively.

Table 15 displays the correlation coefficients between the
input variables and the compressive strength of ready-mixed
concrete. Ordering the IPO based on the magnitude of the
correlation coefficients, two new datasets were created. One

IPO is arranged by descending the original values of the
correlation coefficients and the other IPO is arranged by
descending their absolute values.

Table 16 presents the sensitivity analysis of image pixel
orientation on the computer vision-based modeling per-
formance. It is observable that all metrics with the correlated
order of image pixel orientation show worse performance
than that obtained using the original ordered image by the
same optimized CNN model (JS-DenseNet121). 'erefore,
the analytical results indicate that the correlated order of
image pixel orientation for the image converting of ready-
mixed concrete data does not significantly influence the
performance of the prediction model.

5. Conclusions

'e effectiveness of computer vision in predicting the
compressive strength of ready-mixed concrete was analyzed
to improve the predictions thereof. Deep learning (DL)
models were constructed by imaging the numerical data as
inputs to predict the compressive strength of ready-mixed
concrete. Various prediction models were compared and the
best DL prediction models were identified for different sets
of input concrete-related features and optimized after their
performances were further analyzed.

'e models for the prediction of concrete compressive
strength are frequently built with the use of cross-validation
or random split in-sample data for evaluating prediction

Table 15: Correlation between the feature and compressive strength of ready-mixed concrete.

Feature Correlation coefficient between feature and Y
X1 0.75
X2 0.82
X3 0.23
X4 0.05
X5 −0.15
X6 −0.74
X7 −0.15
X8 0.73
X9 0.14
X10 0.46
X11 0.05
X12 0.02
X13 −0.44
X14 −0.06
X15 −0.25
X16 0.24
X17 0.06
X18 −0.29
Note. X1� design strength of concrete, X2� target strength of concrete,X3� slump test, X4� chloride ion content,X5� temperature, X6�water-binder ratio,
X7�water content of concrete, X8� cementitious material consumption, X9� cement ratio, X10� amount of cement, X11� amount of slag powder,
X12� amount of fly ash, X13� amount of fine aggregate, X14� amount of coarse aggregate, X15� sand ratio, X16� location (north), X17� location (middle),
X18� location (south), and Y� compressive strength of ready-mixed concrete.

Table 16: Results of the order importance analysis of the image-like dataset.

Image pixel orientation Type of pixel order MAPE (%) RMSE (kgf/cm2) MAE (kgf/cm2)
Original order Random arrangement 11.5443 58.4346 45.8917

Correlated order Descending by correlated values 12.0831 61.3435 48.1922
Descending by absolute correlated values 12.5888 64.5037 50.7435

Computational Intelligence and Neuroscience 23

accuracy, which often gives optimistic results (overfitting) in
the training/test process while exhibiting poor performance
in future use. It’s mainly because the processes, materials,
machines, and technicians that are involved to manufacture
ready-mixed concrete in batch plants are being continually
improved and replaced periodically. Up-to-date samples for
ready-mixed concrete might be derived differently from the
evolving development of batch processes.

A prediction model is built using historical data; it uses
newly collected data, which should be irrelevant to the
training data samples, to make predictions; therefore, the
optimality of using random split in-sample data to test
models in the prediction of concrete compressive strength in
the literature is now doubted. To capture the actual per-
formance of predicting the compressive strength of concrete,
out-of-sample data (newly collected data) should be used for
model testing to avoid potential information leakage. Al-
though the model accuracy may be decreased in comparison
with that obtained by in-sample cross-validation or ran-
domly split data for training and test, using such an ap-
proach for the out-of-sample test reflects the real predictive
performance in practice.

Furthermore, CNN-oriented models are often trained
without tuning the hyperparameters. 'is study adopts a
metaheuristic optimization algorithm to optimize the pre-
diction model. 'e predictive accuracy of computer vision-
based deep learning models was improved herein using the
jellyfish search (JS) metaheuristic optimization algorithm.
'e JS optimizer finds the best hyperparameters, optimizing
the performance metrics of the CNN models. 'is study
contributes to the novel application of the computer vision-
based method, which integrates the latest CNN models with
a newly developed JS optimizer to predict the compressive
strength of ready-mixed concrete. 'e analytical experi-
ments show that modeling with image-converting data
outperforms the models using the original numerical data.

In this investigation, the training data were samples on
ready-mixed concrete only. Using data on high-performance
concrete or more complex engineering data would improve
this work of the computer vision approach to predicting a
numerical output like the compressive strength of concrete.
More cases should be studied to confirm the effectiveness of
imaging data on ready-mixed concrete and other types of
concrete to identify patterns of compressive strength by the
bio-inspired metaheuristic optimization of computer vision-
based deep learning models.

Future studies could consider environment-oriented
factors that may affect the ready-mixed concrete compres-
sive strength, such as the type of manufacturing equipment,
transporting process of concrete, and the handling speed of
on-site operators in addition to the material-oriented at-
tributes herein. A fair comparison between laboratory-de-
termined concrete compressive strength and on-site
evaluation of concrete compressive strength should be
investigated.

Abbreviations

AI: Artificial intelligence
ANN: Artificial neural network
BN: Batch normalization
CNN/ConvNet: Convolutional neural network
DenseNet: Dense convolutional network
DL: Deep learning
DNN: Deep neural network
FNN: Feedforward neural network
IN: Instance normalization
IPO: Image pixel orientation
JS: Jellyfish search
LN: Layer normalization
MAE: Mean absolute error
MAPE: Mean absolute percentage error
MSE: Mean squared error
NASNet: Neural architecture search network
ReLU: Rectified linear unit
ResNet: Residual neural network
RF: Random forest
RMSE: Root mean squared error
RNN: Recurrent neural network
SI: Synthesis index
SVR: Support vector regression
TCRI: Taiwan Construction Research Institute
VGG: Visual geometry group
Xception: Extreme inception.

Symbols

w × h × c: Width of image× height of image× number of
channels

m: Dimension of an input image
n: Filter size
C: Convolution map
I: Input image data
Θ: Convolution operation
F: Filter
o: Dimension of convolution map
s: Stride
zp: Zero padding
f: Nonlinear activation function
Cm: Convolution map after applying the nonlinear

activation function f

Pm: Pooling map
Po: Pooling operation
Yi: Model output of the ith fully connected hidden

layer
Hi: Weight sum vector
Bi: 'e activation level of the artificial neurons
BN(x): Batch normalization at a given layer from x
c: Scale parameter for the channel
β: Shift parameter for the channel
μB: Mean of the batch

24 Computational Intelligence and Neuroscience

σB: Standard deviation of the batch
∗: Element-wise product
f l(xi): Original feature
􏽥f

l
(xi): Distorted features

ml
i: Binary mask

dl: Dimension of the feature map of the l-th layer
trend
�����→

: Direction of the ocean current
X∗: Jellyfish with the optimal location
μ: Average location of all jellyfish
Xi: Jellyfish of interest
t: Time specified as an iteration number
Xi(t): Current location of a jellyfish
Xi(t + 1): New location of a jellyfish after a movement
rand(0, 1): Random number between 0 and 1
Ub: Upper bounds of the search spaces
Lb: Lower bounds of the search spaces
Xj: Jellyfish other than the jellyfish of interest
f(Xi): Quantity of food at the location of Xi

f(Xj): Quantity of food at the location of Xj

Direction
����������→

: Direction of active motion (type B) of jellyfish
c(t): Time control function
Maxiter: Maximum number of iterations
n: Number of predictions
y: Actual value
y′: Predicted value
m: Number of performance metrics
P: Value of performance metric
Pmin: Minimum value of performance metric
Pmax: Maximum value of performance metric.

Data Availability

'e datasets, codes, and replication of results generated and/
or analyzed during the current study are available from the
corresponding author on reasonable request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'e authors would like to thank Taiwan Construction Re-
search Institute and the Ministry of Science and Technology,
Taiwan, for financially supporting this research under grants
NTUST-TCRI-No.109-0139-9257 and MOST 109-2221-E-
011-040-MY3, respectively.

References

[1] Y. Kellouche, B. Boukhatem, M. Ghrici, and A. Tagnit-
Hamou, “Exploring the major factors affecting fly-ash con-
crete carbonation using artificial neural network,” Neural
Computing & Applications, vol. 31, no. 6, pp. 969–988, 2019.

[2] M. Adil, R. Ullah, S. Noor, and N. Gohar, “Effect of number of
neurons and layers in an artificial neural network for gen-
eralized concrete mix design,” Neural Computing & Appli-
cations, vol. 34, no. 11, pp. 8355–8363, 2022.

[3] O. R. Abuodeh, J. A. Abdalla, and R. A. Hawileh, “Assessment
of compressive strength of Ultra-high Performance Concrete

using deep machine learning techniques,” Applied Soft
Computing, vol. 95, Article ID 106552, 2020.

[4] F. Deng, Y. He, S. Zhou, Y. Yu, H. Cheng, and X. Wu,
“Compressive strength prediction of recycled concrete based
on deep learning,” Construction and Building Materials,
vol. 175, pp. 562–569, 2018.

[5] A. Sharma, B. Tirumuruhan, G. S. Muthuvel, A. K. Gupta, and
R. Sujith, “Optimization of process parameters of boron
carbide-reinforced Al-Zn-Mg-Cumatrix composite produced
by pressure-assisted sintering,” Journal of Materials Engi-
neering and Performance, vol. 31, no. 1, pp. 328–340, 2022.

[6] M. Lessard, O. Chaalla, and P.-C. Aitcin, “Testing high-
strength concrete compressive strength,” ACI Materials
Journal, vol. 90, no. 4, pp. 303–308, 1993.

[7] A. E. Ben-Zeitun, “Use of pulse velocity to predict com-
pressive strength of concrete,” International Journal of Ce-
ment Composites and Lightweight Concrete, vol. 8, no. 1,
pp. 51–59, 1986.

[8] K. L. Chung, L. Wang, M. Ghannam, M. Guan, and J. Luo,
“Prediction of concrete compressive strength based on early-
age effective conductivity measurement,” Journal of Building
Engineering, vol. 35, Article ID 101998, 2021.

[9] M. F. M. Zain and S. M. Abd, “Multiple regression model for
compressive strength prediction of high performance concrete,”
Journal of Applied Sciences, vol. 9, no. 1, pp. 155–160, 2009.

[10] B. H. Bharatkumar, R. Narayanan, B. K. Raghuprasad, and
D. S. Ramachandramurthy, “Mix proportioning of high
performance concrete,” Cement and Concrete Composites,
vol. 23, no. 1, pp. 71–80, 2001.

[11] J. V. R. Luke, M. Snell, and D. W. Norval, “Predicting early
concrete strength,” Concrete International, vol. 11, no. 12,
1989, https://www.concrete.org/publications/internationalco
ncreteabstractsportal/m/details/id/2092.

[12] Y. Essam, P. Kumar, A. N. Ahmed, M. A. Murti, and A. El-
Shafie, “Exploring the reliability of different artificial intelli-
gence techniques in predicting earthquake for Malaysia,” Soil
Dynamics and Earthquake Engineering, vol. 147, Article ID
106826, 2021.

[13] H. Jin and J. Zhao, “Real-time energy consumption detection
simulation of network node in internet of things based on
artificial intelligence,” Sustainable Energy Technologies and
Assessments, vol. 44, Article ID 101004, 2021.

[14] H. Adeli, Four Decades of Computing in Civil Engineer-
ingSpringer Singapore, Singapore, 2020.

[15] Y. Xu, Y. Zhou, P. Sekula, and L. Ding, “Machine Learning in
Construction: From Shallow to Deep Learning,” Develop-
ments in the Built Environment, vol. 6, no. 6, Article ID
100045, 2021.

[16] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-
Martinez, P. Martinez-Gonzalez, and J. Garcia-Rodriguez, “A
survey on deep learning techniques for image and video
semantic segmentation,” Applied Soft Computing, vol. 70,
pp. 41–65, 2018.

[17] B. Korbar, A. M. Olofson, A. P. Miraflor et al., “Deep learning
for classification of colorectal polyps on whole-slide images,”
Journal of Pathology Informatics, vol. 8, no. 1, p. 30, 2017.

[18] J.-S. Chou, M. A. Karundeng, D.-N. Truong, and
M.-Y. Cheng, “Identifying deflections of reinforced concrete
beams under seismic loads by bio-inspired optimization of
deep residual learning,” Structural Control and Health
Monitoring, vol. 29, no. 4, Article ID e2918, 2022.

[19] W. G. Hatcher and W. Yu, “A survey of deep learning:
platforms, applications and emerging research trends,” IEEE
Access, vol. 6, pp. 24411–24432, 2018.

Computational Intelligence and Neuroscience 25

https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/2092
https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/2092

[20] N. Chen, S. B. Zhao, Z. W. Gao et al., “Virtual mix design:
prediction of compressive strength of concrete with industrial
wastes using deep data augmentation,” Construction and
Building Materials, vol. 323, p. 13, 2022.

[21] H. R. Maier, S. Razavi, Z. Kapelan, L. S. Matott, J. Kasprzyk,
and B. A. Tolson, “Introductory overview: optimization using
evolutionary algorithms and other metaheuristics,” Envi-
ronmental Modelling & Software, vol. 114, pp. 195–213, 2019.

[22] Q. Liu, X. Li, H. Liu, and Z. Guo, “Multi-objective metaheuristics
for discrete optimization problems: a review of the state-of-the-
art,” Applied Soft Computing, vol. 93, Article ID 106382, 2020.

[23] P. E. Black, “Greedy Algorithm, Dictionary of Algorithms and
Data Structures 2021,” 2005, http://www.nist.gov/dads.

[24] P. Baldi, “Gradient descent learning algorithm overview: a
general dynamical systems perspective,” IEEE Transactions on
Neural Networks, vol. 6, no. 1, pp. 182–195, 1995.

[25] J. Pearl, “Heuristics: intelligent search strategies for computer
problem solving,” 1984, https://www.gbv.de/dms/weimar/
toc/021186472_toc.pdf.

[26] J.-S. Chou and N.-M. Nguyen, “FBI inspired meta-optimi-
zation,” Applied Soft Computing, vol. 93, Article ID 106339,
2020.

[27] J.-S. Chou and D.-N. Truong, “A novel metaheuristic opti-
mizer inspired by behavior of jellyfish in ocean,” Applied
Mathematics and Computation, vol. 389, Article ID 125535,
2021.

[28] J. Schmidhuber, “Deep learning in neural networks: an
overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[29] N. Wagaa, H. Kallel, and N. Mellouli, “Improved Arabic
alphabet characters classification using convolutional neural
networks (CNN),” Computational Intelligence and Neuro-
science, vol. 2022, Article ID 9965426, 16 pages, 2022.

[30] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for
Activation Functions,” 2017, https://arxiv.org/abs/1710.
05941.

[31] M. Koçyiğit, L. Sevilla-Lara, T. M. Hospedales, and H. Bilen,
“Unsupervised batch normalization,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (CVPR) Workshops, pp. 918-919, Seattle, WA, USA,
June 2020.

[32] Y. Tang, Y. Wang, Y. Xu et al., “Beyond dropout: feature map
distortion to regularize deep neural networks,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 4,
pp. 5964–5971, 2020.

[33] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” 2014, https://
arxiv.org/abs/1409.1556.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in
deep residual networks,” Computer Vision - ECCV 2016,
vol. 9908, pp. 630–645, 2016.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, Las Vegas, NV, USA, June 2016.

[36] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2818–2826, Las Vegas, NV, USA, June 2016.

[37] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections
on learning,” in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, San Francisco, CA, USA, February 2017.

[38] F. Chollet, “Xception: deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1251–1258,
Honolulu, HI, USA, July 2017.

[39] A. G. Howard,M. Zhu, B. Chen et al., “Efficient Convolutional
Neural Networks for mobile Vision Applications,” 2017,
https://arxiv.org/abs/1704.04861.

[40] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: inverted residuals and linear
bottlenecks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, Salt
Lake City, UT, USA, June 2018.

[41] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708, Honolulu, HI, USA, July 2017.

[42] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
transferable architectures for scalable image recognition,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, San Francisco, CA, USA,
June 2018.

[43] M. Tan and Q. Le, “Efficientnet: Rethinking Model Scaling for
Convolutional Neural Networks,” pp. 6105–6114, 2019,
https://arxiv.org/abs/1905.11946.

[44] J. H. Holland, “Genetic algorithms,” Scientific American,
vol. 267, no. 1, pp. 66–72, 1992.

[45] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the ICNN’95 - International Conference on
Neural Networks, pp. 1942–1948, Perth, WA, Australia, No-
vember 1995.

[46] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-
learning-based optimization: a novel method for constrained
mechanical design optimization problems,” Computer-Aided
Design, vol. 43, no. 3, pp. 303–315, 2011.

[47] R. Ma, M. Karimzadeh, A. Ghabussi et al., “Assessment of
Composite Beam Performance Using GWO–ELM Meta-
heuristic Algorithm,” Engineering with Computers, 2021.

[48] K. Nordhausen, “'e elements of statistical learning: data
mining, inference, and prediction, second edition by trevor
hastie, robert tibshirani, jerome friedman,” in International
Statistical Review, T. Hastie, R. Tibshirani, and J. Friedman,
Eds., vol. 773, p. 482, Second Edition, 2009.

[49] A. S. Distribution, “Conda, Anaconda,” 2021, https://www.
anaconda.com/products/distribution.

[50] M. Abadi, A. Agarwal, P. Barham et al., “Tensorflow: Large-
Scale Machine Learning on Heterogeneous Distributed Sys-
tems,” 2016, https://arxiv.org/abs/1603.04467.

[51] F. Chollet, Deep Learning with Python, Manning Publications
Co, Shelter Island, NY, USA, 2021.

[52] J.-S. Chou and A.-D. Pham, “Enhanced artificial intelligence
for ensemble approach to predicting high performance
concrete compressive strength,” Construction and Building
Materials, vol. 49, pp. 554–563, 2013.

[53] A. Khashman and P. Akpinar, “Non-destructive prediction of
concrete compressive strength using neural networks,” Pro-
cedia Computer Science, vol. 108, pp. 2358–2362, 2017.

[54] Q. Han, C. Gui, J. Xu, and G. Lacidogna, “A generalized
method to predict the compressive strength of high-perfor-
mance concrete by improved random forest algorithm,”
Construction and Building Materials, vol. 226, pp. 734–742,
2019.

[55] H. Y. Zhang, X. W. Cheng, Y. Li, and X. L. Du, “Prediction of
failure modes, strength, and deformation capacity of RC shear
walls through machine learning,” Journal of Building Engi-
neering, vol. 50, p. 22, 2022.

26 Computational Intelligence and Neuroscience

http://www.nist.gov/dads
https://www.gbv.de/dms/weimar/toc/021186472_toc.pdf
https://www.gbv.de/dms/weimar/toc/021186472_toc.pdf
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1905.11946
https://www.anaconda.com/products/distribution
https://www.anaconda.com/products/distribution
https://arxiv.org/abs/1603.04467

