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ABSTRACT

Long-term graft survival is the main concern of kidney transplantation. Some strategies have been tested to predict graft
survival using estimated glomerular filtration rate or proteinuria at different time points, histologic assessment, non-
invasive biomarkers or even machine-learning methods. However, the ’magical formulae’ for allograft survival prediction
does not exist yet.
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The main concern of both kidney transplant (KT) clinicians and
recipients has been always long-term graft survival. Being able
to estimate a predicted graft survival would be a relevant im-
provement to predict outcomes for individual patients not only
for advising, but also for identifying, those for whom interven-
tions could be beneficial.

Some strategies have been tested to find a unique good
earlier predictor, but there are many factors involved in long-
term graft survival. In the past, 1-year estimated glomerular
filtration rate (eGFR) was the most used outcome in clinical
trials since it is a good surrogate marker for long-term graft
survival [1, 2]. In this issue of Clinical Kidney Journal, Mottola
et al. [3] address an important issue for the prediction of long-
term graft survival based on eGFR and proteinuria in trans-
plant recipients. They conducted a prospective study includ-
ing 754 patients using a validation cohort of 1936 individuals
evaluating if an early and easy marker such as eGFR and pro-
teinuria at 3 months can predict hard outcomes. The authors
conclude that both parameters were powerful predictors for

kidney allograft loss, concluding that early outcomes may be
useful to early interventions.

It is difficult to obtain such a simplistic model of prediction
of graft survival, taking into account that it is the result of mul-
tiple factors such as cold ischaemia time [4], delayed graft func-
tion [4], ischaemic preconditioning, type of donor [5, 6], donor
and recipient age [7, 8], recipient immunological risk, HLA
matching, acute rejection episodes or post-transplant host fac-
tors [9]. However, although all these factors are associated with
renal allograft loss, few have been found to have high predictive
value for individual patients (Figure 1).

In the past, preimplantation biopsy was used to evaluate
the potential ‘capacity’ of a kidney allograft and some groups
implemented the strategy of dual kidney transplantation or
even discarded the organ based on this histologic score [10].
But the reports published to date, including a substantial
number of biopsies, are of poor quality, heterogeneous, retro-
spective and show contradictory results [10–13]. Subsequent
histological evaluation of the allograft during follow-up is
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routinely performed in many centres to detect signs of
subclinical rejection, drug toxicity or presence of glomerular
disease recurrence [14, 15]. Therefore, this evaluation can po-
tentially give information about the prognosis.

Standardized immune monitoring constitutes a part of usual
clinical practice. It is widely known that the presence of de novo
donor-specific anti-HLA antibodies (dnDSA) is associated with
acute antibody-mediated rejection (AMR) and allograft loss. But
of all patients with dnDSA, only those with histologic evidence
of acute, active AMR either at DSA detection or on subsequent
biopsy had an increased incidence of graft failure and/or 50% re-
duction in eGFR [15]. Identification and performance analysis of
non-invasive biomarkers such as mRNA and miRNA expression
profiles, chemokines or changes in immune cell subsets in
either blood or urine of renal transplant patients would be a
valuable methodology of prediction graft survival. The problem
is that biomarker research projects falter at the validation or
replication stage and in the end they have shown low positive
predictive value, with difficulties in standardization [16]. At the
moment, some urinary chemokines are being investigated to
predict renal function outcomes: urinary CXCL9, CXCL10 and
miR-210 levels are related to an increased rejection risk and de-
crease of renal function [17–19]. Other molecules such as serum
soluble CD30 (a costimulatory molecule for activated T lympho-
cytes) have been described to be associated with worse allograft
outcome [20], and when it is combined with DSA measurements
the graft-survival prediction improves [21] in some reports.
Gene expression studies, especially DNA microarray technol-
ogy, have led to identification of various genes potentially
associated with renal transplant outcome such as TRIB1, miR-
142-5p or a combination of genes such as the kidney solid organ
response test [22, 23]. Another potential tool is the analysis of
blood T- and B-cell subsets, for example, increased numbers
of blood Treg cells and their increased FOXP3 expression in
long-term stable renal recipients is associated with good
outcome [24].

However, there are other factors that potentially contribute
to allograft loss. Some recipient characteristics, such as primary
kidney disease, have a direct effect on allograft survival.
Chronic kidney disease patients usually have cardiovascular
risk factors and other comorbidities. Also, immunosuppression
treatments are related to secondary effects with a direct harm-
ful effect on cardiovascular risk factors such as hypertension,
hyperglycaemia or hyperlipidaemia, increased risk of infections
or obesity. These diseases usually contribute to the progression

of native kidney disease, but their effect on allograft survival is
less known. It is necessary to consider that graft survival cen-
sored for death, the outcome evaluated in the majority of obser-
vational studies, assumes that patients who died would have
had the same risk of graft loss as those who did not. It would be
more accurate to perform a risk analysis accounting for death
as a competing event of graft failure. In competing risk analy-
ses, smoking, systolic blood pressure and haemoglobin
remained independent predictors of graft failure or doubling of
creatinine (an endpoint indicating worsening of graft function)
[9, 25].

Therefore, many prediction systems for risk of allograft loss
based in machine-learning methods could be a potential solu-
tion to considering all these factors. Several models have been
published , and 39 of them have also been systematically
reviewed [26] (Table 1). The most recent one is the iBox [27],
based on a multicentric French study including 4000 KT recipi-
ents validated with a European and North American cohort.
This tool evaluates functional, histological, immunological allo-
graft parameters and HLA antibody profiling. The major advan-
tage over the previously published scores is that it can be
performed irrespective of the time point after transplantation
and it can be re-evaluated at any time to assess the effect of any
intervention.

Despite the scientific interest in developing sophisticated
tools for prediction, there is some scepticism as to their clinical
utility. Prediction tools use past or current variables to generate
prediction models that work at the population level. However,
as transplant care is a dynamic process with many unantici-
pated decisions, this prediction will lose accuracy for a specific
individual. For example, one can imagine what is going to hap-
pen in an ideal scenario such as young kidney donor in an HLA
haploidentical recipient. Any machine-learning method would
predict a very long-term graft survival, but what if this recipient
is under immunosuppressed by a doctor’s decision or by a sim-
ple misunderstanding? Complex models can even anticipate
non-adherent profiles but definitively fail to identify clinical
practice variability.

The whole transplant community would find it very useful
to have a ‘magical formula’ to show them exactly until when a
given allograft will be viable, which would facilitate the devel-
opment of therapeutic strategies to decrease the risk for severe
clinical events and mortality. However, for the transplant com-
munity, as for the Everton FC fans, ‘nil satis nisi optimum’,
which means ‘nothing but the best is good enough’.

FIGURE 1: Factors related to allograft survival. BP: blood pressure; CIT: cold ischaemia time.
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