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Abstract: Trauma remains a leading cause of death and disability in adults, and about
20% of deaths occur due to intractable bleeding. Trauma-induced coagulopathy (TIC) is a
complex hemostatic disorder characterized by an abnormal coagulation response, which
can manifest as either a hypo-coagulable state, leading to excessive bleeding, or a hyper-
coagulable state, resulting in thromboembolic events and multiple organ failure. Early
diagnosis and correction of hypocoagulability may be lifesaving. Replacement of coagula-
tion factors using blood components as well as counteracting enhanced fibrinolysis with
tranexamic acid in association with a strategy of damage control are the current practices in
the management of TIC. Nevertheless, the improved comprehension of the several mecha-
nisms involved in the development of TIC might offer space for a tailored treatment with
improvement of clinical outcome. This review aims to outline the pathophysiology of TIC
and evaluate both established and emerging management strategies. A thorough literature
review was made with a specific emphasis on articles discussing the molecular mechanisms
of trauma-induced coagulopathy. We utilized PubMed, Scopus, and Web of Science with
the main search terms “trauma-induced coagulopathy”, “molecular mechanisms”, and
“coagulation pathways”.
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1. Introduction
Despite advances in resuscitation, surgical management, and critical care, trauma

remains a leading cause of death and disability in adults [1]. Bleeding is the more frequent
cause of death in severe trauma following head injury and is related to two main mecha-
nisms: fatal hemorrhage from vascular injury and bleeding secondary to coagulopathy [2,3].
Coagulopathy can result from physiological disturbances such as acidosis, hypothermia,
or hemodilution due to fluid or blood administration. However, an acute coagulopathy
can occur in severely injured patients independently from or in addition to these factors.
Traumatic coagulopathy represents a unique pathological entity that in time has been called
in various ways: trauma-induced coagulopathy (TIC), acute traumatic coagulopathy (ATC),
early coagulopathy of trauma (ECT), and acute coagulopathy of trauma-shock (ACoTS) [4].
The severity of TIC strongly correlated with the combined degree of both injury and shock.
It is a complex hemostatic disorder characterized by an abnormal coagulation response,
which can manifest as either a hypo-coagulable state, leading to excessive bleeding, or a
hypercoagulable state, resulting in thromboembolic events and multiple organ failure [4–6].
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Although improved efficiency in military and civilian trauma systems has short-
ened the time between acute injury and treatment, between 25 and 35 percent of in-
jured civilians exhibit biochemically evident coagulopathy upon arrival at the emergency
department [2,7–10], resulting in fatality in 30–50% of cases. Patients who develop TIC
receive on average a higher number of transfusions, spend more time in intensive care,
undergo more days on mechanical ventilation, and have a higher incidence of multi-organ
dysfunction. Most deaths in trauma patients related to in-hospital hemorrhage occur within
six hours of admission [11,12]. The pathophysiology of TIC involves several mechanisms,
including tissue injury, shock, endothelial dysfunction, platelet activation, and dysregu-
lated fibrinolysis. Early TIC is often associated with hypocoagulability due to factors such
as fibrinogen depletion, impaired thrombin generation, and platelet dysfunction, and is
exacerbated by the “lethal triad” of coagulopathy, hypothermia, and acidosis [13,14]. In
contrast, late TIC can present as a hypercoagulable state, driven by ongoing inflammation,
endothelial injury, and a shift towards a prothrombotic phenotype. This phase is often
linked to venous thromboembolism and multiple organ failure.

2. Methods
To identify relevant studies, a comprehensive literature search was conducted in

different databases. We searched for relevant articles published between 2000 and 2025
in the three databases PubMed/MEDLINE, Scopus, and Web of Science. All articles that
meet the following key criteria were selected: trauma-induced coagulopathy”, “molecular
mechanisms”, and “coagulation pathways”.

The selection of articles was subject to a consistent review and assessment in order to
identify studies that were potentially relevant to the objectives of this review.

The main inclusion criteria were as follows: (1) articles in English, (2) original studies
investigating trauma, and (3) studies examining the role of different mechanisms in bleeding
after trauma.

This review excluded editorials, case reports, and letters. Studies that met the inclusion
criteria were further analyzed, and relevant data were extracted and evaluated for each arti-
cle. Any discordances between investigators were resolved through a consensus approach.

3. Epidemiology and Early Detection of TIC
TIC occurs in about 25% of severely injured patients, and its incidence is directly

proportional to the severity of the injury, defined by the injury severity score (ISS) [15]. The
predominant cause of death after trauma continues to be central nervous system (CNS)
injury (21.6–71.5%), followed by exsanguination (12.5–26.6%), while sepsis (3.1–17%) and
multi-organ failure (MOF) (1.6–9%) are the predominant causes of late death [16]. Bleeding-
related worsening of intracranial injuries in cases of brain trauma may be ominous [16].
Patients with coagulopathy (TIC+) are more severely injured [ISS—average ISS score
34 vs. 25, p < 0.001], have more severe shock (systolic blood pressure 101.5 ± 33.8 mmHg vs.
110.4 ± 29.9 mmHg, p < 0.001), higher substantial bleeding (69.2 vs. 27%, p < 0.0001), higher
preponderance of multi-organ failure (3.7% vs. 1.0, p < 0.01), and a significantly higher
in-hospital mortality rate (52.3% vs. 12.4%, p < 0.001), in comparison to non-coagulopathic
patients (TIC−) [17].

The diagnosis of TIC involves both conventional coagulation tests and viscoelastic
hemostatic assays. Conventional tests include: platelet count, Clauss assay, international
normalized ratio (INR), thrombin time (TT), prothrombin time (PT), and activated partial
thromboplastin time (aPTT).

Viscoelastic hemostatic assays, such as thromboelastography (TEG) and rotational
thromboelastometry (ROTEM), provide dynamic assessments of clot formation and stability,
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offering more detailed insights into the coagulopathic state. These assays are particularly
useful for identifying hyperfibrinolysis, a critical component of TIC. Additionally, clinical
scoring systems like the Trauma-Induced Coagulopathy Clinical Score (TIC Score) have
been developed to aid in the early detection of TIC. These scores incorporate parameters
such as Glasgow Coma Scale, Shock Index, hemoglobin levels, prehospital fluid volume,
and the use of norepinephrine.

The timing of diagnostic tests significantly affects the accuracy of diagnosing TIC
using both conventional coagulation tests and viscoelastic hemostatic assays.

3.1. Conventional Coagulation Tests

The time required for laboratory processing decreases the clinical relevance of conven-
tional hemostasis laboratory tests. A median time of 78 min from blood collection to PT
results has been reported, which can be too slow for timely clinical decision-making in acute
trauma settings, sometimes leading to underestimation of the severity of coagulopathy
and inappropriate management [18]. Although INR has been commonly used as a trauma-
related indicator of coagulopathy, INR was designed and intended only for patients on oral
anticoagulant therapy for monitoring oral anticoagulant therapy across different labs and
not for screening of coagulation disorders. A prolongation of the prothrombin time ratio
and activated partial thromboplastin time (aPTT) is usually detected in shocked patients,
defined as an admission base deficit of greater than 6 mmol/L. According to PROMMTT
study criteria, an aPTT ≥ 35 s clearly defined a condition of hypocoagulability [19].

The use of traditional clotting tests has limited sensitivity in TIC diagnosis; however,
when abnormal, a higher mortality rate has been reported [20].

3.2. Viscoelastic Hemostatic Assays

Thromboelastography (TEG) and rotational thromboelastometry (ROTEM): These
assays provide rapid and dynamic assessment of coagulation status. For instance, ROTEM
can identify acute traumatic coagulopathy within 5 min using clot amplitude measurements,
being significantly faster than conventional tests. Early use of viscoelastic assays can guide
more timely and appropriate transfusion strategies, reducing the risk of both bleeding and
thromboembolic complications.

The rapid availability of results from viscoelastic assays makes them particularly
valuable in the acute phase of trauma care. Meizoso et al. highlighted that while viscoelastic
hemostatic assays are most beneficial when used early, current technology limits their use in
pre-hospital settings, and their utility in the emergency department can be compromised by
the time to results [21]. However, their application in the operating room and intensive care
unit has shown compelling data supporting their value in guiding hemostatic therapy [18].

There is not a commonly accepted visco-elastic definition of ATC. The main variables
retrieved from EXTEM ROTEM are clotting time [CT (s)]; clot formation time [CFT (s)];
A10 clot amplitude 10 min after the end of (CT); maximum clot firmness [MCF (mm)];
and maximum lysis time at 30 min [ML30 (%)]. For the FIBTEM assay, A10 and MCF.
Increases in clotting time and clot formation time and loss of clot amplitude (CA) and
maximal clot amplitude are commonly associated with hypocoagulability. Several algo-
rithms were created to guide factor replacement according to different ROTEM patterns of
hypocoagulability, although none was fully validated by randomized trials [21].

In summary, the timing of diagnostic tests is crucial for the accurate diagnosis of
TIC. Viscoelastic hemostatic assays like TEG and ROTEM offer faster and more detailed
assessments compared to conventional coagulation tests, thereby improving the timing
and accuracy of TIC diagnosis and management.
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4. Physiopathological Mechanisms
4.1. Lethal Triad: An Outdated Concept

Historically, TIC has been attributed to the consumption of coagulative proteases due
to hemodilution from resuscitation, hypothermia, and acidosis—collectively known as
the “lethal triad”. However, recent research suggests that none of these factors alone was
the cause of TIC. Instead, the primary trigger appears to be shock status and systemic
hypoperfusion [22].

Tissues with low perfusion pressures typically develop an anticoagulant environment
through the activation of protein C and its cascade, which prevents thrombotic events at
the vascular level. In severe trauma with shock conditions, this physiological response
is exacerbated, leading to pathological hemorrhagic tendencies. The precise extent of
activation of this pathway in vivo remains to be fully elucidated, but it appears to be
influenced significantly by the severity of trauma and subsequent systemic hypoperfusion.

Acidosis contributes to clotting dysfunction by disrupting the assembly of coagulation
factor complexes involving calcium and phospholipids, particularly at pH below 7.2. Cor-
recting acidosis alone, however, does not always reverse associated coagulopathy, suggest-
ing that tissue injury contributes to coagulopathy through additional mechanisms [23,24].
Hypothermia, induced by exposure to cold during injury and transport, as well as through
administration of cold fluids, further complicates the coagulation profile. Surgical patients
are particularly vulnerable to hypothermia due to prolonged exposure in the operating
room, additional fluid administration, and the effects of anesthesia. However, hypothermia
itself is not a strong independent predictor of mortality [25,26].

Resuscitation-associated coagulopathy (RAC), also known as iatrogenic coagulopathy,
refers to disruptions in the coagulation system caused by large volumes of intravenous
fluids or unbalanced blood product administration during shock management [27,28]. The
age of blood products may also contribute to RAC.

In summary, TIC represents a disturbance in hemostasis and activation of fibrinol-
ysis that occurs early after injury (Figure 1), often manifesting biochemically before the
development of significant acidosis, hypothermia, or hemodilution. Risk factors for TIC
include hypotension, higher injury severity scores, worsening base deficit, and head in-
jury [10,29,30]. Once established, TIC can be compounded by other causes of coagulopathy.

4.2. TIC and DIC: Sibling Coagulopathies

Coagulopathy observed in TIC, in the absence of thrombocytopenia and hypofibrino-
genemia, suggests that consumption alone may not be the primary underlying mechanism.
In acutely injured patients, elevated D-dimer levels and depleted fibrinogen levels indicate
intravascular fibrin deposition and active fibrinolysis [31,32]. However, studies have shown
that functional thrombin generation, assessed through the presence of prothrombin frag-
ments and thrombin–antithrombin complexes, remains intact in these patients [22,33,34].

Thrombin modulates immune responses because thrombin can clear protease-activated
receptors on endothelial cells, immune cells, and platelets, leading to the release of cy-
tokines, chemokines, and adhesion molecules [35].

TIC typically occurs when tissue injury is coupled with systemic hypoperfusion,
suggesting that the mechanism behind TIC is likely distinct from disseminated intravascular
coagulation (DIC), although these conditions frequently overlap. Further research is needed
to better understand these distinctions and their implications for clinical management.
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Figure 1. Pathophysiology of trauma-induced coagulopathy.

4.3. Hyperfibrinolysis and Fibrinolysis Shutdown

The pathophysiology of TIC involves several complex mechanisms that lead to both
hyperfibrinolysis and fibrinolysis shutdown. These processes are primarily driven by the
effects of shock, hypoperfusion, and direct tissue injury on the endothelium.

4.3.1. Hyperfibrinolysis

The cleavage of fibrinogen into fibrin and fibrin polymerization are necessary for
the stabilization of blood clots. Decreased fibrinogen concentrations are associated with
an increased transfusion rate and mortality in trauma patients [36]. Otherwise, plasmin
degradation of fibrin is essential for maintaining vessel patency. An excessive activation
of the system, hyperfibrinolysis, is associated with the risk of intractable bleeding after
injury [37]. Hyperfibrinolysis in TIC is triggered by endothelial thrombomodulin expres-
sion upregulation in response to tissue hypoperfusion. Thrombomodulin forms a complex
with thrombin generated by tissue trauma, accelerating the activation of protein C. Acti-
vated protein C then contributes to coagulopathy by inactivating factors Va and VIIIa and
promotes fibrinolysis by inhibiting plasminogen activator inhibitor 1 (PAI-1). Moreover
hypoxemia and adrenergic activation activate endothelial cells, and significant amounts
of tissue plasminogen activator (tPA) are released from the Weibel–Palade vesicles into
the bloodstream. This hypothesis is supported by the finding that hyperfibrinolysis has
also been demonstrated in other nontraumatic low-flow states, such as life-threatening
anaphylactic shock or out-of-hospital cardiac arrest [38,39].

Endothelial tPA overexpression is crucial for hyperfibrinolysis, as tPA forms an inactive
complex with PAI-1, reducing its activity. This phenomenon was validated using TEG with
exogenous tPA challenge, highlighting the role of severe hypoperfusion in releasing tPA
into circulation and sequestering PAI-1 [40].
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4.3.2. Fibrinolysis Shutdown

Conversely, fibrinolysis shutdown in TIC is characterized by impaired release of
tPA following trauma. This condition is associated with higher mortality compared to
physiologic fibrinolysis. Moore et al. [41] categorized patients with severe trauma based on
clot lysis characteristics: fibrinolysis shutdown, physiologic lysis, and hyperfibrinolysis.
Mortality rates were significantly elevated in patients with fibrinolysis shutdown and
hyperfibrinolysis, (respectively, 22 and 37%), with deaths from massive hemorrhage in
hyperfibrinolysis and later deaths from multi-organ failure attributed to microcirculatory
fibrin deposits in fibrinolysis shutdown [42].

These distinct fibrinolytic phenotypes underscore the complexity of TIC and highlight
the critical importance of timely and targeted interventions to mitigate coagulopathic
complications in trauma patients.

4.4. The New Concept: Trauma Endotheliopathy (EoT)

In physiological conditions, endothelium expresses many anticoagulant molecules,
including thrombomodulin, endothelium PC receptors, and endothelium glycocalyx layer
complexes (EGL). ECL is a matrix of proteoglycans (syndecan-1, hyaluronic acid, and
heparan sulfate) on the surface of endothelial cells. Loss of EGL (shedding) has been de-
tected in a variety of inflammatory conditions, including trauma. These conditions induced
by various molecular mechanisms that contribute to endothelial cell injury, activation,
and maladaptive responses following major injuries have been termed shock-induced
endotheliopathy (SHINE) or endotheliopathy of trauma (EoT) [43]. Three main types of
endotheliopathy: (a) damage/loss of the endothelial glycocalyx, (b) cleavage of soluble
thrombomodulin (sTM) with impairment of the natural protein C anticoagulant system,
and finally (c) increased permeability due to loss of the integrity of endothelial intercellular
junctions have been described. Laboratory studies showed that inhibition of catecholamine
secretion significantly decreased expression of markers of endothelial injury.

4.4.1. Endothelial Damage

Reduced perfusion and tissue damage induce exposition of a greater number of
thrombomodulin molecules on the endothelial surface, with the formation of thrombin-
thrombomodulin complexes. The latter induce the activation of large amounts of protein C,
which in turn binds factors V and VIII. The consumption of factors, as well as of thrombin
and thrombomodulin, causes a reduction in the rate of activation of the coagulation cascade
and a lower stability of the formed clot (Figure 2) [44].

Figure 2. Activation of thrombodulin and TIC.
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Compromission of endothelial glycocalyx, a protective layer on the endothelial sur-
face, is observed not rarely after trauma. This disruption increases vascular permeability,
contributing to coagulopathy and inflammation [45]. Syndecan-1, a glycocalyx degradation
product, is released in response to glycocalyx damage, and plasma concentrations correlate
with coagulopathy and mortality [46,47].

Shedding of endogenous heparan sulfates from the glycocalyx can lead to auto-
anticoagulation via increased circulating endogenous heparinoids. The extent of glycocalyx
damage correlates with catecholamine levels post-injury [48]. Elevated syndecan-1 levels
upon admission are predictive of increased mortality and the need for blood transfusions.
For example, levels ≥ 40 ng/mL have been linked to higher 30-day in-hospital mortality
rates [46]. High syndecan-1 levels are associated with elevated inflammatory markers
(such as IL-6 and IL-10) and coagulation markers (including D-dimer and tissue plas-
minogen activator [tPA]). These associations underscore the marker’s role in reflecting the
extent of inflammation and coagulopathy in trauma patients. In pediatric trauma cases,
elevated syndecan-1 levels are associated with shock and poorer outcomes [49]. Each
10 ng/mL increase in syndecan-1 correlates with 10% higher odds of death or requiring
transfusion [50].

Syndecan-1 levels are also implicated in the development of DIC following trauma.
Studies have shown that elevated syndecan-1 correlates with intense and prolonged ac-
tivation of coagulation pathways, contributing to DIC progression [51]. In summary,
syndecan-1 may be a useful marker of endothelial injury severity in trauma patients. Its ele-
vation signifies worse clinical outcomes, heightened inflammation, increased coagulopathy,
and a heightened risk of developing DIC. Monitoring syndecan-1 levels can aid in early
intervention and management strategies to mitigate these complications in trauma care.

4.4.2. Von Willebrand Factor (VWF) and ADAMTS13

Release of VWF by endothelial cells occurs approximately rapidly after thrombin
activation. In an early phase of trauma, VWF levels in patients with coagulopathy were
lower than those in patients without coagulopathy. The admission VWF levels were also
correlated with the admission PC/FVII levels, implying that early low VWF levels might
be mainly attributed to coagulopathy probably related to an impairment of thrombin gen-
eration. Nevertheless, in surviving patients VWF peaked in the week after admission [52].
Release of hyperadhesive, ultra-large VWF multimers from endothelial cells may contribute
to the hypercoagulable phase of TIC, leading to microvascular thrombosis. Concurrently, a
deficiency in ADAMTS13, the VWF-cleaving metalloprotease, exacerbates this condition,
contributing to coagulopathy and endothelial dysfunction [53]. When analyzing by ISS,
patients with ISS > 15 had lower ADAMTS13 activity. After multivariable linear regression,
ADAMTS activity was independently associated with coagulopathy [54]. The imbalance
between ADAMTS13 activity and levels of VWF results in the persistence of ultra-large
VWF molecules circulating in the bloodstream. and is associated with more severe coagula-
tion abnormalities, greater blood loss, and increased need for blood transfusions in trauma
patients [55].

4.4.3. Calcium Influx

Endothelial permeability induced by trauma involves calcium influx through the
TRPV4 channel. This influx leads to myosin light chain phosphorylation and actomyosin
contraction, disrupting endothelial junctions and increasing permeability [56]. TRPV4
is highly expressed on vascular endothelial cells and can be activated by many stimuli,
including inflammatory mediators, reactive oxygen species, and acidosis, all potential
contributors to a pathologic milieu after major trauma. Pharmacologic inhibition of TRPV4
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restores endothelial function and improves survival in multiple murine models of sep-
sis. Conversely, TRPV4 agonism results in massive endothelial barrier dysfunction with
profound circulatory collapse, resembling the systemic inflammatory response phenotype
frequently observed in critically injured patients [57]. Ex vivo plasma from injured patients
with “low injury/low shock” (injury severity score < 15, base excess ≥ −6 mEq/L) and
“high injury/high shock” (injury severity score ≥ 15, base excess < −6 mEq/L) was used
to treat endothelial cells. Compared with low injury/low shock plasma, high injury/high
shock induced greater cytosolic Ca2+ increase, inducing post-injury endotheliopathy. Fur-
thermore, increased cellular calcium influx has been hypothesized to contribute to post-
trauma hypocalcemia.

4.4.4. RhoA GTPase Activation

Increased activation of RhoA GTPase following trauma causes breakdown of en-
dothelial tight and adherens junctions, further enhancing endothelial permeability and
contributing to organ dysfunction [58]. Plasma from severely injured patients was added
to human umbilical vein endothelial cells. Rho and Rac activity were determined using a
G-LISA assay. Endothelial permeability significantly increased with plasma from patients
with both severe injury and shock contributing most to this increased permeability [57].
Additionally, incubation with injury + shock plasma resulted in higher RhoA activation
(p = 0.002) and a trend toward decreased Rac1 activation (p = 0.07) compared to the mini-
mally injured control.

Experimental models of trauma suggest that inhibition of RhoA activity in lungs
treated with both mesenchymal stem cell-derived extracellular vesicles and mesenchymal
stem cells is associated with a decrease in pulmonary cell permeability and lung injury [58].

4.4.5. Inflammatory Mediators

Trauma initiates a systemic inflammatory response characterized by the release of
proinflammatory cytokines, complement activation, and neutrophil recruitment. This
inflammatory milieu exacerbates endothelial injury and dysfunction [59,60]. This may
result in single and multiple organ failure (acute kidney injury, acute respiratory distress
syndrome, hepatic dysfunction) and a higher susceptibility to infection. Cellular disruption
by trauma releases mitochondrial “damage”-associated molecular patterns (DAMPs) with
evolutionarily conserved similarities to bacterial infections. Microbial pathogen-associated
molecular patterns (PAMPs) into the circulation. These activate human polymorphonuclear
neutrophils (PMNs), leading to PMN migration and degranulation in vitro and in vivo.
Circulating MTDs can elicit neutrophil-mediated organ injury [61]. Although a relation
has been reported between severity of trauma and cytokine plasma levels, at present their
measurement seems of poor prognostic value.

4.4.6. Extracellular Vesicles (EVs)

Extracellular vesicles (EVs) are cellular vesicles ≤1 µm in size that contain membrane
fragments, intracellular organelles, exosomes, and associated cargo molecules. They are
released from cells undergoing apoptosis or active microvesiculation and contribute to
endothelial dysfunction and coagulopathy during acute injury through distinct yet inter-
connected mechanisms [62]. First, membrane EVs often express anionic phospholipids,
which serve as crucial cofactors in the initiation and propagation of coagulation. Second,
EVs derived from peripheral blood samples of mice with traumatic brain injury (TBI)
induce vasoconstriction both in vivo and in vitro, leading to tissue ischemia [63]. This
vasoconstrictive effect appears to be intrinsic to the structure of EVs themselves, as neither
the protein nor the lipid fractions extracted from EVs individually induce vasoconstriction.
Third, EVs carry bioactive factors originating from parent cells or acquired from plasma,
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which can activate or damage endothelial cells (ECs). These EVs interact with endothelial
cells, promoting inflammation and disrupting endothelial barriers [64].

4.4.7. Metabolic Dysregulation

Trauma alters the metabolic profile of endothelial cells, affecting glucose and fatty
acid metabolism. This metabolic shift impairs endothelial function and contributes to the
pathophysiology of EoT.

Understanding these intricate mechanisms is fundamental for advancing targeted
therapies aimed at alleviating endothelial dysfunction and enhancing outcomes for trauma
patients. Continued research is crucial to elucidate the interplay and roles of these pathways
in the pathogenesis and evolution of endotheliopathy of trauma.

5. Therapeutic Evolution in Trauma-Induced Coagulopathy
The treatment of TIC has developed in parallel with understanding and advancements

in diagnostic and therapeutic techniques, focusing on addressing the numerous factors
involved in its pathophysiology. This section will examine the treatment options, beginning
with traditional and less refined methods and moving towards more targeted approaches
guided by diagnostics.(Table 1)

Table 1. Conventional treatments in trauma-induced coagulopathy/bleeding.

Tranexamic acid Inhibits fibrinolysis through competitive and
non-competitive plasmin inhibition

Goal-Direct transfusion Balanced transfusion protocol with equal parts plasma,
RBCs, and platelets (1:1:1 ratio) can enhance survival

Fibrinogen Guidelines recommend fibrinogen replacement when
levels drop below 1.5 g/L during significant bleeding

Calcium chloride
Restoration of normal calcium levels since calcium have an
essential role in the formation and stabilization of fibrin
polymerization sites and on platelet function

5.1. Tranexamic Acid: The Cornerstone

Tranexamic acid (TXA) is extensively studied as an antifibrinolytic agent in trauma care.
It acts by inhibiting plasmin, the enzyme responsible for fibrinolysis, through competitive
and non-competitive mechanisms. The timing of TXA administration can differentially
impact patient outcomes. Moreover, concerns have been raised regarding the potential for
TXA to tip the balance between thrombogenesis and thrombolysis, leading to an increased
risk of thromboembolic events, such as venous thromboembolism (VTE) or stroke [65].
Known hypersensitivity and subarachnoid hemorrhage are absolute contraindications
to the use of tranexamic acid. The latter is due to the increased risk of cerebral edema
and ischemia [66]. Side effects such as gastrointestinal disturbance, allergic skin reaction,
and visual disturbance are relatively frequent, and acute cortical necrosis and seizures
have been reported in particular at high concentrations [67]. Initially, TXA was shown to
reduce overall mortality in trauma patients when administered promptly after injury, as
evidenced by the CRASH-2 study [68]. Subsequent research highlighted that delaying TXA
administration beyond 3 h post-injury increased the risks of venous thromboembolism and
hemorrhage-related death [69]. One possible explanation may be the opposite effect of TXA
on tPA- vs. uPA-mediated fibrinolysis due to different time-related expression of these
plasminogen activators: According to TXA-induced conformation change, plasminogen
reduces tPA-mediated activation, whereas it seems to accelerate uPA-mediated activation.
International guidelines support the hypothesis that TXA should be administered early
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after a traumatic event [68]; however, recent meta-analyses have indicated that TXA does
not significantly increase the incidence of thrombotic events across various trauma and
hemorrhage scenarios. Patients with a fibrinolytic shutdown phenotype, more common in
severe trauma cases, may have heightened susceptibility to thromboembolic complications
and organ failure with TXA treatment. Consequently, guidelines recommend early TXA
administration, ideally within 3 h of injury, especially in settings where TEG can promptly
identify fibrinolytic status and guide subsequent TXA dosing.

Current protocols advocate for an initial TXA bolus of 1 g infused over 10 min at the
trauma scene, followed by a continuous 8 h infusion to optimize therapeutic benefits.

5.2. The Goal-Direct Transfusion

Massive blood transfusion is a cornerstone in managing hemorrhagic shock in trauma
patients, favoring improved tissue perfusion and enhanced oxygen delivery. However,
despite their benefits, transfusions can exacerbate or trigger TIC. Protocols for massive
transfusion vary globally, with ratios of plasma to packed red blood cells (RBCs) ranging
from 1:1 to 1:10. Clinical trials such as PROMMTT, PROPPR, and COMBAT have demon-
strated that adopting a balanced transfusion protocol with equal parts plasma, RBCs, and
platelets (1:1:1 ratio) can enhance survival outcomes for patients at high risk of developing
TIC [70].

In the PROMMTT study, early administration of plasma was associated with re-
duced 24-h and 30-day mortality rates compared to delayed plasma transfusion or lower
plasma/RBC ratios. This underscores the critical role of timely plasma infusion in improv-
ing outcomes in trauma patients [71].

The PROPPR trial, while not showing differences in overall survival at 24 h and
30 days between the 1:1:1 and 1:1:2 ratios of plasma to platelets to RBCs, indicated that
the 1:1:1 ratio group had a lower likelihood of death due to hemorrhage. This highlights
the potential benefit of a balanced transfusion approach in mitigating bleeding-related
mortality [72].

5.3. TEG-Guided Hemostatic Transfusion Strategies

The utilization of TEG in guiding transfusion decisions has shown promising out-
comes, including reduced transfusion volumes, improved hemostatic balance, and poten-
tially lower rates of complications such as thromboembolism. The rapid and straightfor-
ward approach of TEG could potentially predict the necessity of blood transfusions in
severely injured trauma patients. Moving forward, resuscitation protocols informed by
TEG findings may emerge as the preferred method. A prospective randomized controlled
trial conducted by Gonzalez et al. in 2016 demonstrated reduced mortality among patients
transfused based on TEG results compared to those transfused based on conventional
laboratory testing (19.6% vs. 36.4%, respectively) [73].

TEG assesses multiple parameters, including reaction time (R-time), clot kinetics (K-
time and angle), maximum amplitude (MA), and clot lysis (LY30), each guiding specific
decisions regarding transfusion therapy (Figure 3) [74].

1. R-time: A prolonged R-time suggests the requirement for plasma transfusion. For
example, an R-time > 4.45 min indicates the need for fresh frozen plasma (FFP)
administration to address coagulopathy.

2. Angle (α): A decreased angle indicates the need for fibrinogen supplementation. An
angle < 67 degrees signals the potential need for fibrinogen concentrates or cryopre-
cipitate infusion.

3. Maximum Amplitude (MA): A reduced MA indicates platelet dysfunction or defi-
ciency. An MA < 60 mm indicates the necessity for platelet transfusion.
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4. LY30: Elevated LY30 indicates hyperfibrinolysis, which may require antifibrinolytic
therapy like tranexamic acid (TXA). An LY30 > 4.55% suggests the potential benefit of
antifibrinolytics.

 

Figure 3. ROTEM curve. Derived variables and their relationship with hemostatic changes are reported.

This strategy has been shown to enhance survival rates and minimize the quantity of
blood products administered, supported by research demonstrating strong associations
between TEG measurements and patient outcomes in trauma settings [75–77].

The threshold values for the most accurate identification of ATC and prediction of
massive transfusion (MT) using rotational thromboelastometry (ROTEM) assays are still
debated. In the paper by Hagemo et al. [78], the ROTEM CA5 value measured on arrival is
a valid marker for ATC and predicts massive transfusion requirements. An EXTEM CA5
threshold value of ≤40 mm has a detection rate of 72.7%, whereas a FIBTEM CA threshold
value of ≤9 mm detects MT requirements in 77.5% of cases. In Figure 4 is reported one of
the proposed ROTEM-based schemes of treatment.

Figure 4. ROTEM based correction of coagulative abnormalities (modified from [76]).

According to these cut-off values, a recent paper showed that in 51% of patients who
had abnormal results at ROTEM in the first 4 h after trauma, the need for red blood cells,
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frozen plasma, platelet units, or fibrinogen coventrates was 2 to 4 times higher than in those
without ROTEM abnormalities [79].

5.4. Improving Trauma Care: Fibrinogen Concentrates

Fibrinogen is crucial for hemostasis early after trauma, and low levels following
severe injury correlate with impaired clotting, severe bleeding, and poorer outcomes. The
timely administration of concentrated fibrinogen has been shown to mitigate TIC and
reduce the need for blood transfusions, as evidenced by the randomized controlled FiiRST
trial [80]. This trial demonstrated that maintaining high fibrinogen levels through early
infusion of concentrated fibrinogen lowers TIC-related complications. Current guidelines
recommend fibrinogen replacement when levels drop below 1.5 g/L during significant
bleeding, typically achieved using cryoprecipitate derived from fresh frozen plasma.

5.5. Pharmacological Interventions

Hemostatic drugs used as adjuncts for managing severe coagulopathy in bleeding
patients include recombinant factor VIIa, prothrombin complex concentrate, antifibrinolytic
agents, and desmopressin. Recombinant factor VIIa is reserved for life-saving situations
due to its role in binding tissue factor exposed during trauma, thereby promoting clot
formation at the injury site [81].

Prothrombin complex concentrate (PCC) is enriched in factors II, VII, IX, and X and is
commonly used to counteract warfarin-induced anticoagulation due to its high content of
vitamin K-dependent clotting factors [82]. PCC showed promising results in managing TIC
in select trauma centers, although further clinical studies are required to establish effective
therapeutic effects.

Fresh-frozen plasma (FFP) is routinely used to correct coagulopathy in trauma patients
by providing volume and coagulation factors support [83]. However, its use is limited by
the need for cross-matching and thawing before administration, as well as delayed reversal
of coagulopathy [84]. Tissue hypoperfusion early in trauma contributes significantly to
coagulopathy, exacerbated by large-volume crystalloid resuscitation, which further dilutes
clotting factors [85]. FFP has been recommended for its dual role in providing volume and
coagulation support, although logistical challenges persist [29]. Recent interest in PCC as an
alternative to FFP may mitigate early coagulopathic effects of fluid resuscitation in trauma
patients. However, concerns about thromboembolic risks and higher costs compared to
FFP remain significant considerations.

5.6. Calcium Chloride

Hypocalcemia in patients requiring massive transfusions may be detrimental, because
Ca2+ plays a crucial role in normal coagulation. Ca2+ is a cofactor in the activation of
factors II, VII, IX, and X, along with protein C and protein S of the coagulation cascade,
actually factor IV of the coagulative cascade. Moreover, it contributes to platelet adhesion
at the site of vessel injury. Hypocalcemia during the first 24 h can predict mortality and the
need for multiple transfusions better than the lowest fibrinogen concentrations, acidosis,
and the lowest platelet counts. To correct hypocalcemia, calcium chloride is preferred
to calcium gluconate, as 10% calcium chloride contains 270 mg of elemental calcium per
10 mL, whereas 10% calcium gluconate contains 90 mg of elemental calcium per 10 mL [71].

6. Future Perspectives
As previously reported, multiple associated pathways, including iatrogenic factors,

are involved in the pathophysiology of TIC. Replacement of coagulation factors using
blood components as well as counteracting enhanced fibrinolysis with tranexamic acid in
association with the whole strategy of damage control may contribute to decreasing clinical
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effects of TIC. Nevertheless, tailored treatment of different mechanisms involved in TIC
may offer further therapeutic options.

Glycocalyx shedding plays a significant role in the development of EoT. Therapeu-
tic approaches targeting sheddases responsible for this process or upstream activation
of leukocytes that produce these sheddases have been recently studied [86]. Etanercept,
angiopoietin-1, hydrocortisone, and heparin may modulate EGL shedding in different
clinical conditions, although the benefits of these strategies have not been specifically
demonstrated in trauma [87–89]. Patients treated with doxycycline, an MMP inhibitor,
showed reduced glycocalyx shedding induced by inflammatory and oxidative stress during
cardiopulmonary bypass. Syndecan-1 provides structural support to the glycocalyx, while
its attached glycosaminoglycans (GAGs), particularly heparan sulfate, are prominently
shed in response to trauma and hemorrhagic shock (Table 2). Heparan sulfates with a rare
3-O-sulfate modification possess both anticoagulant and anti-inflammatory properties by
binding tightly to antithrombin (AT) and sequestering circulating damage-associated molec-
ular patterns (DAMPs). Recent preclinical studies have shown that a synthetic 3-O-sulfated
heparan sulfate, dekaparin, exhibits similar anti-inflammatory and organ-protective effects
as plasma in a mouse model of trauma and hemorrhagic shock. Interaction between AT and
3-O-sulfated heparan sulfate-containing HSPGs (3-OS-HSPG) both disrupts coagulation at
the endothelial surface and elicits anti-inflammatory effects through induction of prosta-
cyclin synthesis and inhibition of NFκB activation [90]. These findings underscore the
biological significance of this unique heparan sulfate molecule and suggest that restoring
shed glycocalyx components could represent a promising future therapeutic development.

Table 2. Innovative treatments of endotheliopathy.

Etanercept
angiopoietin-1 Modulation of EGL shedding

Doxycylcyne (MMP inhibitor) Reduction of glycocalyx shedding

Dekaparin (synthetic 3.0 heparan sulfate)
Modulation of coagulation factors
activation, anti-inflammatory effects on
endothelial surface

Recombinant-human ADAMTS 13 Decreased coagulopathy and endothelial
permeability and induced organ damage

Lactadherin Facilitate removal of extracellular vesicles

Mesenchymal stem cells Promotion of angiogenesis and decrease in
endothelial permeability

After trauma, von Willebrand factor (VWF)-mediated extracellular vesicle (EV)-
induced vascular activity can be inhibited by exogenous ADAMTS-13, a VWF antibody,
or recombinant A2 protein. These interventions target the A1 domain exposed on hyper-
adhesive VWF in rodent models of trauma, hemorrhagic shock, or traumatic brain injury
(TBI) [91]. These findings align with clinical observations in which elevated plasma VWF
levels, reduced ADAMTS-13 activity, or an imbalance in the VWF-to-ADAMTS-13 ratio
correlate with endotheliopathy, coagulopathy, and adverse outcomes in severely injured
patients [92–95]. Restoring ADAMTS-13 levels could be beneficial. In a rodent model of
renal ischemia/reperfusion, Zhou et al. demonstrated that recombinant human ADAMTS-
13 (rhADAMTS-13) reduced inflammation and improved endothelial cell function [96].
Similarly, in a mouse model of TBI, Wu et al. found that rhADAMTS-13 effectively miti-
gated cerebral vascular leakage and coagulopathy and enhanced neurological outcomes
and survival [97]. In another experimental model of trauma-induced shock, rats were
randomized to receive crystalloids, crystalloids supplemented with rhADAMTS13, or
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plasma transfusion. Both plasma transfusion and rhADAMTS13 were associated with a
reduction in pulmonary endothelial permeability and organ injury when compared with
resuscitation with crystalloids, but only rhADAMTS13 resulted in significant improvement
of a trauma-induced decline in ADAMTS13 levels [98].

After trauma and under pathological conditions, VWF multimers are released, which
activate platelets and endothelial cells (ECs) to secrete procoagulant and proinflammatory
EVs. These EVs, bound to VWF, induce vascular hyperpermeability, a critical aspect of en-
dotheliopathy. EVs isolated from severely injured patients injected into naive mice induced
a significant increase in endothelial cell injury, as evidenced by syndecan-1 shedding, as
well as in coagulopathy and organ injury, compared to mice receiving EVs from minimally
injured patients [99,100].

Lactadherin, also known as milk fat globule-epidermal growth factor 8 (MFG-E8),
facilitates the removal of pathological EVs by binding them to macrophages for phagocy-
tosis. Lactadherin contains an integrin-binding arginylglycylaspartic acid sequence and
two C-terminal domains that strongly bind to phosphatidyl serine. Research by Zhou et al.
has demonstrated that lactadherin enhances the clearance of EVs, reduces coagulopathy,
prevents vascular permeability, and improves neurological outcomes and survival in mice
with severe TBI [101]. Given the extensive tissue damage and ischemia associated with
trauma, it is plausible that severely injured patients have elevated levels of circulating
EVs compared to those with isolated TBI. Therefore, lactadherin may potentially mitigate
endotheliopathy and coagulopathy following trauma and hemorrhage, although clinical
studies to confirm this are currently lacking.

Mesenchymal stem cells (MSCs), derived from bone marrow stromal progenitor cells,
have been extensively researched both in laboratory settings and clinical trials for their
potential therapeutic benefits following traumatic events. They promote angiogenesis
to aid in endothelial repair and have demonstrated efficacy in reducing endothelial per-
meability in models of hemorrhagic shock [102]. Furthermore, studies have shown that
EVs derived from MSCs offer similar protective effects as MSCs themselves, indicating
that MSC EVs could serve as a viable cell-free therapeutic option following trauma [62].
However, delineating the precise balance between the beneficial and detrimental effects of
EVs remains challenging, as their impact can vary based on the source cells, target cells,
and the specific cargo they carry.

7. Conclusions
In conclusion, EoT results from a complex relation involving the glycocalyx, VWF, and

platelets that impair coagulation and endothelial cell function and activate inflammation.
Mechanisms underlying endothelial injury and the detrimental effects of EoT, alongside
potential therapeutic future options, have been reported. Current therapeutic practice is
predominantly based on the administration of plasma and other blood products to reverse
volume losses and stop bleeding. Emerging treatment addressed to EC dysfunction showed
promising results in animal models. The future challenges in trauma research will be the
transferal of tailored treatment in humans and in clinical practice.
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